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Abstract. The paper is concerned with guaranteed and computable bounds of the limit
(or safety) load, which is one of the most important quantitative characteristics of math-
ematical models associated with linear growth functionals. We suggest a new method for
getting such bounds and illustrate its performance. First, the main ideas are demonstrated
with the paradigm of a simple variational problem with a linear growth functional defined
on a set of scalar valued functions. Then, the method is extended to classical plasticity
models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed
approach is confirmed by several numerical experiments.
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1. Introduction

A class of physically important variational problems is represented by energy func-

tionals with linear growth. Among others, it encompasses minimal and capillary

surfaces [6], [10], [18], [9], [16], perfect plasticity [4], [27] and some other problems.

These highly nonlinear problems differ substantially from the others with convex en-

ergy having superlinear growth with respect to derivatives of the solution function.

This work was supported by The Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II), project
“IT4Innovations excellence in science-LQ1602”.
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Generally, functionals with linear growth are coercive only in non-reflexive spaces

(typically in W 1,1). In order to obtain mathematically correct formulations of these

problems, an appropriate extension of these spaces is required (this way leads to

spaces like BD or BV, see, e.g., [11], [23], [27]).

In models of perfect plasticity, energy functionals consist of two parts: an inner

energy functional (which has linear growth) and a linear functional formed by exter-

nal loads. It is well-known that energy functionals may be unbounded from below

for certain loads. Physically, unboundedness means that for the external loads there

is no admissible stress-strain state (i.e., being subject to such loads the body must

collapse). Within the framework of limit load analysis, volume and surface loads are

multiplied by a scalar parameter λ, which is increased up to the moment when the

energy functional becomes unbounded from below. Finding the respective value λ∗ is

one of the most important tasks in quantitative analysis of many problems (bearing

capacity of strip-footing or slope stability in soil mechanics, e.g., [3], [5]).

There exist several approaches how to estimate λ∗. The classical one uses incre-

mental techniques to enlarge λ up to its limit value λ∗ [19], [29]. The load increments

have to be chosen adaptively since the value of λ∗ is not known. Recently, another

physical quantity controlling the loading process has been proposed and analyzed

in [2], [13], [26]. On the implementation level, incremental techniques are usually

combined with finite element methods which may lead to an overestimation of the

searched λ∗.

Another type of methods is based on the use of a specific variational problem

characterizing directly the limit state. It can be formulated either in terms of dis-

placements (kinematical approach) or in terms of stresses (static approach). The

two approaches are mutually dual [4], [27]. As a method of computation, the static

limit analysis has been used in [28], while the kinematic one in [1]. Various space

discretizations are utilized for solving this variational problem: standard finite ele-

ment methods [1], [22], mixed finite element methods [28] or discontinuous methods

[12], [14], [17]. All these techniques lead to relatively complex problems from the

computational point of view.

The present paper is concerned with guaranteed and computable bounds of the

limit load. To this end, we distinguish whether functionals with linear growth have

purely linear growth at infinity or not. In the former case, we show how to get

a guaranteed and easily computable upper bound of λ∗. In the latter case, we propose

its approximation by functionals with purely linear growth to get reliable estimates

of λ∗. To demonstrate principal ideas we first focus on a model problem which

can be viewed as a scalar counterpart of the classical Hencky model of plasticity.

Then this approach in combination with results from [13] is extended to problems of

elastoplasticity.
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The paper is organized as follows. In Section 2 we present the above mentioned

scalar problem. Section 3 deals with a class of scalar energy functions being the

Fenchel transformation of the Euclidean norm of vectors which belong to a closed,

convex subset B ⊂ R
d. There are two rather different situations depending on

whether B is bounded or not. For a bounded B the resulting energy function has

purely linear growth at infinity and the new guaranteed upper bound of λ∗ is derived.

For B unbounded, we use the truncation approach to approximate the original B by

a sequence {Bk} of bounded, convex subsets of B. Particular attention is paid to two
types of unbounded sets, namely to conical and cylindrical ones. The results of this

section are straightforwardly transformed and implemented to a generalized Hencky

model of plasticity in Section 4. The von Mises and Drucker-Prager yield functions

serve as models of cylindrical and conical sets, respectively. Section 5 describes

a finite element discretization of the generalized Hencky problem. In addition to

known results from [2], [13], [26], some new ones are presented and extended for

purposes of this paper. Section 6 describes strategy how to find computable and

reliable lower and upper bounds of λ∗. Finally, lower and upper bounds of λ∗ for

several model examples with the above mentioned yield criteria are established.

2. A model variational problem with a linear

growth energy functional

First, we discuss the main ideas of our method using a model variational problem

for scalar valued functions. Consider a bounded domain Ω ⊂ R
d, d = 2, 3, with

the Lipschitz continuous boundary ∂Ω = Γ̄N ∪ Γ̄D, where ΓN , ΓD are open in

∂Ω, mutually disjoint, and ΓD 6= ∅. On ΓN , ΓD, we prescribe the Neumann and

homogeneous Dirichlet boundary condition, respectively. Let

V = {v ∈ H1(Ω): v|ΓD
= 0}

be the space of kinematically admissible displacements. Define the functionals

L(v) =

∫

Ω

Fv dx+

∫

ΓN

fv ds, v ∈ V,

J(v) =

∫

Ω

j(∇v) dx− L(v), v ∈ V,

where f ∈ L2(ΓN ), F ∈ L2(Ω) are such that

(2.1) ‖F‖L2(Ω) + ‖f‖L2(ΓN ) > 0
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and j : R
d → R+ is a non-negative, continuous, convex function, j(0) = 0, which

satisfies the growth condition

(2.2) ∃ c0 > 0, c1 > 0, c2 > 0: c1|z| − c2 6 j(z) 6 c0|z|2 ∀ z ∈ R
d.

Here, |·| denotes the Euclidean norm in R
d, d = 2, 3: |z|2 = z · z, y · z = yizi for any

y, z ∈ R
d. The corresponding variational problem with a guaranteed linear growth

reads as follows:

(P) minimize J(v), v ∈ V.

Continuity of j and growth restrictions imposed by (2.2) guarantee that J is well-

defined and continuous in V (see, e.g., [27], Proposition 2.4 or [8], [15], [10]). Further,

it is readily seen that J is also convex in V and consequently, weakly lower semi-

continuous in V (see, e.g., [10]). On the other hand, the lower bound in (2.2) does

not guarantee coercivity of J in V. For this reason, one cannot use the well-known

existence results for (P), see, e.g., [8], Proposition II.1.2.

Evidently, inf
v∈V

J(v) > −∞ is only a necessary condition for solvability of (P). On

the other hand, if this condition holds, then the problem is meaningful in a certain

sense, e.g., a dual problem to (P) has a solution, see [8], Theorem III.4.1. The dual

problem is introduced in Section 3. To decide whether J is bounded from below, the

original problem is parametrized in a standard fashion:

(P)λ minimize Jλ(v), v ∈ V, Jλ(v) =

∫

Ω

j(∇v) dx− λL(v),

where λ > 0 is a load parameter. If λ, λ̄ > 0 are two parameters satisfying λ 6 λ̄,

then

(2.3) inf
v∈V

Jλ(v) = inf
v∈V,

L(v)>0

Jλ(v) = inf
v∈V,

L(v)>0

{Jλ̄(v)− (λ − λ̄)L(v)}

> inf
v∈V,

L(v)>0

Jλ̄(v) = inf
v∈V

Jλ̄(v),

i.e. the function λ 7→ inf
v∈V

Jλ(v), λ ∈ R+, is non-increasing in R+. Therefore, it is

natural to define the limit load parameter by

(2.4) λ∗ = sup
{
λ > 0: inf

v∈V

Jλ(v) > −∞
}
.

Clearly, λ∗ is either finite non-negative or equal to∞. If λ = 1 > λ∗ then the original

functional J := Jλ=1 is unbounded from below in V and thus (P) has no solution.
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Therefore, the knowledge of λ∗ is important to identify a range of admissible loads.

To find reliable and easily computable estimates of λ∗, we introduce several auxiliary

results.

Lemma 2.1. Let j1, j2 : R
d → R+, 0 6 j1 6 j2, be two convex and continuous

functions satisfying (2.2). Then the corresponding limit load parameters λ∗1, λ
∗
2

satisfy λ∗1 6 λ∗2.

The proof is straighforward.

Now, we introduce another variational problem giving an upper bound of λ∗. To

this end, define the function

j∞ : R
d → R+, R+ := R+ ∪ {∞}, j∞(z) = lim

α→∞

1

α
j(αz), z ∈ R

d.

Clearly, j∞(0) = 0 and j∞ is a proper, convex function in R
d which is also positively

1-homogeneous (see [21], Theorem 8.5):

(2.5) j∞(αz) = αj∞(z) ∀ z ∈ R
d ∀α > 0.

Since the function α 7→ j(αz)/α, α > 0, is non-decreasing, Theorem 23.1 in [21]

yields:

(2.6) j(z) 6
1

α
j(αz) 6 j∞(z) ∀ z ∈ R

d ∀α > 1

and from (2.2) we obtain

(2.7) j∞(z) = lim
α→∞

1

α
j(αz)

(2.2)

> lim
α→∞

{
c1|z| −

c2
α

}
= c1|z| ∀ z ∈ R

d.

Although the function j∞ need not be finite everywhere due to the upper bound in

(2.2), one can extend the definition (2.4) and Lemma 2.1 to j∞, as well. Therefore,

the limit load parameter related to j∞ is defined as follows:

(2.8) ζ∗ = sup

{
λ > 0: inf

v∈V

[∫

Ω

j∞(∇v) dx− λL(v)

]
> −∞

}
.

It is readily seen that

(2.9) λ∗ 6 ζ∗

by making use of (2.6) and Lemma 2.1, i.e., ζ∗ is an upper bound of the limit load

parameter λ∗. The properties of j∞ enable us to derive a more convenient definition

of ζ∗ than (2.8).
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Lemma 2.2. It holds:

(2.10) ζ∗ = inf
v∈V

L(v)=1

J∞(v), J∞(v) =

∫

Ω

j∞(∇v) dx, v ∈ V.

P r o o f. Suppose that for some λ > 0 and w ∈ V, J∞(w)−λL(w) < 0. Then (2.5)

entails that J∞(kw) − λL(kw) = k[J∞(w) − λL(w)] → −∞ as k → ∞. Therefore,
(2.8) can be rewritten as

(2.11) ζ∗ = sup{λ > 0: J∞(v)− λL(v) > 0 ∀ v ∈ V}.

Since j∞ is nonnegative, the inequality J∞(v)− λL(v) > 0 is automatically satisfied

for any v ∈ V such that L(v) 6 0. Thus,

ζ∗ = sup{λ > 0: J∞(v) − λL(v) > 0 ∀ v ∈ V, L(v) > 0}
(2.5)
= sup{λ > 0: J∞(v)− λ > 0 ∀ v ∈ V, L(v) = 1} = inf

v∈V

L(v)=1

J∞(v).

�

In the terminology accepted in perfect plasticity (e.g., see [4], [27]), the problem

(2.10) is called the limit analysis problem. It leads to a non-smooth minimization

problem with the isoperimetric condition L(v) = 1 and a possibly nonlinear con-

straint v ∈ dom J∞ = {w ∈ V : J∞(w) < ∞} which can be solved by methods
presented, e.g., in [1], [4].

The limit analysis is trivial for functions with a quadratic growth like j(z) = 1
2 |z|2,

z ∈ R
d. Then ζ∗ = λ∗ = ∞. As we shall see later, the identity ζ∗ = λ∗ holds true

for many other functions. In particular, it holds for functions j with purely linear

growth, that is

(2.12) ∃c1 > 0, c2 > 0, c3 > 0: c1|z| − c2 6 j(z) 6 c3|z| ∀ z ∈ R
d.

Even though (2.10) will not be solved directly in this paper, this problem is very

useful for finding a new guaranteed upper bound of λ∗: given λ > 0 decide whether

λ > λ∗ or not. The basic idea is very simple. Let us suppose that λ∗ < ∞ and the
functional Jλ∗ is bounded from below:

(2.13) ∃ c > 0: Jλ∗(v) > −c ∀ v ∈ V.

In view of (2.3), the functional Jλ is also bounded from below by the same constant

c for all λ < λ∗. Suppose that λ̄ > 0 is such that there exists w ∈ V and Jλ̄(w) < −c.
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Then necessarily λ̄ > λ∗, i.e. λ̄ is an upper bound of λ∗. The optimal value of c

in (2.13) is copt = − inf
v∈V

Jλ∗(v), which is not usually available. For this reason, it is

necessary to use in place of copt another quantity which is easily computable. In the

next example, we show how to provide this quantity.

E x am p l e 2.1. Let

j(z) =

{
1
2 |z|2, |z| 6 1,

|z| − 1
2 , |z| > 1,

z ∈ R
d.

This function has purely linear growth at infinity since

(2.14) |z| − 1

2
6 j(z) 6 |z| ∀ z ∈ R

d.

Clearly, j∞(z) = |z| and from (2.10) we see that ζ∗ < ∞ in view of (2.1). Further,
from (2.11) we find that

∫

Ω

|∇v| dx > λL(v) ∀ v ∈ V, ∀ 0 6 λ < ζ∗.

Since ζ∗ is finite, this inequality also holds for λ = ζ∗. Hence,

(2.15) Jζ∗(v) =

∫

Ω

j(∇v) dx− ζ∗L(v)
(2.14)

>

∫

Ω

|∇v| dx− 1

2
|Ω| − ζ∗L(v)

> − 1

2
|Ω| ∀ v ∈ V.

This estimate and (2.9) entail λ∗ = ζ∗ < ∞. As a consequence of (2.15), we obtain
the following simple condition for λ̄ to be an upper estimate of λ∗:

(2.16) if ∃w ∈ V : Jλ̄(w) < −1

2
|Ω| then λ̄ > λ∗.

Similar considerations can be done for many other problems with linear growth

functionals (see Section 3.1). Notice that (2.16) also provides an easily computable

upper bound of λ∗. Indeed, one can construct a minimization sequence {vn} of Jλ̄
in V. Then from the numerical point of view, it is easier to verify that Jλ̄(vn) <

− 1
2 |Ω| holds for some n than to show lim

n→∞
Jλ̄(vn) = −∞.
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3. Scalar problems defined by a special class of functions j

Consider a special class of functions j defined in such a way that the resulting

problem (P)λ can be viewed as a simplified version of the classical variational problem

of the Hencky plasticity (see, e.g., [7], [27]). Namely, we set

(3.1) j(z) = sup
z∗∈B

{
z∗ · z − 1

2
|z∗|2

}
=

1

2
|z|2 − 1

2
inf

z∗∈B
|z − z∗|2, z ∈ R

d.

Here and later on, B is a closed and convex subset of Rd containing a neighborhood

of the origin, i.e.,

(3.2) ∃ε > 0: ∀ z∗ ∈ R
d, |z∗| 6 ε =⇒ z∗ ∈ B.

From (3.1) it follows that

(3.3) j(z) = ΠB(z) · z −
1

2
|ΠB(z)|2 > 0 ∀ z ∈ R

d,

where ΠB is the projection of R
d on B:

|z −ΠB(z)| = min
z∗∈B

|z − z∗|

or equivalently,

(3.4) (z −ΠB(z)) · (z∗ − ΠB(z)) 6 0 ∀ z∗ ∈ B.

Further, j is convex, continuously differentiable in R
d,

(3.5) ∇j(z) = ΠB(z) ∀ z ∈ R
d,

and j(z) = 1
2 |z|2 for any z ∈ B.

The function j defined by (3.1) has a guaranteed linear growth, see the next lemma.

Lemma 3.1. We have

(3.6)
ε

2
|z| − ε2

8
6 j(z) 6

1

2
|z|2 ∀ z ∈ R

d,

where ε is from (3.2).

P r o o f. The upper bound in (3.6) directly follows from (3.1).
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Let |z| 6 ε. Then z ∈ B, ΠB(z) = z, and

j(z) =
1

2
|z|2 =

1

2

(
|z| − ε

2

)2

+
ε

2
|z| − ε2

8
>
ε

2
|z| − ε2

8
.

Let |z| > ε. Then z∗ = ε|z|−1
z ∈ B. Inserting z∗ into (3.4), we obtain

2ΠB(z) · z >

(
1 +

ε

|z|
)
ΠB(z) · z

(3.4)

> ε|z|+ |ΠB(z)|2.

Hence,

j(z) = ΠB(z) · z −
1

2
|ΠB(z)|2 >

ε

2
|z| > ε

2
|z| − ε2

8
.

�

Lemma 3.2. Let j be defined by (3.1). Then

(3.7) j∞(z) = lim
α→∞

1

α
j(αz) = sup

z∗∈B

z∗ · z ∀ z ∈ R
d

and

(3.8) lim inf
α→∞

1

α
j(αzα) > j∞(z)

holds for any z ∈ R
d and any sequence {zα} tending to z as α → ∞.

P r o o f. Since

1

α
j(αz) = sup

z∗∈B

{
z∗ · z − 1

2α
|z∗|2

}
∀ z ∈ R

d ∀α > 0,

we have

1

α
j(αz) 6 sup

z∗∈B

z∗ · z ∀ z ∈ R
d, ∀α > 0,

1

α
j(αz) > z∗ · z − 1

2α
|z∗|2 → z∗ · z as α → ∞ ∀ z ∈ R

d, ∀ z∗ ∈ B.

Therefore, (3.7) holds.

If zα → z then

1

α
j(αzα) > z∗ · zα − 1

2α
|z∗|2 → z∗ · z ∀ z∗ ∈ B.

This proves (3.8). �
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Since j is convex and differentiable, problem (P)λ is equivalent to the nonlinear

equation

(3.9) find uλ ∈ V :

∫

Ω

σλ · ∇v dx = λL(v) ∀ v ∈ V,

where σλ = ΠB(∇uλ), see (3.5). If the solution uλ exists then σλ ∈ L2(Ω;Rd) solves

the dual problem to (P)λ:

(P∗)λ find σλ ∈ QλL ∩ P : I(σλ) 6 I(τ) ∀ τ ∈ QλL ∩ P,

where

I(τ) =
∫

Ω

1

2
|τ |2 dx, τ ∈ L2(Ω;Rd),

P = {τ ∈ L2(Ω;Rd) : τ(x) ∈ B for a.a. x ∈ Ω},

QλL =

{
τ ∈ L2(Ω;Rd) :

∫

Ω

τ · ∇v dx = λL(v) ∀ v ∈ V

}

= {τ ∈ L2(Ω;Rd) : div τ + λF = 0 in Ω, τ · ν = λf on ΓN}.

Notice that the integrand 1
2 |τ |2 of I is the dual function to j in the sense of the

Legendre-Fenchel transformation as follows from (3.1). Since P and QλL are closed

and convex subsets of L2(Ω;Rd), problem (P∗)λ has the unique solution σλ if and

only if QλL ∩ P 6= ∅. Moreover,

inf
v∈V

Jλ(v) = sup
τ∈QλL∩P

I(τ) ∀λ > 0.

If QλL ∩ P = ∅ then both sides of this equality are equal to −∞. Hence, one can
equivalently define the limit load parameter as follows:

λ∗
(2.4)
= sup{λ > 0: QλL ∩ P 6= ∅}.

This is the so-called static principle of limit analysis in terminology of [4] while

(cf. (2.10))

(3.10) ζ∗ = inf
v∈V

L(v)=1

∫

Ω

j∞(∇v) dx, j∞(z) = sup
z∗∈B

z∗ · z ∀ z ∈ R
d,

corresponds to the kinematic principle [4]. It is easy to see that ζ∗ is dual to λ∗ in

the following sense:

λ∗ = sup
τ∈P

inf
v∈V,

L(v)=1

∫

Ω

τ · ∇v dx 6 inf
v∈V,

L(v)=1

sup
τ∈P

∫

Ω

τ · ∇v dx = ζ∗.
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We only sketch the proof, since the analogous result is known from perfect plasticity

[4], [27]:

sup
τ∈P

∫

Ω

τ · ∇v dx (3.7)
=

∫

Ω

j∞(∇v) dx ∀ v ∈ V,

inf
v∈V

L(v)=1

∫

Ω

τ · ∇v dx = inf
v∈V

sup
λ∈R

[∫

Ω

τ · ∇v dx− λ(L(v)− 1)

]

= sup
λ∈R

{
inf
v∈V

[∫

Ω

τ · ∇v dx− λL(v)

]
+ λ

}
,

inf
v∈V

[∫

Ω

τ · ∇v dx− λL(v)

]
=

{
0, τ ∈ QλL,

−∞, τ 6∈ QλL.

Notice that the duality between ζ∗ and λ∗ is sometimes useful for proving λ∗ = ζ∗

(see, e.g., [27]).

In addition to the properties of B formulated at the beginning of this section, we

shall distinguish whether B is bounded or not.

3.1. Bounded sets B. Let B and ¯̺ > 0 be such that |z| 6 ¯̺ for any z ∈ B.

Then

j∞(z)
(3.7)
= sup

z∗∈B

z∗ · z 6 ¯̺|z| ∀ z ∈ R
d.

Hence, dom j∞ = R
d and j, j∞ satisfy (2.12):

ε

2
|z| − ε2

8

(3.6)

6 j(z)
(2.6)

6 j∞(z) 6 ¯̺|z| ∀ z ∈ R
d,

i.e., both have purely linear growth. Morever,

(3.11) ∃ c2 > 0: j∞(z)− c2 6 j(z)
(2.6)

6 j∞(z) ∀ z ∈ R
d.

From (3.1) and (3.7) it follows that one can set c2 = max
z∗∈B

1
2 |z∗|2.

R em a r k 3.1. Notice that the function j from Example 2.1 corresponds to B =

{z ∈ R
d : |z| 6 1}.

Using (3.11), one can straighforwardly extend the results of Example 2.1 to any

bounded set B.
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Theorem 3.1. Let B be bounded and let j be defined by (3.1). Then λ∗ = ζ∗

and

(3.12) if ∃w ∈ V : Jλ̄(w) < −c2|Ω| for some λ̄ > 0, then λ̄ > λ∗,

where c2 is the same as in (3.11).

The results of Example 2.1 and Theorem 3.1 are illustrated in the following 1D

example with the known analytical solution.

E x am p l e 3.1. Let

B = [−1, 1], Ω = (−1, 1),

V = {v ∈ H1((−1, 1)) : v(−1) = 0}, F = const. in Ω, f(1) = 0.

Then

QλL = {τ ∈ L2((−1, 1)) : τ ′ + λF = 0 in (−1, 1), τ(1) = 0} = {σλ},

where σλ(x) = λF (1− x), x ∈ (−1, 1). Hence, QλL ∩P 6= ∅ if and only if 2λ|F | 6 1.

Thus λ∗ = (2|F |)−1 if F 6= 0, otherwise λ∗ = ∞. The solution uλ of the primal
problem exists in the classical sense up to the limit load parameter and

uλ(x) =
1

2
λF [4− (1− x)2], x ∈ [−1, 1] ∀λ 6 λ∗.

From now on, assume that F 6= 0. Then one can construct a minimizing sequence

for the respective kinematic principle (3.10) of limit analysis:

λ∗ 6 ζ∗ = inf
v∈V

F
∫

1

−1
v dx=1

∫ 1

−1

|v′| dx 6 lim
n→∞

∫ 1

−1

|v′n| dx =
1

2|F | ,

where vn ∈ V, F
∫ 1

−1
vn dx = 1 and

vn(x) =






1

F

2n2

4n− 1
(x+ 1) if x ∈ [−1,−1 + n−1],

1

F

2n

4n− 1
if x ∈ [−1 + n−1, 1].

Thus λ∗ = ζ∗ = (2|F |)−1. Since j(u′λ∗) = 1
2 (u

′
λ∗)2 in Ω̄, we have

Jλ∗(v) > Jλ∗(uλ∗) =
1

2
(λ∗)2F 2

∫ 1

−1

(1− x)2 dx− 1

2
(λ∗)2F 2

∫ 1

−1

[4− (1 − x)2] dx

= −4

3
(λ∗)2F 2 = −1

3
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for any v ∈ V. Hence,

if ∃w ∈ V : Jλ̄(w) < −1

3
= copt for some λ̄ > 0, then λ̄ > λ∗,

which is a sharper estimate than (3.12), since c2|Ω| = 1. Finally, we sketch how the

estimate (3.12) can be used for computing a “minimal” upper bound of λ∗. Consider

the sequence {wn}, where

wn(x) =

{
sgn(F )n2(x+ 1) if x ∈ [−1,−1 + n−1],

sgn(F )n if x ∈ [−1 + n−1, 1]

and set λε = (1 + ε)λ∗, ε > 0. Since

Jλε
(wn) = −εn− 1

2n
+

1

4
(1 + ε) ∀n > 1,

{wn} is a minimizing sequence of Jλε
in V for any ε > 0. Clearly, Jλε

(wn) 6 −1 for

ε := ε(n) = 5/(4n). By (3.12), {λε(n)}n is a sequence of upper bounds tending to
λ∗ from above. In Section 6.2, we introduce Algorithm 2 for finding the “minimal”

upper bound being inspired by this idea.

3.2. Unbounded sets B, truncation approach. For a bounded set B we know

that λ∗ = ζ∗ and the guaranteed upper bound (3.12) of λ∗ holds as it follows from

Theorem 3.1. If B is unbounded then such result is not at our disposal. For this

reason, we construct its truncations using an appropriate system {Bk}, k → ∞, of
bounded sets.

Next, we assume that

(3.13)





Bk ⊂ B is bounded, convex and satisfies (3.2)

for any k > 0, diamBk = k;

Bk ⊂ Bl for any k, l : 0 < k < l;
⋃

k>0

Bk = B, i.e., ∀ z ∈ B ∃{zk}, zk ∈ Bk : zk → z, k → ∞.

With any Bk we associate the functions jk, jk,∞ and the limit parameters λ
∗
k, ζ

∗
k

analogously to j, j∞, and λ
∗, ζ∗ for unbounded B, respectively. The next theorem

is an easy consequence of Lemma 2.1, (3.1), (3.7), and (3.13).
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Theorem 3.2. Let B ⊂ R
d be unbounded and let system {Bk}, k → ∞, sa-

tisfy (3.13). Then

(3.14)






jk 6 jl 6 j, jk,∞ 6 jl,∞ 6 j∞ ∀ k, l : 0 < k < l,

ζ∗k = λ∗k 6 ζ∗l = λ∗l 6 λ∗ 6 ζ∗ ∀ k, l : 0 < k < l,

lim
k→∞

jk,∞(z) = j∞(z) ∀ z ∈ R
d,

lim
k→∞

λ∗k 6 λ∗.

Notice that from (3.14)2 it follows that λ
∗
k is a lower bound of λ

∗ for any k > 0.

Knowledge of a reliable lower bound of λ∗ is important since it presents a safety

parameter. A natural question arises, namely, under which conditions λ∗k → λ∗ as

k → ∞. Below, we present a sufficient condition ensuring this property. To this end,
we define the following bounded sets of plastically admissible stress fields:

Pk = {τ ∈ L2(Ω,Rd) : τ(x) ∈ Bk for a.a. x ∈ Ω}.

Lemma 3.3. Let λ > 0 be such that there exists a sequence {λk} with the
following properties:

Pk ∩QλkL 6= ∅ ∀ k ∈ N,(3.15)

λk → λ as k → ∞.(3.16)

Then

λ∗ > lim
k→∞

λ∗k > λ.

P r o o f. The assertion easily follows from the chain of inequalities: λ∗ > λ∗k >

λk → λ as k → ∞. �

Corollary 3.1. If λ = λ∗ and the sequence {λk} satisfies (3.15) and (3.16), then

λ∗k → λ∗ as k → ∞.

R em a r k 3.2. Notice that the truncation approach can be also used if the set B

itself is bounded. This fact will be used in Section 6.1 to get lower bounds of λ∗.

Moreover, for bounded B it is easy to show that P ∩ Qλ∗L 6= ∅. Further, consider
the sequences {Bk}, Bk = {(1− 1/k)τ : τ ∈ B}, and {λk}, λk = (1− 1/k)λ∗. Then

(3.13), (3.15), and (3.16) are satisfied, and thus λ∗k → λ∗ as k → ∞ by Corollary 3.1.
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In the subsequent parts, we introduce two classes of unbounded B: cylindric and

conic.

3.3. Unbounded cylindric sets B. Let B = B̃ ⊕ R, where R is a one-

dimensional subspace of Rd = R⊥ ⊕R, d = 2, 3, and B̃ ⊂ R⊥ is a closed, convex set

such that

(3.17) ∃ ε, ̺ > 0: B(0; ε) = {z∗ ∈ R⊥ : |z∗| 6 ε} ⊂ B̃

⊂ B(0; ̺) = {z∗ ∈ R⊥ : |z∗| 6 ̺}.

Clearly, B is a closed, convex subset of Rd satisfying (3.2) and R represents the axis
of the cylinder B.

Let r : R
d → R and q : R

d → R⊥ be the projections onto R and R⊥ with respect

to the Euclidean scalar product, respectively. Then z = r(z)+q(z) and r(z)·q(z̃) = 0

for any z, z̃ ∈ R
d. Using (3.1), (3.7) and the orthogonality between R and R⊥, one

can write

(3.18) j(z) =
1

2
|r(z)|2 + sup

z∗∈B̃

{
z∗ · q(z)− 1

2
|z∗|2

}
∀ z ∈ R

d,

so that

(3.19) j∞(z) =

{
sup
z∗∈B̃

z∗ · z, z ∈ R⊥

∞, z 6∈ R⊥

}
=

{
sup
z∗∈B̃

z∗ · q(z), r(z) = 0

∞, r(z) 6= 0

}
.

Hence,

ζ∗ = inf
w∈V

L(w)=1

∫

Ω

j∞(∇w) dx = inf
w∈W

L(w)=1

∫

Ω

j∞(q(∇w)) dx,

where

(3.20) W = {v ∈ V : r(∇v) = 0 a.e. in Ω}.

Thus the problem of limit analysis leads to a convex optimization problem with linear

equality constraints.

The truncation of B proposed in Section 3.2 can be defined as follows:

Bk = B̃ ⊕ Bk, Bk = {z ∈ R : |z| 6 k}, k > 0.

Then

(3.21) jk(z) =





1

2
|r(z)|2 + sup

z∗∈B̃

{
z∗ · q(z)− 1

2
|z∗|2

}
, |r(z)| 6 k,

k|r(z)| − k2

2
+ sup

z∗∈B̃

{
z∗ · q(z)− 1

2
|z∗|2

}
, |r(z)| > k,
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and

j∞,k(z) = j∞(q(z)) + k|r(z)| ∀ z ∈ R
d, ∀ k > 0.

It is worth noticing that the term k|r(z)| is the penalty functional associated with
the constraint r(z) = 0.

The limit analysis for a cylindric set is illustrated by the following 2D example.

E x am p l e 3.2. Let

⊲ Ω = {(x, y) ∈ R
2 : |x| 6 1, |y| 6 1}, ΓD = (−1, 1)× {−1}, ΓN = ∂Ω \ Γ̄D,

⊲ f = 0 on ΓN , F := F (x), (x, y) ∈ Ω, F = 1
2

∫ 1

−1 F (x) dx,

⊲ V = {v ∈ H1(Ω): v = 0 on ΓD},
⊲ B = {z = (z1, z2) ∈ R

2 : |z2| 6 1}.
Then R = {z = (z1, 0), z1 ∈ R}, B̃ = {z = (0, z2) : |z2| 6 1}, r(z1, z2) = (z1, 0),

q(z1, z2) = (0, z2) and

Bk = {z = (z1, z2) ∈ R
2 : |z1| 6 k, |z2| 6 1}, k > 0.

From (3.18) and (3.19) we have:

(3.22) j(z) =

{
1
2z

2
1 +

1
2z

2
2 , |z2| 6 1,

1
2z

2
1 + |z2| − 1

2 , |z2| > 1,

j∞(z) =

{
|z2|, z1 = 0,

∞, z1 6= 0
∀ z = (z1, z2) ∈ R

2,

respectively. It follows from (3.20) that W consists of all functions from V which

depend on y only:

(3.23) W = {v ∈ V : v := v(y), y ∈ (−1, 1)}.

The definition of ζ∗, (3.22) and (3.23) yield:

ζ∗ = inf
v∈W

L(v)=1

∫ 1

−1

∫ 1

−1

j∞

(∣∣∣
∂v

∂y

∣∣∣
)
dxdy = inf

v∈W

F
∫

1

−1
2v dy=1

∫ 1

−1

2
∣∣∣
∂v

∂y

∣∣∣dy

= inf
w∈W

F
∫

1

−1
w dy=1

∫ 1

−1

|w′(y)| dy Ex.3.1
=

1

2|F | ,

where W = {w ∈ H1((−1, 1)) : w(−1) = 0}. Clearly, ζ∗ = ∞ for F = 0. We prove

the equality λ∗ = ζ∗ for two choices of F .
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i) Let F = const. in Ω. Then F = F , ζ∗ = 1/(2|F |) and problems (P)λ, (P∗)λ

have the solutions

uλ(x, y) =
1

2
λF [4− (1− y)2], σλ(x, y) = (0, λF (1− y)) ∀λ 6

1

2|F | ,

respectively. Hence, λ∗ = ζ∗ = 1/(2|F |) by making use of Example 3.1. Since
σλ, λ 6 1/(2|F |), also belongs to Bk everywhere in Ω̄, it is a solution to problem

(P∗
k )λ related to Bk. Consequently, λ

∗
k = λ∗ for any k > 0.

ii) Let F (x) = x in Ω. Then F = 0, so ζ∗ = ∞ and

inf
v∈V

Jλ(v) > inf
v∈Ṽ

Jλ(v) = Jλ(ũλ) > −∞, ũλ(x, y) = −λ
6
x3 +

λ

2
x, ∀λ > 0,

where Ṽ = {v ∈ V :
∫
ΓD

v ds =
∫ 1

−1
v(x,−1) dx = 0}. Indeed, ũλ is a minimizer

of Jλ on Ṽ even in the classical sense since
∫ 1

−1

ũλ(x,−1) dx = 0,

∇ũλ(x, y) =
λ

2
(1− x2, 0)T = ΠB(∇ũλ(x, y)) ∀ (x, y) ∈ Ω,

div ΠB(∇ũλ) = −λF in Ω,

ΠB(∇ũλ) · ν = 0 on ∂Ω.

Hence, λ∗ = ζ∗ = ∞. Since ∇ũλ ∈ Bk for λ 6 2k everywhere in Ω̄, we have λ∗k > 2k.

Therefore, λ∗k → λ∗ = ∞ as k → ∞.

3.4. Unbounded conical sets B. Let B ⊂ R
d be a closed, convex cone with

vertex at 0, z∗0 ∈ R
d and B = z∗0 +B. In order to satisfy (3.2) for such B we assume

that −z∗0 ∈ int(B). Further, let B− be the polar cone to B:

B− = {z ∈ R
d : z · z∗ 6 0 ∀ z∗ ∈ B} = {z ∈ R

d : r(z) = 0},

where r : R
d → B is the projection onto B with respect to the Euclidean scalar

product, i.e.,

(3.24) |z − r(z)| 6 |z − z∗| ∀ z∗ ∈ B.

We have

j(z) = z∗0 · z − 1

2
|z∗0 |2 + sup

z∗∈B

{
z∗ · (z − z∗0)−

1

2
|z∗|2

}

= z∗0 · z − 1

2
|z∗0 |2 +

1

2
|z − z∗0 |2 −

1

2
inf
z∗∈B

|z − z∗0 − z∗|2

(3.24)
=

1

2
|z|2 − 1

2
|z − z∗0 − r(z − z∗0)|2
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and consequently j(0) = − 1
2 |−z∗0 − r(−z∗0)|2 = 0 using that −z∗0 ∈ int(B). This fact

follows from (3.2). The function j has a guaranteed linear growth:

j(z) = z∗0 · z −
1

2
|z∗0 |2 + sup

z∗∈B

{
z∗ · (z − z∗0)−

1

2
|z∗|2

}
> z∗0 · z − 1

2
|z∗0 |2 ∀ z ∈ R

d

and

j∞(z) = z∗0 · z + sup
z∗∈B

{z∗ · z} =

{
z∗0 · z, r(z) = 0,

∞, r(z) 6= 0.

Then

ζ∗ = inf
v∈V

L(v)=1

∫

Ω

j∞(∇v) dx = inf
v∈W

L(v)=1

∫

Ω

z∗0 · ∇v dx = inf
v∈W

L(v)=1

∫

ΓN

(z∗0 · ν)v dx,

where W is defined by (3.20) with r from (3.24). This is a minimization problem

with a linear functional and nonlinear equality constraints. Notice that λ∗ = ζ∗ = 0

if {v ∈ W : L(v) = 1} 6= ∅ and ΓN = ∅.
The truncation of the conical set B = z∗0+B can be for example defined as follows:

Bk = z∗0 + Bk, Bk = B ∩B(0; k), B(0; k) := {z ∈ R
d : |z| 6 k}, k > |z∗0 |.

Then

jk(z) =
1

2
|z|2 − 1

2
|z − z∗0 − rk(z − z∗0)|2 ∀ k > 0, ∀ z ∈ R

d,

where

rk(z) = min
{ k

|r(z)| , 1
}
r(z) ∀ k > 0, ∀ z ∈ R

d,

and

j∞,k(z) = z∗0 · z + k|r(z)| ∀ z ∈ R
d, ∀ k > 0.

Again, jk,∞ is a penalized form of j∞ with respect to the constraint r(z) = 0.

The limit analysis for a conical set is illustrated by the following 1D example.

E x am p l e 3.3. Let B = (−∞, 1], Ω = (−1, 1), V = {v ∈ H1(Ω): v(−1) = 0},
F = const. and f(1) = 0. Then Bk = [1− k, 1], k > 1, and similarly to Example 3.1

one can show that

λ∗ = ζ∗ =

{ 1

2F
, F > 0,

∞, F 6 0,
λ∗k = ζ∗k =





1

2F
, F > 0,

k − 1

2|F | , F < 0,

∞, F = 0.

Hence, λ∗k → λ∗ as k → ∞.
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4. Generalized Hencky plasticity problem

The classical Hencky plasticity model of the deformation plasticity theory is based

on the von Mises yield law. Since an abstract yield criterion is used within this

section, we rather write “generalized” Hencky plasticity model in order to stress this

fact. For more details, we refer to, e.g., [7], [13], [27].

This problems and the scalar one considered in Sections 2 and 3 have similar

mathematical structures. Therefore we keep the same notation. Possible different

meaning of notation in plasticity problems will be mentioned explicitly. From now

on, we shall consider 3D problems. The space of admissible displacement fields has

the form

V = {v ∈ H1(Ω;R3) : v|ΓD
= 0},

f ∈ L2(ΓN ;R3), F ∈ L2(Ω;R3) denote the density of surface and volume forces,

respectively, and

L(v) =

∫

Ω

F · v dx+

∫

ΓN

f · v ds, v ∈ V, ‖F‖L2(Ω;R3) + ‖f‖L2(ΓN ;R3) 6= 0.

Stress and strain tensors are represented locally by symmetric matrices, i.e., elements

of R3×3
sym. The biscalar product and the corresponding norm in R

3×3
sym will be denoted

by e : η = eijηij and ‖e‖2 = e : e for any e, η ∈ R
3×3
sym, respectively.

Let B be a closed, convex subset of R3×3
sym containing a vicinity of the origin. This

set represents plastically admissible stresses and mostly can be defined as follows:

(4.1) B = {τ ∈ R
3×3
sym : Φ(τ) 6 γ},

where Φ: R
3×3
sym → R, γ > 0 are a yield function and an initial yield stress, respec-

tively. We shall suppose that Φ is convex and Φ(0) = 0.

Unlike in Section 3, the mapping ΠB now denotes a generalized projection of R
3×3
sym

onto B (in the sense of [24]) and represents the constitutive stress-strain relation:

ΠB : e 7→ ΠB(e), ‖Ce−ΠB(e)‖C−1 = min
τ∈B

‖Ce− τ‖C−1 , e ∈ R
3×3
sym ,

where C : R
3×3
sym → R

3×3
sym is a linear, positive definite, fourth order elasticity tensor

characterizing the elastic material response, C−1 is the corresponding inverse and

‖τ‖2
C−1 := C

−1τ : τ for any τ ∈ R
3×3
sym. The potential j : R

3×3
sym → R+ of ΠB is defined

by

(4.2) j(e) = sup
τ∈B

{
τ : e− 1

2
‖τ‖2

C−1

}
, e ∈ R

3×3
sym.
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Again,

(4.3) j(e) = ΠB(e) : e−
1

2
‖ΠB(e)‖2C−1 > 0, ∇j(e) = ΠB(e) ∀ e ∈ R

3×3
sym

and

(4.4)
ε

2
‖e‖C − ε2

8
6 j(e) 6

1

2
‖e‖2C, ‖e‖2C := Ce : e, ∀ e ∈ R

3×3
sym,

where ε > 0 is such that the ball {τ ∈ R
3×3
sym : ‖τ‖C−1 6 ε} belongs to B. Thus, j

has a guaranteed linear growth at infinity.

The generalized Hencky plasticity problem (in terms of displacements) for a given

value of the load parameter λ > 0 reads as follows:

(P)λ inf
v∈V

Jλ(v), Jλ(v) =

∫

Ω

j(ε(v)) dx− λL(v), ε(v) =
1

2
(∇v +∇Tv).

As in Section 2 and 3, one can introduce the static and kinematic principle of limit

analysis:

λ∗ = sup
{
λ > 0: inf

v∈V

Jλ(v) > −∞
}
6 ζ∗ = inf

v∈V

L(v)=1

∫

Ω

j∞(ε(v)) dx,

where

j∞(e) = lim
α→∞

1

α
j(αe) = sup

τ∈B

e : τ ∀ e ∈ R
3×3
sym.

Analogously to (3.8), we have

(4.5) lim inf
α→∞

1

α
j(αeα) > j∞(e)

for any e ∈ R
3×3
sym and any sequence {eα} tending to e as α → ∞.

As we have already mentioned, the set B is usually defined by a yield crite-

rion (4.1). For example, the Cam-Clay and capped Drucker-Prager criteria lead

to bounded sets, while the von Mises or Tresca criteria lead to unbounded cylin-

dric and Drucker-Prager or Mohr-Coulomb criteria to unbounded conical sets. The

mentioned yield criteria and many others are presented in [5].

For bounded B, we have the following elastoplastic counterpart of Theorem 3.1.
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Theorem 4.1. Let B be bounded and let j be defined by (4.2). Then λ∗ = ζ∗,

(4.6) j∞(e)− c2 6 j(e) 6 j∞(e) ∀ e ∈ R
3×3
sym, c2 =

1

2
sup
τ∈B

‖τ‖2
C−1

and

(4.7) if ∃w ∈ V : Jλ̄(w) < −c2|Ω| for some λ̄ > 0, then λ̄ > λ∗.

In the subsequent parts of this section, we introduce the von Mises and Drucker-

Prager yield criteria.

4.1. The von Mises yield criterion. The set B of admissible stresses for the

von Mises yield criterion is defined by

(4.8) B = {τ ∈ R
3×3
sym : ‖τD‖ 6 γ},

where τD = τ − 1
3 (tr τ)ι is the deviatoric part of τ , tr τ = τii is the trace of τ ,

ι = diag(1, 1, 1) is the unit matrix and γ > 0 represents the initial yield stress.

Notice that the (hydrostatic) axis R of this cylindric set is

R = {τ ∈ R
3×3
sym : τ = aι, a ∈ R}.

If the elastic stress-strain relation is isotropic and expressed in terms of the bulk

(K > 0) and shear (G > 0) moduli, i.e.,

(4.9) τ = Ce = K(tr e)ι+ 2GeD ∀ e ∈ R
3×3
sym,

then the function j can be written as

j(e) =






1

2
K(tr e)2 +G‖eD‖2, 2G‖eD‖ 6 γ,

1

2
K(tr e)2 + γ‖eD‖ − γ2

4G
, 2G‖eD‖ > γ,

e ∈ R
3×3
sym,

see e.g. [27]. It is readily seen that

j∞(e) = lim
α→∞

1

α
j(αe) =

{
γ‖eD‖, tr e = 0,

∞, tr e 6= 0
∀ e ∈ R

3×3
sym
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and the corresponding problem of limit analysis (2.10) becomes:

(4.10) ζ∗ = inf
v∈V, div v=0

L(v)=1

∫

Ω

γ‖ε(v)‖ dx.

It is known that λ∗ = ζ∗ (see [27]).

One can easily extend the truncation method introduced in Sections 3.2 and 3.3.

To this end, consider the system of bounded subsets of B:

(4.11) Bk =
{
τ ∈ R

3×3
sym :

1

3
|tr τ | 6 kγ, ‖τD‖ 6 γ

}
, k > 0.

The functions jk and jk,∞ associated with Bk are given by

jk(e) =





1

2
K(tr e)2 +G‖eD‖2, K|tr e| 6 kγ, 2G‖eD‖ 6 γ,

1

2
K(tr e)2 + γ‖eD‖ − γ2

4G
, K|tr e| 6 kγ, 2G‖eD‖ > γ,

γk|tr e| − γ2k2

2K
+G‖eD‖2, K|tr e| > kγ, 2G‖eD‖ 6 γ,

γk|tr e| − γ2k2

2K
+ γ‖eD‖ − γ2

4G
, K|tr e| > kγ, 2G‖eD‖ > γ

e ∈ R
3×3
sym ,

and

(4.12) jk,∞(e) = γ(‖eD‖+ k| tr e|), e ∈ R
3×3
sym.

For the sake of brevity, we skip their derivation. We know that λ∗k 6 λ∗ for any

k > 0. Further, from Theorem 4.1 we know that

λ∗k = ζ∗k ,

jk,∞(e)− γ2

2

(k2
K

+
1

2G

)
6 jk(e) 6 jk,∞(e) ∀ e ∈ R

3×3
sym,

and

(4.13) if ∃w ∈ V :

∫

Ω

jk(ε(w)) dx− λ̄L(w) < −γ
2

2

(k2
K

+
1

2G

)
|Ω|, then λ̄ > λ∗k.

These results hold for any k > 0.

4.2. The Drucker-Prager yield criterion. The set of the admissible stresses

for the Drucker-Prager yield criterion reads as follows:

(4.14) B =
{
τ ∈ R

3×3
sym :

a

3
tr τ + ‖τD‖ 6 γ

}
=
γ

a
ι+ B, a, γ > 0,

548



where

B = {τ ∈ R
3×3
sym : 1

3a tr τ + ‖τD‖ 6 0}
is a cone containing the hydrostatic axis. For the shape of the yield surface in the

Haigh-Westergaard coordinates, we refer to [5].

Assume that C is the same as in (4.9) and denote

qs(e) := Ka(tr e) + 2G‖eD‖ − γ, qa(e) := Ka(tr e)−Ka2‖eD‖ − γ, e ∈ R
3×3
sym.

Notice that qs > qa. Then

j(e) =
K

2
(tr e)2 +G‖eD‖2 − 1

2(Ka2 + 2G)

{
[(qs(e))

+]2 +
2G

Ka2
[(qa(e))

+]2
}

=






K

2
(tr e)2 +G‖eD‖2, if qs(e) 6 0,

− γ2

2Ka2
+
γ

a
tr e+

G

Ka2(Ka2 + 2G)
qa(e)

2, if qs(e) > 0 > qa(e),

− γ2

2Ka2
+
γ

a
tr e, if qa(e) > 0,

where g+ denotes the positive part of g. The second form of j can be found in [20],

as well as the proof of the equality λ∗ = ζ∗ which holds for sufficiently small values

of the parameter a and under appropriate assumptions.

For purposes of Section 6, we define the truncation of B as follows:

(4.15) Bk = {τ ∈ B : 1
3a tr τ > −kγ}, k > 1.

Clearly, Bk is a bounded subset of B. If we denote

q1,k(e) := Ka(tr e)−Ka2‖eD‖+ γ
[ (1 + k)Ka2

2G
+ k

]
,

q2,k(e) := Ka(tr e) + kγ, q3,k(e) := 2G‖eD‖ − (1 + k)γ,

then

jk(e) =





K

2
(tr e)2 +G‖eD‖2, if qs(e) 6 0, q2,k(e) > 0,

− γ2

2Ka2
+
γ

a
tr e+

G

Ka2(Ka2 + 2G)
qa(e)

2,

if qs(e) > 0 > qa(e), q1,k(e) > 0,

− γ2

2Ka2
+
γ

a
tr e, if qa(e) > 0,

− k2γ2

2Ka2
− kγ

a
tr e− (1 + k)2γ2

4G
+ (1 + k)γ‖eD‖,

if q1,k(e) 6 0, q3,k(e) > 0,

− k2γ2

2Ka2
− kγ

a
tr e+G‖eD‖2, if q2,k(e) 6 0, q3,k(e) 6 0,
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(4.16) jk,∞(e) =





γ

a
tr e, if tr e > a‖eD‖,

−kγ
a

tr e+ (1 + k)γ‖eD‖, if tr e 6 a‖eD‖,

and

(4.17) if ∃w ∈ V :

∫

Ω

jk(ε(w)) dx− λ̄L(w) < −γ
2

2

( k2

Ka2
+

(1 + k)2

2G

)
|Ω|,

then λ̄ > λ∗k.

These results hold for any k > 1. For the sake of brevity, we skip their technical

proofs.

5. Finite element approximation

In this section, classical finite element approximations are considered in order to

compute bounds of the limit load in the generalized Hencky plasticity. A similar

approach can also be used for the scalar problem introduced in Sections 2 and 3.

For the sake of simplicity, we suppose that Ω ⊂ R
3 is a polyhedral domain. Let

{Th}, h→ 0+, be a system of regular partitions of Ω into tetrahedrons∆, diam∆ 6 h

for any ∆ ∈ Th, which are consistent with the decomposition of ∂Ω into ΓD and ΓN .

With any Th we associate the finite-dimensional space Vh:

Vh = {vh ∈ C(Ω;R3) : vh|∆ ∈ P1(∆;R3) ∀∆ ∈ Th, vh = 0 on ΓD},

i.e., Vh consists of all continuous, piecewise linear vector functions vh : Ω → R
3

vanishing on ΓD. The space Vh is the simplest conformal finite element discretization

of V.

We arrive at the following discrete form of (P)λ, λ > 0:

(Ph)λ minimize Jλ(vh), vh ∈ Vh, Jλ(vh) =

∫

Ω

j(ε(vh)) dx− λL(vh).

Since Vh is finite dimensional, the mapping |||·||| : Vh → R+,

|||vh||| =
∫

Ω

‖ε(vh)‖C dx ∀ vh ∈ Vh,

defines a norm in Vh and there exist positive constants c1, c2 such that

(5.1)

∫

Ω

j(ε(vh)) dx
(4.4)

> c1|||vh||| − c2 ∀ vh ∈ Vh.
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Analogously to Section 2, we define the discrete static limit load parameter λ∗h:

(5.2) λ∗h = sup{λ > 0: inf
vh∈Vh

Jλ(vh) > −∞},

and the discrete kinematic limit load parameter ζ∗h:

(5.3) ζ∗h = inf
vh∈Vh,
L(vh)=1

J∞(vh),

where

J∞(vh) =

∫

Ω

j∞(ε(vh)) dx ∀ vh ∈ Vh.

Again, λ∗h 6 ζ∗h for any h > 0.

In [13], [26], the following result was proven.

Theorem 5.1. Let λ > 0 be given. Then the following statements are equivalent:

(i) λ < λ∗h;

(ii) Jλ is coercive on Vh;

(iii) the solution set to (Ph)λ is nonempty and bounded.

Parallel to (Ph)λ, the following minimization problem was introduced in [26]: given

α > 0,

(Ph)
α minimize

∫

Ω

j(ε(vh)) dx, vh ∈ V
α
h ,

where

V
α
h = {vh ∈ Vh : L(vh) = α}.

Owing to (5.1), problem (Ph)
α has at least one solution uh,α for any α > 0 and

h > 0. Problems (Ph)
α and (Ph)λ are linked to each other as follows from the next

theorem (for the proof see [2]).

Theorem 5.2. Let uh,λ be a solution to (Ph)λ. Then uh,λ solves (Ph)
α for

α = L(uh,λ). Conversely, let uh,α be a solution to (Ph)
α. Then uh,α solves (Ph)λ,

where

(5.4) λ =
1

α

∫

Ω

ΠB(ε(uh,α)) : ε(uh,α) dx.

Moreover, λ does not depend on the choice of uh,α solving (Ph)
α.
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On the basis of Theorem 5.2 one can define the function ψh : R+ → R+ by

(5.5)





ψh(α) =

1

α

∫

Ω

ΠB(ε(uh,α)) : ε(uh,α) dx, α > 0,

ψh(0) = 0

with uh,α being a solution to (Ph)
α. The properties of ψh are listed in the next

theorem. For the proof we refer to [13], [26].

Theorem 5.3. We have:

(j) ψh is continuous and nondecreasing in R+;

(jj) ψh(α) → λ∗h as α→ ∞.

From (jj), we see that ψh(α) is an approximation of λ
∗
h from below for α > 0

large enough. The function ψh, however, provides also an information on λ
∗ defined

by (2.4). This is a consequence of the following result [2], [13].

Theorem 5.4. There exists a continuous, nondecreasing function ψ : R+ → R+,

ψ(0) = 0, such that

ψ(α) → λ∗ as α→ ∞;

ψh(α) → ψ(α) as h→ 0+ ∀α > 0.

Since λ∗h 6 ζ∗h, one can ask whether λ
∗
h = ζ∗h or not. Notice that the minimizer

in (5.3) exists provided that the set of admissible functions is nonempty, i.e., there

exists vh ∈ Vh such that L(vh) = 1 and j∞(ε(vh)|∆) < ∞ for any ∆ ∈ Th. It was
shown in [2] that λ∗h = ζ∗h for the Mises yield criterion. This result will be now

extended to the whole class of yield functions Ψ defining the set B of plastically

admissible stresses (see (4.1)).

Theorem 5.5. Let j : R
3×3
sym → R+ be defined by (4.2) and let uh,α, α > 0, be a so-

lution to (Ph)
α. If λ∗h <∞ then the sequence {α−1uh,α}α is bounded in Vh. In addi-

tion, any accumulation point uh,∞ of this sequence belongs to domJ∞, L(uh,∞) = 1,

and

(5.6) λ∗h = ζ∗h = inf
wh∈Vh,
L(wh)=1

∫

Ω

j∞(ε(wh)) dx =

∫

Ω

j∞(ε(uh,∞)) dx.

P r o o f. Let λ∗h < ∞, α > 0 be arbitrary and let uh,α ∈ V
α
h be a solution

to (Ph)
α. From Theorem 5.2 we know that there exists λα ∈ [0, λ∗h] such that uh,α

solves (Ph)λα
. Therefore,

(5.7)

∫

Ω

j(ε(uh,α)) dx = inf
vh∈Vh

Jλα
(vh) + λαα 6 Jλα

(0) + λαα = λαα 6 λ∗hα.
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Boundedness of {α−1uh,α} in Vh follows from (5.7) and (5.1). Let {α′−1
uh,α′} be

a subsequence such that α′−1
uh,α′ → uh,∞ in Vh as α

′ → ∞. Clearly, L(uh,∞) = 1.

Further,

(5.8) lim inf
α′→∞

1

α′
j(ε(uh,α′)|∆)

(4.5)

> j∞(ε(uh,∞)|∆) ∀∆ ∈ Th,

so that

(5.9)

∫

Ω

j∞(ε(uh,∞)) dx 6

∫

Ω

lim inf
α′→∞

1

α′
j(ε(uh,α′)) dx

6 lim inf
α′→∞

∫

Ω

1

α′
j(ε(uh,α′)) dx

(5.7)

6 λ∗h

owing to Fatou’s lemma and nonnegativeness of j. From (5.9) we may conclude that

uh,∞ ∈ dom J∞ and λ∗h = ζ∗h, proving (5.6). �

R em a r k 5.1. If λ∗h = ∞ then the equality λ∗h = ζ∗h is automatically satisfied.

Corollary 5.1. The following statements are equivalent:

(k) λ∗h <∞;
(kk) there exists wh ∈ Vh ∩ dom J∞ such that L(wh) = 1.

It is known from [13] that if B is bounded and the system {Vh} is limit dense in V
then

(5.10) λ∗h → λ∗, h→ 0+.

If B is unbounded, then (5.10) does not hold, in general. It is easy to show that

a necessary condition for (5.10) to be satisfied is that λ∗ = ζ∗. Indeed, suppose that

λ∗ < ζ∗ and (5.10) is satisfied. Since Vh ⊂ V for any h > 0, we have

(5.11) λ∗ 6 λ∗h, ζ∗ 6 ζ∗h ∀h > 0,

and at the same time λ∗h = ζ∗h as follows from Theorem 5.5. Then also ζ
∗
h → λ∗ < ζ∗,

which contradicts the second inequality in (5.11).

For unbounded B one can apply the truncation technique from Section 3.2 to the

discretized problem. Let {Bk} be a system of bounded, closed and convex subsets
of B that satisfies (3.13). As in Section 3.2 we associate with any Bk the functions

jk, Jk,λ, jk,∞, Jk,∞ and the discrete limit load parameters λ
∗
k,h and ζ

∗
k,h. Then

λ∗k,h = ζ∗k,h and the following analogue of Theorem 4.1 holds:

(5.12) if ∃wh ∈ Vh : Jk,λ̄(wh) < −ck|Ω| then λ̄ > λ∗k,h,

553



where

(5.13) ck =
1

2
sup
τ∈Bk

‖τ‖2
C−1 .

R em a r k 5.2. From (4.12) and (4.16) we see that jk,∞ is a penalized form of jk
associated with a specific constraint. In this case, it is very easy to prove that

λ∗k,h = ζ∗k,h → λ∗h = ζ∗h, k → ∞,

using standard techniques and the fact that Vh is finite dimensional.

6. Computable bounds of λ∗ and numerical experiments

6.1. Computable bounds of λ∗. Since λ∗ is a safety parameter, reliable com-

putable bounds of this quantity are important. The first approach how to get them

is based on the estimate

(6.1) ψ(α) 6 λ∗ 6 λ∗h ∀α > 0 ∀h > 0,

and on convergence properties of ψh(α) for α → ∞ and/or h→ 0+. To this end, we

construct numerically the functions ψh1
, ψh2

, . . . , ψhN
on an interval [0, αmax] for N

different partitions Thi
, i = 1, . . . , N , and h1 > h2 > . . . > hN > . . . > 0 approaching

zero. If α ∈ [0, αmax] is fixed and the values ψhi
(α) are visually the same for i

large then ψhi
(α) ≈ ψ(α) due to Theorem 5.4. This yields an estimate of the lower

bound in (6.1). In our experiments, the values ψhi
(α) almost coincide for α small

enough and all i = 1, . . . , N , while for α large convergence can be slow (see Figure 2).

Further, if i ∈ {1, . . . , N} is fixed and the function ψhi
becomes almost constant for

α large then ψhi
(αmax) ≈ λ∗hi

by Theorem 5.3. This yields an estimate of the upper

bound in (6.1). This way of estimating λ∗ was suggested in [13] and can be used for

both, bounded and unbounded sets B.

The second approach is based on the guaranteed upper bound (5.12) which is valid

for bounded B. We proceed as follows: we try to find a parameter λ̄ such that

(i) ∃wh ∈ Vh : Jλ̄(wh) < −c2|Ω|, where c2 > 0 is known (cf. (3.11));

(ii) λ̄ satisfying (i) is as small as possible.

From (i) it follows that λ∗ 6 λ∗h < λ̄. From (ii) we obtain that λ̄ is close to λ∗h.

In the next subsection, we present two strategies how to compute λ̄ satisfying (i)

and (ii). Notice that λ̄ is a guaranteed upper bound of λ∗ which can be established

(at least theoretically) with an arbitrary accuracy using that λ∗h → λ∗, h → 0+ for
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bounded B. The upper bound (5.12) in combination with the truncation method

can be also helpful to establish a lower bound of λ∗. We proceed as follows: the

original set B of plastically admissible stresses (bounded or unbounded) is replaced

by a bounded set Bk ⊂ B. Let λk,h denote a lower bound of λ
∗
k,h computed using

the function ψk,h, and let λk,h be the guaranteed upper bound of λ
∗
k,h. If λk,h and

λk,h: (j) are close to each other; (jj) remain almost constant for h small enough,

then λk,h ≈ λ∗k ≈ λk,h, i.e. λk,h is a reliable lower bound of λ
∗. In our numerical

experiments, (j) is always observed and (jj) occurs for sufficiently small k.

These approaches are used in two model examples with the von Mises and the

Drucker-Prager yield criterion, respectively.

6.2. Numerical methods. The functions ψh, h > 0, can be assessed solving

either (Ph)λ or (Ph)
α. To this end, we use the semismooth Newton method with

damping or, as a case may be, with regularized tangent stiffness matrices. In the

latter case the tangent stiffness matrix is replaced by a convex combination of the

tangent and elastic stiffness matrices to get positive definiteness. Damped parameters

belong to (0, 1] and guarantee the decrease of minimized functions in the Newton

direction. For convergence analysis and numerical experiments with the variants of

the semismooth Newton method we refer to [2].

Let h > 0 be fixed. Since the modified semismooth Newton method with damping

generates a minimization sequence of Jλ in Vh for any λ > 0 we use this fact for

finding the “minimal” guaranteed upper bound λ̄ of λ∗h for bounded B. We present

two strategies.

Algorithm 1

1: Choose αmax > 0 sufficiently large.

2: Set λ̄0 = ψh(αmax), n = 0, and choose δλ > 0 sufficiently small.

3: Repeat

⊲ n := n+ 1;

⊲ λ̄n = λ̄n−1 + δλ;

⊲ construct a minimization sequence of Jλ̄n in Vh;

4: Until λ̄n satisfies (i).

5: Set λ̄ := λ̄n.

Notice that we approach λ̄ from below in Algorithm 1 starting from λ̄0 6 λ∗h. Since

λ̄−λ∗h 6 δλ, a smaller value of δλ leads to a closer upper bound but a larger number

of iterations is needed. The choice of αmax depends on the particular problem.

Algorithm 2

1: Choose λ̄0 sufficiently large so that λ∗h < λ̄0 can be expected.

2: Choose u0 ∈ Vh and set n = 0.
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3: For m = 1, . . . ,mmax do:

⊲ Find um ∈ Vh such that Jλ̄n(um) < Jλ̄n(um−1).

⊲ If Jλ̄n(um) < −c2|Ω| then:
– compute δλ = −(Jλ̄n(um) + c2|Ω|)/L(um);

– set n := n+ 1;

– set λ̄n := λ̄n−1 − δλ.

⊲ End. (If)

4: Set λ̄ := λ̄n.

Algorithm 2 generates the sequence satisfying λ̄0 > λ̄1 > . . . > λ̄n =: λ̄ > λ∗h,

unlike Algorithm 1. Although Algorithm 2 is more straightforward than Algorithm 1,

it yields only a rough upper bound when the minimizing sequence is constructed

by the Newton-like method. Therefore, we will present only results obtained by

Algorithm 1 for the sake of brevity.

The computational experiments described below were implemented in MatLab.

6.3. Numerical example with the von Mises criterion. We consider a plane

strain problem with Ω depicted in Figure 1: Ω is a quarter of the 10× 10 (m) square

with the circular hole of radius 1 in its center. The constant traction of density f =

(0, 450) and (0, 0) (MPa) acts on the upper and the right vertical side, respectively.

The volume forces are neglicted. This load corresponds to λ = 1. On the rest of ∂Ω

the symmetry boundary conditions are prescribed. The material parameters are set

as follows: E = 206900MPa (Young’s modulus), ν = 0.29 (Poisson ratio), and γ =

450
√
2/3 MPa. Hence, the values of K and G needed in (4.9) are K = 1

3E/(1− 2ν)

and G = 1
2E/(1 + ν).

Ω

f

10

1 9

Figure 1. Geometry of the plane strain problem.

To estimate the bounds in (6.1), the first approach is used. As we have already

mentioned, this approach is based on the numerical construction of the function
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ψh defined by (5.5). To this end, it is necessary to solve problems (Ph)
α for α ∈

{αi}mi=1, 0 < α1 < α2 < . . . < αn = αmax. In computations, we use αi = i∆α,

i = 1, . . . ,m, where ∆α > 0 is an increment. The following values of ∆α are used:

∆α = 5, 100, 1000 for αi ∈ [0, 300], [300, 10000], and [10000, 100000], respectively.

The loading paths represented by the graphs of ψh : α 7→ λh are compared for seven

different Th with 1080, 2072, 3925, 10541, 23124, 41580, and 92120 nodes.
Zoom of the resulting loading path in a vicinity of the limit load for Th mentioned

above is depicted in Figure 2 (cf. [13]).

0 2 4 6 8 10
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1.02
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1.06

1.08

1.1

1.12

1.14

λ

92120 nodes

41580 nodes

23124 nodes

10541 nodes

3925 nodes

2072 nodes

1080 nodes

Figure 2. Loading paths (zoom).

One can observe that for any α > 0 fixed, the sequence {ψh(α)}h→0+ is decreasing

but convergence of ψh(α) to ψ(α), h→ 0+ becomes very slow for α large. In [13], the

values 1.00 and 1.14 were found as reliable lower and upper bounds of λ∗, respectively,

using this numerical experiment and (6.1).

To verify and possibly improve the lower bound we use the truncation approach

for Bk defined by (4.11) with k = 5 and k = 1. The respective results are seen from

Figures 3, 4 and Tables 1 and 2.

No. of nodes 1080 2072 3925 10541 23124 41580 92120
lower bound 1.1362 1.1331 1.1234 1.1003 1.0836 1.0729 1.0620
upper bound 1.1362 1.1332 1.1237 1.1019 1.0850 1.0768 1.0681

Table 1. Lower and upper bound of λ∗k,h, k = 5.
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1080 2072 3925 10541 23124 41580 92120
lower bound 1.0590 1.0542 1.0505 1.0466 1.0446 1.0434 1.0421
upper bound 1.0591 1.0544 1.0508 1.0472 1.0450 1.0437 1.0427

Table 2. Lower and upper bound of λ∗k,h, k = 1.

For k = 5, one can observe again the strong dependence of convergence on the

mesh sizes (Figure 3). On the other hand, the curves are practically almost constant

for α large enough even for finer meshes unlike Figure 2. Therefore, one can expect

that the computed values ψk,h(αmax) for αmax = 100000 are close to λ∗k,h from

below, see Table 1, row “lower bound”. To find guaranteed upper bounds of λ∗k,h
we use Algorithm 1 with δλ = 1e− 4. The lowest values of the upper bound found

for different meshes are summarized in Table 1. We see that the lower and upper

estimates of λ∗k,h are close to each other. This confirms a relatively high accuracy of

the results. The values in Table 1 decrease almost linearly for finer meshes and thus

λ∗k=5 cannot be reliably estimated from these data.
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92120 nodes

41580 nodes

23124 nodes

10541 nodes

3925 nodes

2072 nodes

1080 nodes

Figure 3. Loading paths for k = 5 (zoom).

For k = 1 (Figure 4), the curves uniformly converge to a limit curve and for

α > 1e4 practically remain constant. Table 2 displays lower and guaranteed upper

bounds of λ∗k,h, k = 1, which were found in the same way as for k = 5. Notice

that the values in Table 2 decrease for h → 0+ and remain close to 1.04 for finer

meshes. Moreover, the curves in Figure 4 almost coincide up to λ = 1.04. Therefore,

λ∗k=1 ≈ 1.04.
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Figure 4. Loading paths for k = 1 (zoom).

Finally, one can easily check that the value 1.14 is a reliable upper bound of λ∗ by

using the linear function w(x, y) = (−x, y)/45000. Clearly, w ∈ V, divw = 0 in Ω

and L(w) = 1, where V is the space of kinematically admissible displacements which

satisfy the symmetry boundary conditions on the respective parts of ∂Ω. From (4.10),

the guaranteed upper bound λ∗ 6 1.1456 follows. Since w ∈ Vh for any triangulation

Th, h > 0, it is also an upper bound of λ∗h.

In conclusion: The values 1.04 and 1.14 could serve as reliable lower and upper

bounds of λ∗, respectively. We were not able to improve them within P1 elements.

The observed strong dependence on mesh sizes was likely due to the presence of the

divergence-free constraint appearing in (4.10). It would be interesting to compare

our results with the ones obtained by using mixed finite element methods directly in

(4.10) as discussed in [1]. However, this is beyond the scope of this paper.

6.4. Numerical example with the Drucker-Prager criterion. The second

example is a slope stability benchmark considered as a plane strain problem [3], [5],

[25]. We use the same geometry and material properties as in [5]. The shape and

sizes of 2D domain Ω with a uniform triangular mesh are shown in Figure 5.

The slope inclination is 45◦. We assume that Ω is fixed on the bottom and the zero

normal displacements are prescribed on both vertical sides. The remaining part of Ω

is free. The load L is represented by the gravity force F . We set the specific weight

̺g = 20 kN/m3 with ̺ being the mass density and g the gravitational acceleration.

The Drucker-Prager parameters a and γ appearing in (4.14) are computed from the
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Figure 5. Geometry of the problem.

friction angle ϕ and the cohesion c as follows [5]:

a =
3
√
2 tanϕ√

9 + 12(tanϕ)2
, γ =

3
√
2c√

9 + 12(tanϕ)2
.

Finally, we set E = 20 000 kPa, ν = 0.49, ϕ = 20◦ and c = 50 kPa. The bulk and

shear moduli are computed as in Section 6.3. The discretization of (Ph)
α is done

by P1 elements using four uniform triangulations Th of Ω̄ with h = 0.1, 0.2, 0.5, 1.0

meters, where h stands for the length of the leg of the isosceles right triangles creat-

ing Th.
The loading paths for all meshes mentioned above are depicted in Figures 6 and 7

for α ∈ [0, 1e5]. In Figure 6 we see the loading paths for the original set B defined

by (4.14). Again the strong dependence of the results on h is visible. However, one

can observe that the curves converge to some limit curve. Since the paths are almost

constant for α > 2e4 the respective values at α = 1e5 can be considered to be equal

to λ∗h. Consequently, λ
∗
h=0.1 = 4.5 is a reliable upper bound of λ∗.

To get a lower bound of λ∗ we use the truncation approach with Bk defined by

(4.15) for k = 15 (below we justify this choice of k). Figure 7 depicts the resulting

loading paths for Bk=15. It is worth noticing that this time the paths practically

coincide for all h and their values at α = 1e5 give reliable lower bounds of λ∗k,h. To

verify these results, Algorithm 1 with δλ = 1e− 3 was used to get guaranteed upper

bounds of λ∗k,h. They are summarized in Table 3 together with the lower bounds of

λ∗k,h computed by means of the functions ψk,h.
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Figure 6. Loading paths for B.
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Figure 7. Loading paths for Bk, k = 15.

h (m) 0.1 0.2 0.5 1.0
lower bound 4.123 4.129 4.148 4.177
upper bound 4.126 4.131 4.149 4.178

Table 3. Lower and upper bounds of λ∗k,h, k = 15.

561



Moreover, we are able to find another guaranteed upper bound of λ∗k using the

piecewise linear function

wε(x, y) =

{
(0,− b

ε
y), y ∈ [0, ε],

(0,−b), y ∈ [ε, 40],
ε > 0, b = (53000− 750ε)−1.

It is readily seen that wε satisfies all kinematic boundary conditions on ∂Ω and

L(wε) = 1 due to the choice of b. Further, (4.16)2 yields

(6.2) λ∗k = ζ∗k 6

∫

Ω

jk,∞(ε(wε)) dxdy =
75γ

53000− 750ε

[k
a
+ (1 + k)

√
6

3

]
.

Thus for k = 14, 15, 16 we obtain from (6.2) the following upper bounds of the

corresponding λ∗k: 3.851, 4.121, and 4.391, respectively, when ε → 0. This justifies

our choice of k. In addition, choosing ε = h, the function wε belongs to the P1

finite element discretization of the space of all kinematic admissible displacements.

Hence, for k = 15 and h = 0.1, 0.2, 0.5, and 1.0, the upper bound (6.2) gives 4.127,

4.133, 4.150, 4.180, respectively. These values are slightly higher than the bounds

computed by Algorithm 1 as follows from Table 3.

Based on this experiment we may conclude that the values 4.1 and 4.5 could

serve as reliable lower and upper bounds to λ∗, respectively. The bound 4.5 likely

overestimates λ∗ and could be possibly improved using a locally refined mesh in a

vicinity of the slope in ∂Ω, see [5], [25]. The analytical estimate to this problem for

the Mohr-Coulomb yield function presented in [3] gives the value λ∗ ≈ 4.045 which

is close to our estimate of the lower bound.

7. Conclusion

The paper deals with guaranteed and computable bounds of the limit load parame-

ter λ∗ in variational problems for functionals with linear growth. The new guaranteed

upper bound for functionals with purely linear growth and the truncation technique

for the ones with linear growth are the main results of the paper. These results when

used in elasto-plasticity read as follows: functionals with purely linear growth arise in

models with bounded yield surfaces so that the upper bound of λ∗ is directly at our

disposal. If the yield surface is unbounded, then one uses the truncation approach

first to approximate the original surface by a sequence of bounded ones. Further,

we combine these techniques with the incremental method from [13] which uses the

function ψh defined by (5.5). Such an approach is also simple from the computational

point of view. It requires to solve only a smooth convex optimization problem sub-

ject to at most one linear equality constraint. Although only linear simplicial finite
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elements are used in the paper, the results concerning the guaranteed upper bound,

the truncation approach and the function ψ (see Theorem 5.4) are independent of

the particular choice of the finite element space.
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