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Abstract. The eigenvalues of graphs are related to many of its combinatorial proper-
ties. In his fundamental work, Fiedler showed the close connections between the Laplacian
eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity.

We present some new results describing the connections between the spectrum of a regular
graph and other combinatorial parameters such as its generalized connectivity, toughness,
and the existence of spanning trees with bounded degree.
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1. Introduction

The spectrum of a graph is related to many important combinatorial parameters.

In his fundamental and ground-breaking works, Fiedler [17], [16] determined close

connections between the Laplacian eigenvalues and eigenvectors of a graph and com-

binatorial parameters such as its vertex-connectivity or edge-connectivity. Fiedler’s

work has stimulated tremendous progress and growth in spectral graph theory since

then.

In this paper, we study the connections between the spectrum of a regular graph

and other combinatorial parameters such as generalized connectivity, toughness and

the existence of spanning trees with bounded degree.

The research of the first author was partially supported by the National Security Agency
grant H98230-13-0267 and the National Science Foundation grant DMS-1600768.
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Throughout this paper, we consider only finite, undirected and simple graphs.

Given a graph G = (V,E) of order n, we denote by λ1(G) > λ2(G) > . . . > λn(G)

the eigenvalues of its adjacency matrix. When the graph G is clear from the context,

we use λi to denote λi(G). We also use the notation λ = max{|λ2|, |λn|}. If G is d-
regular, then λ1 = d and the multiplicity of d equals the number of components of G.

We use κ(G), κ′(G) and c(G) to denote the vertex-connectivity, the edge-connectivity

and the number of components of a graph G, respectively. For any undefined graph

theoretic notions, see Bondy and Murty [3] or Brouwer and Haemers [6].

One of the well-known results of Fiedler in [17] implies that the vertex-connectivity

of a d-regular graph is at least d − λ2. This result was improved in certain ranges

by Krivelevich and Sudakov in [24] who showed that the vertex-connectivity of a d-

regular graph is at least d − 36λ2/d. Given an integer l > 2, Chartrand, Kapoor,

Lesniak and Lick in [8] defined the l-connectivity κl(G) of a graph G to be the

minimum number of vertices of G whose removal produces a disconnected graph

with at least l components or a graph with fewer than l vertices. Thus, κl(G) = 0

if and only if c(G) > l or |V (G)| 6 l − 1. Note that κ2(G) = κ(G). For k > 1,

a graph G is called (k, l)-connected if κl > k. See [8], [14], [23], [32] for more about l-

connectivity and (k, l)-connected graphs. In particular, a structural characterization

of (2, l)-connected graphs is presented in [23], as a generalization of the standard

characterization of 2-connected graphs (see [3], Chapter 5).

Our results relating the generalized connectivity to the spectrum of a regular graph

are below.

Theorem 1.1. Let l, k be integers such as l > k > 2. For any connected d-regular

graph G with |V (G)| > k + l − 1, d > 3 and edge connectivity κ′, if κ′ = d, or if

κ′ < d and

λ⌈(l−k+1)d/(d−κ′)⌉(G) <











d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then κl(G) > k.

Corollary 1.2. Let l > 2. For any connected d-regular graph G with |V (G)| >
l + 1 and d > 3, if

λl(G) <











d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then κl(G) > 2.
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Corollary 1.3. For any connected d-regular graph G with d > 3, if

λ2(G) <











d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then κ(G) > 2.

Corollary 1.3 is a slight improvement of previous results of Krivelevich and Su-

dakov [24], Theorem 4.1, and Fiedler [17], Theorem 4.1.

The toughness t(G) of a connected graph G is defined as t(G) = min{|S| ×
(c(G− S))−1}, where the minimum is taken over all proper subsets S ⊂ V (G) such

that c(G−S) > 1. A graph G is t-tough if t(G) > t. This parameter was introduced

by Chvátal [9] in 1973 and is closely related to many graph properties, including

Hamiltonicity, pancyclicity and spanning trees, see [2]. By the definitions of tough-

ness and generalized connectivity, for a noncomplete connected graph G we have

t(G) = min
26l6α

{κl(G)/l} where α is the independence number of G (see also [14]).
The relationship between the toughness of a regular graph and the eigenvalues has

been considered by many researchers, among which Alon [1] is the first.

Theorem 1.4 (Alon [1]). For any connected d-regular graph G,

t(G) >
1

3

( d2

dλ+ λ2
− 1

)

.

Around the same time, Brouwer [5] independently discovered a slightly better

bound of t(G).

Theorem 1.5 (Brouwer [5]). For any connected d-regular graph G,

t(G) >
d

λ
− 2.

Brouwer in [4] conjectured that the lower bound from the previous theorem can

be improved to d/λ− 1 for any connected d-regular graph G. For the special case of

toughness 1, Liu and Chen in [27] improved Brouwer’s previous result.

Theorem 1.6 (Liu and Chen [27]). For any connected d-regular graph G, if

λ2(G) <















d− 1 +
3

d+ 1
if d is even,

d− 1 +
2

d+ 1
if d is odd,

then t(G) > 1.
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Recently, Cioabă and Wong in [12] further improved the above result.

Theorem 1.7 (Cioabă and Wong [12]). For any connected d-regular graph G, if

λ2(G) <















d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then t(G) > 1.

Moreover, Cioabă and Wong in [12] showed that the previous result is the best

possible by constructing d-regular graphs whose second largest eigenvalues equal the

right-hand-side of the inequality from the previous theorem, but with toughness less

than 1. An immediate corollary of the previous result is the following.

Corollary 1.8 (Cioabă and Wong [12]). For any bipartite connected d-regular

graph G, if

λ2(G) <















d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then t(G) = 1.

These authors also found the second largest eigenvalue condition for t(G) > τ ,

where τ 6 κ′/d is a positive number.

Theorem 1.9 (Cioabă and Wong [12]). Let G be a connected d-regular graph

with edge connectivity κ′ and d > 3. Suppose that τ is a positive number such that

τ 6 κ′/d. If λ2(G) < d− τd/(d+ 1), then t(G) > τ .

In this paper, we continue investigating the relationship between toughness of

a regular graph and its eigenvalues. The following theorems are the main results. As

⌈d/(d− κ′)⌉ > 2, Theorem 1.10 is an improvement of Theorem 1.7. For bipartite reg-

ular graphs, Theorem 1.11 improves Corollary 1.8. We shall also mention that in The-

orem 1.9 the eigenvalue condition is not needed, see Theorem 1.12. As an application

of Theorem 1.12, Corollary 1.13 confirms a conjecture of Brouwer [4] when κ′ < d.

Theorem 1.10. Let G be a connected d-regular graph with d > 3 and edge

connectivity κ′. If κ′ = d, or if κ′ < d and

λ⌈d/(d−κ′)⌉(G) <











d− 2 +
√
d2 + 12

2
if d is even,

d− 2 +
√
d2 + 8

2
if d is odd,

then t(G) > 1.
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Theorem 1.11. For any bipartite connected d-regular graph G with κ′ < d, if

λ⌈d/(d−κ′)⌉(G) < d− (d− 1)/2d, then t(G) = 1.

Theorem 1.12. Let G be a connected d-regular graph with edge connectivity κ′.

Then t(G) > κ′/d.

Corollary 1.13. For any connected d-regular graph G with d > 3 and edge

connectivity κ′ < d, t(G) > d/λ2 − 1 > d/λ− 1.

Recently, there has been a lot of activity concerning connections between the

eigenvalues of a graph and the maximum number of edge-disjoint spanning trees

that can be packed in the graph [13], [21], [19], [22], [26], [29], [28], [35]. Another

interesting problem would be to see how the eigenvalues of a graph influence the

types of spanning trees contained in it. For an integer k > 2, a k-tree is a tree

with the maximum degree at most k. This topic is related to connected factors.

A [1, k]-factor is a spanning subgraph in which each vertex has the degree at least

one and at most k. By definition, a graph G has a spanning k-tree if and only if

G has a connected [1, k]-factor. For more about degree bounded trees, we refer the

readers to survey [33]. For spectral conditions of k-factors in regular graphs, see [11],

[20], [31], [30]. In his PhD Dissertation, Wong [35] proved the following sufficient

spectral condition for the existence of spanning k-trees in regular graphs for k > 3.

Theorem 1.14 (Wong [35]). Let k > 3 and let G be a connected d-regular graph.

If λ4 < d− d/((k − 2)(d+ 1)), then G has a spanning k-tree.

In this paper, we improve this result.

Theorem 1.15. Let k > 3 and let G be a connected d-regular graph with edge

connectivity κ′. Let l = d− (k − 2)κ′. Each of the following statements holds.

(i) If l 6 0, then G has a spanning k-tree.

(ii) If l > 0 and λ⌈3d/l⌉ < d− d/((k − 2)(d+ 1)), then G has a spanning k-tree.

Note that eigenvalue conditions for the existence of spanning 2-trees (Hamiltonian

paths) and Hamiltonian cycles have been obtained by Krivelevich and Sudakov in [25]

and Butler and Chung in [7].
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2. Preliminaries

In this section, we present some eigenvalue interlacing results to be used in our

arguments. For a real and symmetric matrix M of order n and a natural number

1 6 i 6 n, we denote by λi(M) the i-th largest eigenvalue of M . The following

interlacing theorem can be found in many textbooks, for example [6], page 35, or [18],

page 193, and is usually referred to as Cauchy eigenvalue interlacing.

Theorem 2.1. Let A be a real symmetric n×n matrix and B a principal m×m

submatrix of A. Then λi(A) > λi(B) > λn−m+i(A) for 1 6 i 6 m.

Corollary 2.2. Let S1, S2, . . . , Sp be disjoint subsets of V (G) with e(Si, Sj) = 0

for i 6= j. For 1 6 i 6 p let G[Si] denote the subgraph of G induced by Si. Then

λp(G) > λp

(

G

[ p
⋃

i=1

Si

])

> min
16i6p

{λ1(G[Si])}.

Let d > 3 be an integer, and let X (d) denote the family of all connected irregular

graphs with maximum degree d, order n > d + 1 and size m with 2m > dn − d + 1

that have at least two vertices of degree d if d is odd, and at least three vertices of

degree d if d is even. If t > 2 is an even integer, let Mt denote the disjoint union of

t/2 edges. If G and H are two vertex disjoint graphs, the join G ∨H of G and H is

the graph obtained by taking the union of G and H and adding all the edges between

the vertex set of G and the vertex set of H . The complement of G is denoted by G.

For d > 3, define Xd as Md−1 ∨K2 if d is odd and Md−2 ∨K3 if d is even.

Lemma 2.3 (Cioabă and Wong [12]). Let d > 3 be an integer and H ∈ X (d).

Then

λ1(H) > θ(d) =







1

2
(d− 2 +

√

d2 + 12) if d is even,

1

2
(d− 2 +

√

d2 + 8) if d is odd.

Equality occurs if and only if G = Xd.

Theorem 2.4 (Cioabă [10]). Let k and d be two integers such that d > k > 2. If

G is a d-regular graph with λ2(G) < d− 2(k − 1)/(d+ 1), then κ′(G) > k.

Corollary 2.5. Let G be a d-regular graph with d > 2 and edge connectivity

κ′ < d. Then λ2(G) > d− 2κ′/(d+ 1).

P r o o f. Let k = κ′ + 1 in the contrapositive of Theorem 2.4. �
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3. Spectrum and generalized connectivity of regular graphs

In this section, we prove Theorem 1.1. Corollaries 1.2 and 1.3 obviously follow

from Theorem 1.1.

P r o o f of Theorem 1.1. We prove it by contradiction, i.e., we assume that

κl(G) < k. By definition, there exists a subset S ⊂ V (G) with |S| 6 k− 1 such that

c(G − S) > l. Let s = |S|, c = c(G − S) and let H1, H2, . . . , Hc be the components

of G− S. For 1 6 i 6 c let ni = |V (Hi)| and let ti be the number of edges between
Hi and S. Then ti > κ′ for 1 6 i 6 c. Since G is d-regular,

c
∑

i=1

ti 6 ds 6 d(k − 1).

As d(k − 1) >
c
∑

i=1

ti > cκ′ > lκ′, we have ld − d(k − 1) 6 ld − lκ′. If κ′ = d,

then the previous inequality is impossible, a contradiction. Thus, we may assume

that κ′ < d, and hence l > (l − k + 1)d/(d− κ′). We claim that there are at least

⌈(l − k + 1)d/(d− κ′)⌉ indices i such that ti < d. Otherwise, there would be at most

⌈(l − k + 1)d/(d− κ′)⌉− 1 indices i such that ti < d. In other words, there would be

at least c− ⌈(l − k + 1)d/(d− κ′)⌉+ 1 indices i with ti > d. Thus,

c
∑

i=1

ti >
(

c−
⌈ (l − k + 1)d

d− κ′

⌉

+ 1
)

d+
(⌈ (l − k + 1)d

d− κ′

⌉

− 1
)

κ′

= cd−
(⌈(l − k + 1)d

d− κ′

⌉

− 1
)

(d− κ′)

> cd− (l − k + 1)d

d− κ′
(d− κ′)

= cd− (l − k + 1)d = (c− l)d+ (k − 1)d > ds,

contrary to
c
∑

i=1

ti 6 ds. Hence, there are at least ⌈(l − k + 1)d/(d− κ′)⌉ indices
i such that ti < d. Without loss of generality, we may assume these indices are

1, 2, . . . , ⌈(l− k + 1)d/(d− κ′)⌉.
For 1 6 i 6 ⌈(l − k + 1)d/(d− κ′)⌉, ni > d + 1. Otherwise, if ni 6 d, then

dni = ti + 2|E(Hi)| 6 ti + ni(ni − 1) 6 ti + d(ni − 1), which implies ti > d, contrary

to ti < d.

Since dni = ti+2|E(Hi)| for 1 6 i 6 ⌈(l − k + 1)d/(d− κ′)⌉, if d is even, hence ti is
also even, and thus ti 6 d−2. If d is odd, then ti 6 d−1. As ni > d+1, each Hi con-

tains at least three vertices of degree d if d is even, and at least two vertices of degree

d if d is odd. Thus, Hi ∈ Xd for 1 6 i 6 ⌈(l − k + 1)d/(d− κ′)⌉. By Corollary 2.2
and Lemma 2.3, λ⌈(l−k+1)d/(d−κ′)⌉(G) > min

16i6⌈(l−k+1)d/(d−κ′)⌉
{λ1(Hi)} > θ(d), con-

trary to the assumption. This completes the proof. �
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4. Spectrum and toughness of regular graphs

In this section, we prove Theorems 1.10, 1.11, 1.12 and Corollary 1.13.

P r o o f of Theorem 1.10. We prove it by contradiction, i.e., we assume that

t(G) <1. By definition, there exists a subset S ⊂ V (G) such that |S|/(c(G− S)) < 1.

Let s = |S|, c = c(G− S) and let H1, H2, . . . , Hc be the components of G − S. For

1 6 i 6 c let ni = |V (Hi)| and let ti be the number of edges between Hi and S.

Then s < c and ti > κ′ for 1 6 i 6 c. Since G is d-regular,
c
∑

i=1

ti 6 ds.

As cκ′ 6
c
∑

i=1

ti 6 ds 6 d(c − 1), we have c(d − κ′) > d. If κ′ = d, then we get

a contradiction. Thus, we may assume that κ′ < d, and so c > d/(d− κ′). We claim

that there are at least ⌈d/(d− κ′)⌉ indices i such that ti < d. Otherwise, there would

be at most ⌈d/(d− κ′)⌉ − 1 indices i such that ti < d. In other words, there would

be at least c− ⌈d/(d− κ′)⌉+ 1 indices i with ti > d. Thus,

c
∑

i=1

ti >
(

c−
⌈ d

d− κ′

⌉

+ 1
)

d+
(⌈ d

d− κ′

⌉

− 1
)

κ′

= cd−
(⌈ d

d− κ′

⌉

− 1
)

(d− κ′)

> cd− d

d− κ′
(d− κ′) = cd− d > ds,

contrary to
c
∑

i=1

ti 6 ds. Thus, there are at least ⌈d/(d− κ′)⌉ indices i such that ti < d.

Without loss of generality, we may assume these indices are 1, 2, . . . , ⌈d/(d− κ′)⌉.
For 1 6 i 6 ⌈d/(d− κ′)⌉ we have ni > d + 1. Otherwise, if ni 6 d, then dni =

ti + 2|E(Hi)| 6 ti + ni(ni − 1) 6 ti + d(ni − 1), which implies ti > d, contrary to

ti < d.

Since dni = ti + 2|E(Hi)| for 1 6 i 6 ⌈d/(d− κ′)⌉, so if d is even, then ti is also

even, and thus ti 6 d−2. If d is odd, then ti 6 d−1. As ni > d+1, each Hi contains

at least three vertices of degree d if d is even, and at least two vertices of degree d if

d is odd. Thus, Hi ∈ Xd for 1 6 i 6 ⌈d/(d− κ′)⌉. By Corollary 2.2 and Lemma 2.3,
λ⌈d/(d−κ′)⌉(G) > min

16i6⌈d/(d−κ′)⌉
{λ1(Hi)} > θ(d), contrary to the assumption. This

completes the proof. �

Lemma 4.1. For any bipartite regular graph G, t(G) 6 1.

P r o o f. Let S be the set of vertices of one part of the bipartition. Then this

equation c(G− S) = |S| holds. Thus, t(G) 6 |S|/(c(G− S)) = 1. �
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P r o o f of Theorem 1.11. We prove it by contradiction, i.e., we assume that

t(G) 6= 1. By Lemma 4.1, t(G) < 1. By definition, there exists a subset S ⊂ V (G)

such that |S|/(c(G− S)) < 1. An argument similar to that in the proof of Theo-

rem 1.10 shows that there are at least ⌈d/(d− κ′)⌉ components Hi of G−S such that

ti < d, where ti is the number of edges between Hi and S for 1, 2, . . . , ⌈d/(d− κ′)⌉.
Let ni = |V (Hi)| and let mi = |E(Hi)| for 1, 2, . . . , ⌈d/(d− κ′)⌉. Then 2mi =

dni − ti > dni − d + 1. As each Hi is also bipartite, mi 6 n2
i /4. Thus, n

2
i /2 >

2mi > dni − d+ 1, which implies that n2
i − 2dni + 2d− 2 > 0. Hence, ni > 2d. By

Corollary 2.2,

λ⌈d/(d−κ′)⌉(G) > min
16i6⌈d/(d−κ′)⌉

{λ1(Hi)} > min
16i6⌈d/(d−κ′)⌉

{2mi

ni

}

>
dni − d+ 1

ni
> d− d− 1

2d
,

contrary to the assumption. This completes the proof. �

P r o o f of Theorem 1.12. Suppose that S is a vertex-cut of G. Let s = |S|,
c = c(G− S) and let H1, H2, . . . , Hc be the components of G− S. For 1 6 i 6 c let

ni = |V (Hi)| and let ti be the number of edges between Hi and S. Then ti > κ′ for

1 6 i 6 c. As G is d-regular,
c
∑

i=1

ti 6 ds. Thus, cκ′ 6
c
∑

i=1

ti 6 ds, which implies that

s/c > κ′/d. Hence, t(G) > κ′/d. �

P r o o f of Corollary 1.13. By Corollary 2.5, λ2 > d− 2κ′/(d+ 1), which implies

that 2κ′/(λ2(d+ 1)) > d/λ2 − 1. If d > 4, then λ2 > d− 2κ′/(d+ 1) > 2. If d = 3,

then κ′ 6 2, and thus λ2 > d− 2κ′/(d+ 1) > 2. By Theorem 1.12,

t(G) >
κ′

d
>

κ′/d

(λ2/2)(1 + 1/d)
=

2κ′

λ2(d+ 1)
>

d

λ2
− 1,

which completes the proof. �

5. Spectrum and spanning k-trees in regular graphs

In this section, we prove Theorem 1.15. We will use the following sufficient con-

dition of the existence of a spanning k-tree obtained by Win [34], which was also

proved by Ellingham and Zha [15] with a new proof later.

Theorem 5.1 (Ellingham and Zha [15], Win [34]). Let k > 2 and let G be

a connected graph. If for any S ⊆ V (G), c(G − S) 6 (k − 2)|S| + 2, then G has

a spanning k-tree.
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Now we are ready to prove Theorem 1.15.

P r o o f of Theorem 1.15. We prove it by contradiction, i.e., we assume that G

does not have spanning k-trees for k > 3. By Theorem 5.1, there exists a subset

S ⊆ V (G) such that

(5.1) c(G− S) > (k − 2)|S|+ 3.

Let s = |S|, c = c(G− S) and let H1, H2, . . . , Hc be the components of G − S. For

1 6 i 6 c let ni = |V (Hi)| and let ti be the number of edges between Hi and S.

Then ti > κ′ for 1 6 i 6 c. Since G is d-regular, cκ′ 6
c
∑

i=1

ti 6 ds. By (5.1),

s 6 (c− 3)/(k − 2). Thus, cκ′ 6 d(c− 3)/(k − 2), which implies that

(5.2) c(d− (k − 2)κ′) > 3d.

Thus, l = d − (k − 2)κ′ > 0, contrary to (i). This proves (i). Now, we continue to

prove (ii).

By (5.2), c > ⌈3d/l⌉. We claim that there are at least ⌈3d/l⌉ indices i such that
ti < d/(k − 2). Otherwise, there would be at most ⌈3d/l⌉ − 1 indices i such that

ti < d/(k − 2). In other words, there would be at least c− ⌈3d/l⌉+ 1 indices i with

ti > d/(k − 2). Thus,

ds >

c
∑

i=1

ti >
(

c−
⌈3d

l

⌉

+ 1
) d

k − 2
+
(⌈3d

l

⌉

− 1
)

κ′

=
cd

k − 2
−
(⌈3d

l

⌉

− 1
)( d

k − 2
− κ′

)

>
cd

k − 2
− 3d

l

( d

k − 2
− κ′

)

=
cd

k − 2
− 3d

k − 2
= d

c− 3

k − 2
> ds,

a contradiction. This proves that there are at least ⌈3d/l⌉ indices i such that ti <
d/(k−2). Without loss of generality, we may assume these indices are 1, 2, . . . , ⌈3d/l⌉.
For 1 6 i 6 ⌈3d/l⌉, since ti < d/(k − 2), it is not hard to get ni > d + 1 by

counting the total degree of Hi. By Corollary 2.2, λ⌈3d/l⌉(G) > min
16i6⌈3d/l⌉

{λ1(Hi)} >

d− d/((k − 2)(d+ 1)), contrary to the assumption. This completes the proof. �
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6. Final remarks

In this paper, we established some new connections between the spectrum of a reg-

ular graph and its generalized connectivity, toughness or the existence of spanning

k-trees. Some of our results are the best possible. For example, the constructions

from [12], Section 3, show that the upper bound from Theorem 1.10 is the best

possible. Also, Corollary 1.3 is the best possible when d = 4. To see this, construct

a 4-regular graph by taking two disjoint copies of X4 and adding a new vertex adja-

cent to 4 vertices (2 in each copy of X4) of degree 3. The resulting graph is 4-regular,

has vertex-connectivity 1 and its second largest eigenvalue equals the upper bound

from Corollary 1.3.

It would be interesting to improve and generalize our results to general graphs

and eigenvalues of Laplacian matrix, signless Laplacian or normalized Laplacian.
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