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Abstract. We consider quasirandom properties for Cayley graphs of finite abelian groups.
We show that having uniform edge-distribution (i.e., small discrepancy) and having large
eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse.
This affirmatively answers a question of Chung and Graham (2002) for the particular case
of Cayley graphs of abelian groups, while in general the answer is negative.
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1. Introduction

Professor Miroslav Fiedler discovered a very fruitful relationship between connec-

tivity properties of graphs and their spectra. Among other things, his works [15], [14]

from the 1970s, together with an other pioneering work [18], [13], [12], gave birth to

what is now known as spectral partitioning of graphs. Fiedler considered the so called

combinatorial Laplacian L(G) of graphs G and their spectra 0 = λ1 6 λ2 6 . . . 6 λn

(n = |V (G)|). Generalizing the fact that G is connected if and only if λ2 > 0,

Fiedler named λ2 the algebraic connectivity of G and went on to prove that λ2 is

a lower bound for the standard connectivity of G (unless G is the complete graph).

The first author was supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq
(459335/2014-6, 310974/2013-5) and Project MaCLinC/USP. The second author was
supported by NSF grant DMS 1301698. The third author was supported through the
Heisenberg-Programme of the DFG. The collaboration of the first and third authors is
supported by CAPES/DAAD PROBRAL project 430/15.
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Furthermore, he also considered partitioning the vertex set of G by considering the

coordinates of the eigenvector belonging to λ2. The algebraic connectivity of a graph

is now sometimes referred to as the Fiedler value and the associated eigenvector is

referred to as the Fiedler vector. Alon [1] and Sinclair and Jerrum [26] later proved

that graphs with small Fiedler value can be partitioned according to the Fiedler

vector in a direct way to produce a cut that is small in relative terms (that is, in

terms of the ratio of the number of cut edges to the number of separated vertices).

While a small Fiedler value tells us that the graph in question may be split along

a “small cut”, a large Fiedler value implies that the graph is an expander, that

is, it has no cuts that are “small”, see [4], [29]. In this paper, we investigate the

relation between such “edge-distribution properties” and spectra, but focusing on

the case of “uniform edge-distribution”, by which we mean the quasirandom case, in

the sense of Chung, Graham and Wilson, see [9]1. Since we shall be concerned with

Cayley graphs, which are regular graphs, for simplicity, we shall work with adjacency

matrices and not with combinatorial Laplacians.

Let an n-vertex graph G be given. The eigenvalues of G are simply the eigenvalues

of the n by n, 0–1 adjacency matrix of G, with 1 indicating edges. Let λk =

λk(G) be the kth largest eigenvalue of G, in absolute value. Recall that G is said

to be “quasirandom” if the edges of G are “uniformly distributed” (we postpone

the precise definition; see Definition 1.1). A fundamental result relating the λi to

quasirandomness states that there is a large gap between λ1 and λk, k > 2, if and

only if G is quasirandom.

The assertion above may be turned precise in different ways. We are interested

in the form given by Chung, Graham, and Wilson, see [9]. Recall that [9] presents

a “theory of quasirandomness” for graphs, exhibiting several, quite disparate almost

sure properties of graphs that are, quite surprisingly, equivalent in a deterministic

sense. Earlier work in this direction is due to Thomason [30] (see also [31]), and also

Alon [1], Alon and Chung [2], Frankl, Rödl and Wilson [16], and Rödl [24]. One

of the so-called “quasirandom properties” that is presented in [9] is the “eigenvalue

gap” between λ1 and λk, k > 2.

Chung and Graham in [8] set out to investigate the extension of the results in [9]

to sparse graphs, that is, graphs with vanishing edge-density. As it turns out, a näıve

approach to such a project is doomed to fail, as the results in [9] do not generalize

to the “sparse case” in the expected manner (for a thorough discussion on this

point, the interested reader is referred to [8] and also to [3], [7], [10], [19], [20], [21]).

In particular, having succeeded in proving that eigenvalue gap does imply uniform

1Owing to this focus, spectral graph partitioning will not be discussed here; the interested
reader is referred to, e.g., Spielman [27] and Spielman and Teng [28].
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distribution of edges in the sparse case, Chung and Graham asked whether the

converse also holds (see [8], page 230). An affirmative answer to this question would

fully generalize the relationship between these two concepts to the sparse case.

However, Krivelevich and Sudakov in [21] showed that the answer to the question

posed by Chung and Graham is negative, by constructing a suitable family of coun-

terexamples. Here, our aim is to show that the answer is affirmative if one considers

Cayley graphs of finite abelian groups, regardless of the density of the graph. It is

worth noting that several explicit constructions of quasirandom graphs are indeed

Cayley graphs (see, e.g., [31] and [21], Section 3).

We use the following notation. If G = (V,E) is a graph, we write e(G) for the

number of edges |E| in G. If U ⊂ V is a set of vertices of G, then G[U ] denotes the

subgraph of G induced by U . Furthermore, if W ⊂ V is disjoint from U , then we

write G[U,W ] for the bipartite subgraph of G naturally induced by the pair (U,W ).

We also sometimes write E(U,W ) = EG(U,W ) for the edge set of G[U,W ].

If δ > 0, we write x ∼δ y to mean that

(1− δ)y 6 x 6 (1 + δ)y.

Moreover, sometimes it will be convenient to write O1(δ) for any term β that satis-

fies |β| 6 δ. Observe that, clearly, x ∼δ y is equivalent to x = (1 +O1(δ))y.

Definition 1.1 (DISC(δ)). Let 0 < δ 6 1 be given. We say that an n-vertex

graph G (n > 2) satisfies property DISC(δ) if the following assertion holds: for

all U ⊂ V (G) with |U | > δn, we have

eG(U) = e(G[U ]) ∼δ e(G)

(

|U |

2

)

/

(

n

2

)

.

The following concept of DISC2 is very much related to DISC, as we shall see next.

Definition 1.2 (DISC2(δ
′)). Let 0 < δ′ 6 1 be given. We say that an n-vertex

graph G (n > 2) satisfies property DISC2(δ
′) if the following assertion holds: for all

disjoint U and W ⊂ V (G) with |U |, |W | > δ′n, we have

eG(U,W ) = e(G[U,W ]) ∼δ′ e(G)|U ||W |
/

(

n

2

)

.

The following fact is very easy to prove and we omit its proof.

Fact 1.3. For any 0 < δ′ 6 1, there is 0 < δ = δ(δ′) 6 1 such that any graph that

satisfies DISC(δ) must also satisfy DISC2(δ
′).
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Given a graph G, let A = (auv)u,v∈V (G) be the 0–1 adjacency matrix of G, with 1

denoting edges. The eigenvalues of G are simply the eigenvalues of A. Since A is

symmetric, its eigenvalues are real. As usual, we adjust the notation so that these

eigenvalues are such that

(1.1) λ1 > |λ2| > . . . > |λn|

(the fact that λ1 > 0 follows, for instance, from the fact that the sum of the λi’s is

equal to the trace of A, which is 0).

Definition 1.4 (EIG(ε)). Let 0 < ε 6 1 be given. We say that an n-vertex

graph G satisfies property EIG(ε) if the following holds. Let d̄ = d̄(G) = 2e(G)/n

be the average degree of G, and let λ1, . . . , λn be the eigenvalues of G, with the

notation adjusted in such a way that (1.1) holds. Then

(i) λ1 ∼ε d̄,

(ii) |λi| 6 εd̄ for all 1 < i 6 n.

Finally, we define Cayley graphs.

Definition 1.5 (Cayley graph G(Γ, A)). Let Γ be an abelian group and suppose

that A ⊂ Γ \ {0} is symmetric, that is, A = −A. The Cayley graph G = G(Γ, A) is

defined to be the graph on Γ, with two vertices γ and γ′ ∈ Γ adjacent in G if and

only if γ′ − γ ∈ A.

We only consider finite graphs and finite abelian groups. The main aim is to answer

the question of Chung and Graham from [8] in the affirmative for an interesting class

of graphs.

Theorem 1.6. For every ε > 0, there exist δ > 0 and n0 such that the fol-

lowing holds. Let G = G(Γ, A) be a Cayley graph for some abelian group Γ with

n = |Γ| > n0 elements and a symmetric set A = −A ⊆ Γ \ {0}. If G satisfies

property DISC(δ), then G satisfies EIG(ε).

The proof of this theorem is given in Section 2. We close this introduction with

a few remarks concerning Theorem 1.6.

We first observe that Theorem 1.6, together with the results of Chung and Gra-

ham in [8], implies that properties DISC and EIG are equivalent for Cayley graphs.

More precisely, by “DISC implies EIG for Cayley graphs” we mean the following:

for every ε > 0 there is a δ = δ(ε) > 0 such that, for any sequence of positive inte-

gers (nk)k with nk → ∞ as k → ∞, and any sequence (Gk)k of Cayley graphs with

|V (Gk)| = nk, we have that if all but finitely many graphs Gk satisfy DISC(δ), then

all but finitely many Gk satisfy EIG(ε). Theorem 1.6 tells us that DISC implies EIG
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for sequences of Cayley graphs. In [8], Theorem 1, it is proved that EIG implies DISC

in the same sense for sequences of arbitrary graphs with average degree tending to

infinity. This establishes the equivalence of the properties DISC and EIG for Cayley

graphs with diverging average degree.

Secondly, we note that in general it is not true that DISC implies EIG for arbitrary

sequences of graphs. This was already pointed out by Krivelevich and Sudakov

in [21]. For every ε > 0 and every δ > 0, they constructed an infinite sequence of

graphs that satisfy DISC(δ) but fail to satisfy (i) in the definition of EIG(ε) (see

Definition 1.4).

The following example is a different probabilistic construction: For p = p(n) → 0

with pn ≫ 1 as n → ∞, consider the graph G given by the union of the random

graph G(n, p) and a disjoint clique of size αpn for some constant α > 0. Such

a graph G has density (1 + o(1))p and for every fixed δ > 0 with high probability it

satisfies DISC(δ). However, αpn− 1 is one of the eigenvalues of its adjacency matrix

and, hence, G fails to satisfy (ii) in the definition of EIG(ε) for any fixed ε ∈ (0, α).

We also remark that in [8] it is proved that, under some additional conditions,

DISC implies EIG for sequences of sparse graphs. This additional assumption com-

bined with DISC implies that almost every graph in the sequence contains the “ex-

pected number” of closed walks of length l for some even l > 4. More precisely, for

a sequence of graphs Gn with average degree d̄n we say that it satisfies CIRCUITl if

the number of closed walks of length l in Gn is (1+o(1))(d̄n)
l. We remark that The-

orem 1.6 is not a consequence of the result of Chung and Graham, since there exist

sequences of Cayley graphs satisfying DISC, and hence by Theorem 1.6 also EIG,

but fail to have CIRCUITl for any fixed even l > 4. We next sketch the construction

of such a sequence.

Let

p = p(n) =
log2 n

n

and consider the random cyclic Cayley graph Cn,p = G(Z/nZ, A), where indepen-

dently for every a ∈ (Z/nZ) \ {0} both elements a and −a are included in A with

probability p/2. It follows from standard Chernoff-type estimates that asymptoti-

cally almost surely Cn,p satisfies DISC and has average degree d̄n = (1 + o(1))pn.

Consequently, by Theorem 1.6 it also satisfies EIG.

On the other hand, owing to the choice of p we have

pn2 ≫ (pn)l

for every fixed even l > 4 and sufficiently large n. Hence, for every even l > 4 in

expectation the number of “degenerated walks” which only use one edge is much
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bigger than (d̄n)
l. This implies that with positive probability Cn,p satisfies DISC

and EIG, but fails to satisfy CIRCUITl for every even l > 4. Using appropriate

blowups of such graphs yields sequences of Cayley graphs with these properties for

any density p with log2 n/n ≪ p ≪ 1.

Finally, we remark that very recently Conlon and Zhao [11] extended in Theo-

rem 1.6 for Cayley graphs to arbitrary (not necessarily abelian) finite groups.

Historical remark

The proof of Theorem 1.6 presented here is based on an idea of Tim Gowers,

see [17]. The authors proved this result with a longer combinatorial argument (which

can be found in the appendix of the arXiv version of this article). On learning about

the result, Tim Gowers suggested the alternative, elegant proof given below. We are

grateful to him for letting us include his proof here.

2. Proof of the main result

2.1. Eigenvalues of Cayley graphs of abelian groups. Theorem 2.1 below

tells us how to compute the eigenvalues of Cayley graphs of abelian groups (The-

orem 2.1 follows from a more general result due to Lovász, see [23]; see also [22],

Exercise 11.8 and [6]).

Before we state Theorem 2.1, we recall some basic facts about group characters

(for more details see, e.g., Serre [25]). Let Γ be a finite abelian group. In this case,

an irreducible character χ of Γ may be viewed as a group homomorphism χΓ → S1,

i.e., χ(a + b) = χ(a)χ(b) for all a, b ∈ Γ, where S1 is the multiplicative group of

complex numbers of absolute value 1. If Γ has order n, then there are n irreducible

characters, say, χ1, . . . , χn, and these characters satisfy the following orthogonality

property:

(2.1) 〈χi, χj〉 =
∑

γ∈Γ

χi(γ)χj(γ) = 0

for all i 6= j. These facts and a simple computation suffice to prove the following well

known result, the short proof of which we include for completeness. We shall use the

following notation: if X is a set, we also write X for the {0, 1}-indicator function

of X , so that X(a) = 1 if a ∈ X and X(a) = 0 otherwise.
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Theorem 2.1. Let G = G(Γ, A) be a Cayley graph for some finite abelian group Γ

and a symmetric set A = −A ⊆ Γ \ {0}. For any character χΓ → S1 of Γ, put

(2.2) λ(χ) = 〈A,χ〉 =
∑

a∈A

χ(a).

Then the eigenvalues of G are the λ(χ), where χ runs over all n = |Γ| irreducible

characters of Γ.

P r o o f. Let χΓ → S1 be an irreducible character of Γ. Let λ(χ) be as defined

in (2.2). Consider the vector v(χ) = (χ(γ))Tγ∈Γ, with entries indexed by the elements

of Γ = V (G). Let A = (aγγ′)γ,γ′∈Γ be the adjacency matrix of G.

Fix γ ∈ Γ. Observe that the γ-entry (Av
(χ))γ of the vector Av

(χ) is

(Av
(χ))γ =

∑

a∈A

χ(γ − a) =
∑

a∈A

χ(γ + a) =

(

∑

a∈A

χ(a)

)

χ(γ) = λ(χ)χ(γ),

and hence Av
(χ) = λ(χ)

v
(χ); that is, v(χ) is an eigenvector of A with an eigen-

value λ(χ).

Let χj Γ → S1, 1 6 j 6 n, be the irreducible characters of Γ and set vj = v
(χj)

for all 1 6 j 6 n. By (2.1), 〈vj ,vj′ 〉 = 0 if j 6= j′. Therefore, the vj , 1 6 j 6 n, form

an orthogonal basis of eigenvectors of the matrix A and, hence, λ(χj), j = 1, . . . , n

are indeed all the eigenvalues of G. �

Remark 2.2. The eigenvalue λ1 = d = |A| may be obtained from (2.2) by

letting χ be the trivial character χ(x) = 1 for all x ∈ Γ.

2.2. Proof. We shall prove that ¬EIG(ε) ⇒ ¬DISC(δ). By Theorem 2.1 and

Remark 2.2, our assumption implies that there is a character χ 6≡ 1 such that

(2.3) |λ(χ)| = |〈A,χ〉| > ε|A|.

We shall fix this χ and use it to construct sets X and Y ⊂ V (G) that “witness” the

fact that ¬DISC(δ) holds.

We introduce some notation. Let 0 6 χarg(γ) < 2π be defined by χ(γ) = eiχarg(γ).

For γ ∈ Γ, let

c(γ) = Re(χ(γ)) = cos(χarg(γ))

and

s(γ) = Im(χ(γ)) = sin(χarg(γ)).
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Applying the orthogonality relation (2.1) to χ and the trivial character χ ≡ 1,

denoted below by 1, gives us that

0 = 〈1, χ〉 =
∑

γ∈Γ

eiχarg(γ) =
∑

γ∈Γ

(c(γ) + is(γ)).

Consequently,

(2.4)
∑

γ∈Γ

c(γ) =
∑

γ∈Γ

s(γ) = 0.

Given two functions f and g : Γ → C, let f ∗g : Γ → C be their convolution, given

by

(f ∗ g)(α) =
∑

γ∈Γ

f(α− γ)g(γ).

In what follows, we let m be the cardinality of the image of χ:

m = |{χ(γ) : γ ∈ Γ}|.

Since χ 6≡ 1, we have m > 1. We shall need the following fact.

Lemma 2.3. We have

(i)
∑

γ∈Γ

c2(γ) =

{

n if m = 2,

n/2 if m > 2;

(ii)

〈

A,
1

2
(1 + c) ∗

1

2
(1 + c)

〉

=
1

4
n|A|+

1

4
〈A, c ∗ c〉(2.5)

=







1

4
n|A|+

1

4
n〈A, c〉 if m = 2,

1

4
n|A|+

1

8
n〈A, c〉 if m > 2.

(2.6)

We postpone the proof of Lemma 2.3 to Section 2.3, and proceed to prove our

main theorem. Let −X and Y ⊂ Γ be generated at random as follows: we include

γ ∈ Γ in −X with probability p(γ) = (1 + c(γ))/2 and we include γ ∈ Γ in Y with

the same probability p(γ), with all these events independent.

By (2.4) we have
∑

γ∈Γ

p(γ) = n/2. Therefore, by a Chernoff type inequality (see,

e.g., Alon and Spencer [5], Theorem A.1.4), we have

(2.7) P

(

|X | =
(1

2
+ o(1)

)

n
)

= 1− o(1)
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and

(2.8) P

(

|Y | =
(1

2
+ o(1)

)

n
)

= 1− o(1).

In view of Lemma 2.3 (i), we have

∑

γ∈Γ

p(−γ)p(γ) =
∑

γ∈Γ

p2(γ) =
1

4

∑

γ∈Γ

(1 + c(γ))2
(2.4)
=

1

4
n+

1

4

∑

γ∈Γ

c(γ)2 =
3

8
n

if m > 2 and
∑

γ∈Γ

p(−γ)p(γ) = n/2 if m = 2. Consequently, if m > 2, we have

P

(

|X ∩ Y | =
(3

8
+ o(1)

)

n
)

= 1− o(1)

and hence, in view of (2.7) and (2.8), we have

(2.9) P

(

|X ∪ Y | =
(5

8
+ o(1)

)

n
)

= 1− o(1).

Similarly, if m = 2, we have

(2.10) P

(

|X ∩ Y | =
(1

2
+ o(1)

)

n
)

= 1− o(1)

and

(2.11) P

(

|X ∪ Y | =
(1

2
+ o(1)

)

n
)

= 1− o(1).

On the other hand, in view of our assumption (2.3) and A = −A we have

ε|A| 6 |〈A,χ〉| = |〈A, c〉|.

Recall that p(γ) = (1+ c(γ))/2 is the probability that we include γ in −X and in Y .

By the linearity of the expectation and the independence, we have2

E(〈A, (−X) ∗ Y 〉) = E

(

∑

a∈A

∑

γ∈Γ

(−X)(a− γ)Y (γ)
)

(2.12)

=
∑

a∈A

∑

γ∈Γ

E((−X)(a− γ))E(Y (γ))

=
∑

a∈A

∑

γ∈Γ

p(a− γ)p(γ)

=
〈

A,
1

2
(1 + c) ∗

1

2
(1 + c)

〉

.

2 In (2.12), we write (−X) for the characteristic function of the set −X = {−x : x ∈ X}.
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By Lemma 2.3 (ii), we thus have

(2.13)
∣

∣

∣
E(〈A, (−X) ∗ Y 〉)−

1

4
n|A|

∣

∣

∣
>

1

8
n|〈A, c〉| >

1

8
εn|A|.

On the other hand,

〈A, (−X) ∗ Y 〉 =
∑

a∈A

∑

γ∈Γ

(−X)(a− γ)Y (γ) =
∑

a∈A

∑

γ∈Γ

X(−a+ γ)Y (γ) = e(X,Y ),

with the edges in X ∩ Y counted twice. Since 0 6 e(X,Y ) 6 n|A|, the random

variable

η = η(X,Y ) = 〈A, (−X) ∗ Y 〉 −
1

4
n|A| = e(X,Y )−

1

4
n|A|

satisfies

(2.14) −
1

4
n|A| 6 η 6

3

4
n|A|.

Let q be the probability that |η| 6 εn|A|/16. Then, by (2.13) and (2.14),

1

8
εn|A| 6 |E(η)| 6 E(|η|) 6

1

16
εn|A|q +

3

4
n|A|(1− q),

and, consequently,

(2.15) P

(

|η| 6
1

16
εn|A|

)

= q 6
1− 1

6ε

1− 1
12ε

6 1−
1

12
ε.

First consider the case in which m > 2. Putting together (2.7)–(2.9) and (2.15) we

see that there are sets X and Y ⊂ Γ for which we have

|X | =
(1

2
+ o(1)

)

n, |Y | =
(1

2
+ o(1)

)

n,

|X ∩ Y | =
(3

8
+ o(1)

)

n, |X ∪ Y | =
(5

8
+ o(1)

)

n,

and

(2.16)
∣

∣

∣
e(X,Y )−

1

4
n|A|

∣

∣

∣
>

1

16
εn|A|.

Fix such sets X and Y . Suppose that none of the sets X \Y , Y \X , X∪Y , and X∩Y

violates DISC(δ). Then for sufficiently large n we have

∣

∣

∣
e(X \ Y )−

1

128
n|A|

∣

∣

∣
<

2

128
δn|A|,

∣

∣

∣
e(Y \X)−

1

128
n|A|

∣

∣

∣
<

2

128
δn|A|,
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and

∣

∣

∣
e(X ∩ Y )−

9

128
n|A|

∣

∣

∣
<

10

128
δn|A|,

∣

∣

∣
e(Y ∪X)−

25

128
n|A|

∣

∣

∣
<

26

128
δn|A|.

Since

(2.17) e(X,Y ) = e(X ∪ Y )− e(X \ Y )− e(Y \X) + e(X ∪ Y ),

we infer that
∣

∣

∣
e(X,Y )−

32

128
n|A|

∣

∣

∣
<

40

128
δn|A|,

which contradicts (2.16) if δ 6 ε/5. The proof for the case m > 2 is complete.

The case m = 2 is similar. Putting together (2.7), (2.8), (2.10), (2.11), and (2.15)

we see that there are sets X and Y ⊂ Γ for which we have

|X | =
(1

2
+ o(1)

)

n, |Y | =
(1

2
+ o(1)

)

n,

|X ∩ Y | =
(1

2
+ o(1)

)

n, |X ∪ Y | =
(1

2
+ o(1)

)

n,

and, moreover, with X and Y satisfying (2.16). Fix such sets X and Y . Note that,

then,

e(X \ Y ) = o(n|A|) and e(Y \X) = o(n|A|).

Suppose that neither X∪Y nor X∩Y violates DISC(δ). Then for sufficiently large n

we have

∣

∣

∣
e(X ∩ Y )−

1

8
n|A|

∣

∣

∣
<

2

8
δn|A| and

∣

∣

∣
e(Y ∪X)−

1

8
n|A|

∣

∣

∣
<

2

8
δn|A|.

Using (2.17) again, we infer that

∣

∣

∣
e(X,Y )−

1

4
n|A|

∣

∣

∣
<

5

8
δn|A|,

which contradicts (2.16) if δ 6 ε/10, completing the proof in the case m = 2.

2.3. Proof of Lemma 2.3. We start with the following fact (Fact 2.4 (i) below

is simply Lemma 2.3 (i)).

Fact 2.4. We have

(i)

(2.18)
∑

γ∈Γ

c2(γ) =

{

n if m = 2,

1
2n if m > 2;
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(ii)

(2.19)
∑

γ∈Γ

s(γ)c(γ) = 0;

(iii) for any a ∈ Γ

(2.20) (c ∗ c)(a) =

{

nc(a) if m = 2,

1
2nc(a) if m > 2.

P r o o f. (i) We start by observing that

(2.21)
∑

06l<m

cos
4πl

m
=

{

2 if m = 2,

0 if m > 2.

Indeed, if m > 2, then the sum in (2.21) is

Re
∑

06l<m

e4πli/m = Re
1− e4πi

1− e4πi/m
= 0.

If m = 2, then the sum in (2.21) is easily seen to be 2. We now observe that

∑

γ∈Γ

c2(γ) =
n

m

∑

06l<m

cos2
2πl

m
=

n

2m

∑

06l<m

(

1 + cos
4πl

m

)

.

It now suffices to recall (2.21) to deduce (2.18); assertion (i) is therefore proved.

Now we prove (ii). Note that

∑

06l<m

sin
4πl

m
= 0.

Therefore,

∑

γ∈Γ

s(γ)c(γ) =
n

m

∑

06l<m

sin
(2πl

m

)

cos
(2πl

m

)

=
n

2m

∑

06l<m

sin
4πl

m
= 0,

as required.

For the proof of (iii), we start by noticing that

c(a− γ) = cos(χarg(a− γ)) = cos(χarg(a)− χarg(γ))

= cosχarg(a) cosχarg(γ) + sinχarg(a) sinχarg(γ) = c(a)c(γ) + s(a)s(γ).
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Therefore,

(c ∗ c)(a) =
∑

γ∈Γ

c(a− γ)c(γ) =
∑

γ∈Γ

(c(a)c(γ) + s(a)s(γ))c(γ)

=
∑

γ∈Γ

(c(a)c2(γ) + s(a)s(γ)c(γ)) = c(a)
∑

γ∈Γ

c2(γ) + s(a)
∑

γ∈Γ

s(γ)c(γ).

Equation (2.20) follows from (2.18) and (2.19) and (iii) is proved. �

P r o o f of Lemma 2.3. Lemma 2.3 (i) has already been proved. We now turn

to (ii). The left-hand side of (2.5) is

1

4

∑

a∈A

∑

γ∈Γ

((1 + c)(a− γ))((1 + c)(γ))(2.22)

=
1

4

∑

a∈A

∑

γ∈Γ

(1 + c(a− γ))(1 + c(γ))

=
1

4
n|A|+

1

4

∑

a∈A

∑

γ∈Γ

(c(a− γ) + c(γ)) +
1

4

∑

a∈A

∑

γ∈Γ

c(a− γ)c(γ)

=
1

4
n|A|+

1

4

∑

a∈A

∑

γ∈Γ

c(a− γ)c(γ) =
1

4
n|A|+

1

4
〈A, c ∗ c〉,

which verifies (2.5). Clearly, Fact 2.4 (iii) and (2.22) imply (2.6). �
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