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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 4 , P AGES 4 9 7 – 5 1 3

CHARACTERIZING MATRICES WITH X-SIMPLE IMAGE
EIGENSPACE IN MAX-MIN SEMIRING

Ján Plavka and Sergĕı Sergeev

A matrix A is said to have X-simple image eigenspace if any eigenvector x belonging to the
interval X = {x : x ≤ x ≤ x} is the unique solution of the system A⊗ y = x in X. The main
result of this paper is a combinatorial characterization of such matrices in the linear algebra
over max-min (fuzzy) semiring.

The characterized property is related to and motivated by the general development of trop-
ical linear algebra and interval analysis, as well as the notions of simple image set and weak
robustness (or weak stability) that have been studied in max-min and max-plus algebras.

Keywords: max-min algebra, interval, weakly robust, weakly stable, eigenspace, simple
image set

Classification: 15A80, 15A18, 08A72

1. INTRODUCTION

This paper is concerned with a problem of max-min linear algebra, which is one of the
sub-areas of tropical mathematics. In a wider algebraic context, tropical mathemat-
ics (also known as idempotent mathematics) can be viewed as a mathematical theory
developed over additively idempotent (a ⊕ a = a) semirings. Note that the operation
of taking maximum of two numbers is the simplest and the most useful example of an
idempotent addition.

Idempotent semirings can be used in a range of practical problems related to schedul-
ing and optimization, and offer many new problems to pure mathematicians. There are
several monographs [13, 14, 15, 16] and collections of papers [18, 19] on tropical mathe-
matics and its applications. Let us also mention some connections between idempotent
algebra and fuzzy sets theory [8, 9].

In the max-min algebra, sometimes also called the “fuzzy algebra” [10, 11, 23] the
arithmetical operations a ⊕ b := max(a, b) and a ⊗ b := min(a, b) are defined over a
linearly ordered set. As usual, the two arithmetical operations are naturally extended
to matrices and vectors.

The development of linear algebra over idempotent semirings was historically moti-
vated by multi-machine interaction processes. In these processes we have n machines
which work in stages, and in the algebraic model of their interactive work, entry x(k)
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498 J. PLAVKA AND S. SERGEEV

a vector x(k) ∈ B(n) where i ∈ {1, . . . , n} and B is an idempotent semiring, represents
the state of machine i after some stage k, and the entry aij of a matrix A ∈ B(n, n),
where i, j ∈ {1, . . . , n}, encodes the influence of the work of machine j in the previ-
ous stage on the work of machine i in the current stage. For simplicity, the process is
assumed to be homogeneous, like in the discrete time Markov chains, so that A does
not change from stage to stage. Summing up all the influence effects multiplied by the
results of previous stages, we have x(k+1)

i =
⊕

j aij ⊗ x
(k)
j . In the case of ⊕ = max this

“summation” is often interpreted as waiting till all the processes are finished and all the
necessary influence constraints are satisfied.

Thus the orbit x, A⊗x, . . . Ak⊗x, where Ak = A⊗. . .⊗A, represents the evolution of
such a process. Regarding the orbits, one wishes to know the set of starting vectors from
which a given objective can be achieved. One of the most natural objectives in tropical
algebra, where the ultimate periodicity of the orbits often occurs, is to arrive at an
eigenvector. The set of starting vectors from which one reaches an eigenvector of A after
a finite number of stages, is called attraction set of A (see [2, 29]). In general, attraction
set contains the set of all eigenvectors, but it can be also as big as the whole space. This
leads us, in turn, to another question: in which case is attraction set precisely the same
as the set of all eigenvectors? Matrices with this property are called weakly robust or
weakly stable [3].

In the special case of max-min algebra which we are going to consider, it can be argued
that an orbit can stabilize at a fixed point (A ⊗ x = x) [6], but not at an eigenvector
with an eigenvalue different from unity. Therefore, by eigenvectors of A we shall mean
the fixed points of A (satisfying A⊗ x = x).

In terms of the systems A⊗x = b, weak robustness (with eigenvectors understood as
fixed points) is equivalent to the following condition: every eigenvector y belongs to the
simple image set of A, that is, for every eigenvector y, the system A⊗ x = y has unique
solution x = y.

In the present paper, we consider an interval version of this condition. Namely,
we describe matrices A such that for any eigenvector y belonging to an interval X =
[x, x] := {x ∈ B(n); x ≤ x ≤ x} the system A ⊗ x = y has a unique solution x = y
in X. This is what we mean by saying that “A has X-simple image eigenspace”.
In Theorem 3.8, which is the main result of the paper, we show that under a certain
natural condition, A has X-simple image eigenspace if and only if it satisfies a nontrivial
combinatorial criterion, which makes use of threshold digraphs and to which we refer as
“X-conformism” (see Definition 3.3).

The next section will be occupied by some definitions and notation of the max-min
algebra, leading to the discussion of weak X- robustness and X-simple image eigenvec-
tors. Section 3 is devoted to the main result (characterizing matrices with X-simple
image eigenspace), and its rather technical combinatorics.

Let us conclude with a brief overview of the works on max-min algebra to which this
paper is related. The concepts of robustness in max-min algebra were introduced and
studied in [25]. Following that work, some equivalent conditions and efficient algorithms
were presented in [20, 23, 26]. In particular, see [26] for some polynomial procedures
checking the weak robustness (weak stability) in max-min algebra.
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2. PRELIMINARIES

2.1. Max-min algebra and associated digraphs

Let us denote the set of all natural numbers by N. Let (B,≤) be a bounded linearly
ordered set with the least element in B denoted by O and the greatest one by I.

A max-min semiring is a set B equipped with two binary operations ⊕ = max and
⊗ = min, called addition and multiplication, such that (B,⊕) is a commutative monoid
with identity element O, (B,⊗) is a monoid with identity element I, multiplication left
and right distributes over addition and multiplication by O annihilates B.

We will use the notations N and M for the sets of natural numbers not exceeding n
and m, respectively, i. e., N = {1, 2, . . . , n} and M = {1, 2, . . . , m}. The set of n×m
matrices over B is denoted by B(n,m), and the set of n× 1 vectors over B is denoted by
B(n). If each entry of a matrix A ∈ B(n, n) (a vector x ∈ B(n)) is equal to O we shall
denote it as A = O (x = O).

Let x = (x1, . . . , xn) ∈ B(n) and y = (y1, . . . , yn) ∈ B(n) be vectors. We write
x ≤ y (x < y) if xi ≤ yi (xi < yi) holds for each i ∈ N .

For a matrix A ∈ B(n, n), its entries will be denoted by aij for i, j ∈ N . The symbol
G(A) = (N,E) stands for a complete, arc-weighted digraph associated with A, i. e., the
node set of G(A) is N , and the weight (capacity) of any arc (i, j) is aij ≥ O. For given
h ∈ B, the threshold digraph G(A, h) is the digraph with the node set N and with the arc
set E = {(i, j); i, j ∈ N, aij ≥ h}. A path in the digraph G(A) = (N,E) is a sequence
of nodes p = (i1, . . . , ik+1) such that (ij , ij+1) ∈ E for j = 1, . . . , k. The number k is
the length of the path p and is denoted by l(p). If i1 = ik+1, then p is called a cycle
and it is called an elementary cycle if moreover ij 6= im for j,m = 1, . . . , k. Notation
(k, l) ∈ p means that edge (k, l) is lying in p.

2.2. Orbits, eigenvectors and weak robustness

For A ∈ B(n, n) and x ∈ B(n), the orbit O(A, x) of x = x(0) generated by A is the
sequence

x(0), x(1), x(2), . . . , x(n), . . . ,

where x(r) = Ar ⊗ x(0) for each r ∈ N.
The operations max,min are idempotent, so no new numbers are created in the

process of generating of an orbit. Therefore any orbit contains only a finite number of
different vectors. It follows that any orbit starts repeating itself after some time, in other
words, it is ultimately periodic. The same holds for the power sequence (Ak; k ∈ N).

We are interested in the case when the ultimate period is 1, or in other words, when
the orbit is ultimately stable. Note that in this case the ultimate vector of the orbit
necessarily satisfies A⊗x = x. This is the main reason why in this paper by eigenvectors
we mean fixed points. (Also observe that if x is not a fixed point but a more general
eigenvector satisfying A ⊗ x = λ ⊗ x, then A ⊗ x is already a fixed point due to the
idempotency of multiplication.)

Formally we can define the set of fixed points (eigenvectors) V (A) and the attraction
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set attr(A) as follows
V (A) = {x ∈ B(n); A⊗ x = x}

and
attr(A) = {x ∈ B(n); O(A, x) ∩ V (A) 6= ∅},

respectively.

The present paper is closely related to the following kind of matrices.

Definition 2.1. Let A ∈ B(n, n) be a matrix. Then A is called weakly robust (or
weakly stable), if attr(A) = V (A).

Observe that in general V (A) ⊆ attr(A) ⊆ B(n). The matrices for which attr(A) =
B(n) are called (strongly) robust or (strongly) stable, as opposed to weakly robust
(weakly stable). The following fact, which holds in max-min algebra and max-plus
algebra alike, is one of the main motivations for our paper.

Theorem 2.2. ( Plavka and Szabó [25], Plavka et al. [3]) Let A ∈ B(n, n) be a matrix.
Then A is weakly robust if and only if (∀x ∈ B(n))[A⊗ x ∈ V (A)⇒ x ∈ V (A)].

Let us conclude this section by recalling some information on the greatest eigenvector
and constant eigenvectors in max-min algebra.

Let A = (aij) ∈ B(n, n) be a matrix. Define the greatest eigenvector x⊕(A) =
(x⊕1 (A), . . . , x⊕n (A))T corresponding to a matrix A as

x⊕(A) =
⊕

x∈V (A)

x.

It has been proved in [30] for a more general structure (distributive lattice) that
the greatest eigenvector x⊕(A) of A exists for each matrix A ∈ B(n, n). The great-
est eigenvector x⊕(A) can be computed by the following iterative O(n2 log n) proce-
dure ([5]). Let us denote x1

i (A) =
⊕

j∈N aij for each i ∈ N and xk+1(A) = A ⊗
xk(A) for all k ∈ {1, 2, . . .}. Then xk+1(A) ≤ xk(A) and x⊕(A) = xn(A). Observe
that x⊕i (A) ≤

⊕
j∈N aij for all i.

Next, denote

mA =
⊕
i,j∈N

aij , c(A) =
⊗
i∈N

⊕
j∈N

aij , c∗(A) = (c(A), . . . , c(A))T ∈ B(n).

It can be checked that A⊗ c∗(A) = c∗(A), since every row of A contains an entry that is
not smaller than c∗(A). In fact, this condition is necessary and sufficient for a constant
eigenvector to be an eigenvector of A. Therefore any constant vector that is smaller
than c∗(A) is also an eigenvector, and c∗(A) is the largest constant eigenvector of A.
However, as x⊕(A) is the greatest eigenvector of A, we have c∗(A) ≤ x⊕(A).
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2.3. Weak X-robustness and X-simplicity

In this section we consider an interval extension of weak robustness and its connection
to X-simplicity, the main notion studied in this paper. We remind that throughout the
paper,

X = [x, x] = {x ∈ B(n) : x ≤ x ≤ x, }, where x, x ∈ B(n).

Consider the following interval extension of weak X-robustness.

Definition 2.3. A ∈ B(n, n) is called weakly X-robust if attr(A) ∩X ⊆ V (A).

The notion of X-simplicity, which we will introduce next, is related to the concept
of simple image set [1]: by definition, this is the set of vectors b such that the system
A ⊗ x = b has a unique solution, which is usually denoted by |S(A, b)| = 1 (S(A, b)
standing for the solution set of A⊗ x = b). If the only solution of the system A⊗ x = b
is x = b, then b is called a simple image eigenvector.

If X = B then the notion of weak robustness can be described in terms of simple
image eigenvectors:

Proposition 2.4. Let A ∈ B(n, n). The following are equivalent:

(i) A is weakly robust;

(ii) (∀x ∈ V (A))[|S(A, x)| = 1];

(iii) Each x ∈ V (A) is a simple image eigenvector.

P r o o f . We will only prove the equivalence between the first two claims (the other
equivalence being evident). Suppose that there is x ∈ V (A) such that |S(A, x)| > 1
(notice that |S(A, x)| ≥ 1 for each x because of x ∈ V (A)). Then there is at least one
solution y of the system A⊗ y = x and y 6= x. Using Theorem 2.2 we get A⊗ (A⊗ y) =
A⊗ x = x and A⊗ y = x 6= y, this is a contradiction.
The converse implication trivially follows. �

This motivates us to consider an interval version of simple image eigenvectors.

Definition 2.5. Let A ∈ B(n, n) and X = [x, x] ⊆ B(n) be given.

(i) An eigenvector x ∈ V (A) ∩X is called an X-simple image eigenvector if x is the
unique solution of the equation A⊗ y = x in the interval X.

(ii) Matrix A is said to have X-simple image eigenspace if any x ∈ V (A) ∩X is an
X-simple image eigenvector.

Definition 2.6. Let A ∈ B(n, n) and X = [x, x] ⊆ B(n) be given. We say that X is
invariant under A if x ∈X implies A⊗ x ∈X.
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Theorem 2.7. Let A ∈ B(n, n) and X = [x, x] ⊆ B(n) be given.

(i) If A is weakly X-robust then A has X-simple image eigenspace.

(ii) If A has X-simple image eigenspace and if X is invariant under A then A is weakly
X-robust.

P r o o f . (i) Suppose that A is weakly X-robust and x ∈ V (A) ∩ X. If the system
A ⊗ y = x has a solutions y 6= x in X, then y is not an eigenvector but belongs to
attr(A) ∩X, which contradicts the weak X-robustness.

(ii) Assume that A has X-simple image eigenspace and x is an arbitrary element of
attr(A) ∩X. As X is invariant under A, we have that Ak ⊗ x ∈ X for all k. Then
Ak ⊗ x ∈ V (A) for some k implies Ak−1 ⊗ x = Ak ⊗ x ∈ V (A),. . . , x ∈ V (A). �

As A is order-preserving, the invariance of X under A admits the following simple
characterization:

Proposition 2.8. X is invariant under A if and only if A⊗ x ≥ x and A⊗ x ≤ x.

Thus the X-simplicity is a necessary condition for weak X-robustness. It is also
sufficient if the interval X is invariant under A, i. e., x ≤ A⊗ x and A⊗ x ≤ x.

3. X-SIMPLE IMAGE EIGENSPACE AND X-CONFORMISM

The purpose of this section is to define a nontrivial combinatorial condition for matrix
A (namely, A being an “X-conforming matrix”) and show that this condition describes
a class of matrices for which every eigenvector x ∈ V (A) ∩X is an X-simple image
eigenvector (in other words, the matrices with X-simple image eigenspace).

We first introduce the property of level-α permutation, which (as argued in Lemma 3.2)
gives rise to a necessary condition for A having an X-simple image eigenspace.

Definition 3.1. A matrix A = (aij) ∈ B(n, n) is called a generalized level-α permuta-
tion matrix (abrr. level-α permutation) if digraph G(A,α) is a set of disjoint elementary
cycles containing all nodes.

Let us also define the following quantity:

γ(A, x) = min(c(A),min
i∈N

xi), γ∗(A, x) = (γ(A, x), . . . , γ(A, x)). (1)

Since γ∗(A, x) is a constant vector such that each row of A contains an entry not
smaller than γ(A, x), we obtain A⊗ γ∗(A, x) = γ∗(A, x) (i. e.,γ∗(A, x) ∈ V (A)).

Lemma 3.2. Let A = (aij) ∈ B(n, n) and X = [x, x] ⊆ B(n) be given and conditions
x < c∗(A) and maxi∈N xi < mini∈N xi be fulfilled. If A has X-simple image eigenspace
then A is level-γ(A, x) permutation.



Characterizing matrices with X-simple image eigenspace in max-min semiring 503

P r o o f . For a contrary suppose that, under the given conditions, A is not level-γ(A, x)
permutation. We shall look for two solutions of A ⊗ y = γ∗(A, x). One solution is
γ∗(A, x) ∈ V (A) ∩ X. Since A is not level-γ(A, x) permutation and each row of A
contains at least one element aij ≥ γ(A, x) we shall consider two cases.

Case 1. (∃k ∈ N)[maxs∈N ask < γ(A, x)]. The second solution y′ ∈X is

y′i =

{
xi, if i = k

γ(A, x), otherwise,

since we have ask < γ(A, x) for all s, implying that the terms ask ⊗ y′k are unimportant
and y′k can be set to any admissible value.

Case 2. The remaining case is when (∀k ∈ N)[maxs∈N ask ≥ γ(A, x)]. Recall that we
have at least one entry greater then or equal to γ(A, x) in each column of A. By the
definition of C(A) and γ(A, x) we also have at least one such entry in each row. However
A is not level-γ(A, x) permutation hence there is a row with at least two such entries,
i. e., (∃i, j, k ∈ N)[aij ≥ γ(A, x) and aik ≥ γ(A, x)]. Then there is v ∈ N such that
(∀i ∈ N)[maxj∈N\{v} aij ≥ γ(A, x)] and the second solution y′ ∈ X can be defined as
follows

y′i =

{
xi, if i = v

γ(A, x), otherwise,

since attainment of the maximum value in every row of A ⊗ y by other terms than
asv ⊗ yv makes these terms redundant, so that yv can be replaced by any admissible
value y′v < yv.

In both cases we obtained a contradiction with A having X-simple image eigenspace.
�

We now define what an X-conforming matrix is. This is the key notion of the
paper building upon the definition of level-γ(A, x) permutation matrix given above, and
requiring the notation introduced below in (2)-(4) and the properties assumed in (5), (6)
and in Definition (3.3). See also Example 3.5 illustrating the notion.

For a given level-γ(A, x) permutation matrix A = (aij) ∈ B(n, n) and X = [x, x] ⊆
B(n) assume that

cu = (iu1 , . . . , i
u
su

) are elementary cycles in digraph G(A, γ(A, x)), 1 ≤ u ≤ k, (2)

ex = (e1, . . . , en)T , where ei = max
v∈cu

xv for i ∈ cu, 1 ≤ u ≤ k, (3)

fx = (f1, . . . , fn)T , where fi = min
v∈cu

xv ⊗ x⊕v (A) for i ∈ cu, 1 ≤ u ≤ k (4)

and that

x < c∗(A) and max
i∈N

xi < min
i∈N

xi, (5)

aiuj iuj+1
≥ γ(A, x), 1 ≤ j ≤ su − 1, 1 ≤ u ≤ k. (6)
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Notice that eiuj = eiuj+1
, fiuj = fiuj+1

for nodes iuj , i
u
j+1 lying in the same cycle cu and also

{i11, . . . , i1s1 , . . . , i
k
1 , . . . , i

k
sk
} = N .

Definition 3.3. Let A = (aij) ∈ B(n, n) and X = [x, x] ⊆ B(n) be given and A be
level-γ(A, x) permutation fulfilling (5) and (6). Then, matrix A is called X-conforming
if

(i) xiuj+1
< eiuj+1

⇒ aiuj k < eiuj for k 6= iuj+1, k ∈ N,

(ii) xiuj+1
= eiuj+1

⇒ aiuj k ≤ eiuj for k 6= iuj+1, k ∈ N,

(iii) aiuj iuj+1
= min(k,l)∈cu

akl = x⊕iuj+1
(A) = fiuj+1

⇒ xiuj+1
≤ x⊕iuj+1

(A),

in terms of the notation introduced in (2)–(4) and 1 ≤ u ≤ k.

Remark 3.4. Observe that fi ≤
⊕

j∈N aij for all i, since the same holds for x⊕(A)
(the end of Section 2.2).

Example 3.5. Let us consider B = [0, 10], λ = 10 and

A =


4 4 4 5
2 2 7 2
3 8 3 3
7 3 3 3

 , x =


2
3
2
4

 , x =


7
9
6
5

 .

Matrix A is level-5 permutation with c1 = (i11, i
1
2) = (1, 4), c2 = (i21, i

2
2) = (2, 3) and

x⊕(A) = (5, 7, 7, 5)T . Vectors ex and fx have the following coordinates

e1 = e4 = max(x1, x4) = 4, e2 = e3 = max(x2, x3) = 3,

f1 = f4 = min(x1 ⊗ x⊕1 , x4 ⊗ x⊕4 ) = 5, f2 = f3 = min(x2 ⊗ x⊕2 , x3 ⊗ x⊕3 ) = 6,

thus ex = (4, 3, 3, 4)T and fx = (5, 6, 6, 5)T .
Now, we shall argue that A is X-conforming,

i11 = 1, i12 = 4; x1 < e1 ⇒ a4j < e4 (∀j 6= 1),

i12 = 4, i11 = 1; x4 = e4 ⇒ a1j ≤ e1 (∀j 6= 4),

i21 = 2, i22 = 3; x2 = e2 ⇒ a3j ≤ e3 (∀j 6= 2),

i22 = 3, i21 = 2; x3 < e3 ⇒ a2j < e2 (∀j 6= 3)

and

a14 = 5 = min
(k,l)∈c1=(14)

akl = x⊕4 (A)⇒ x4 = 5 ≤ x⊕4 (A) = 5, a41 = 7 > min
(k,l)∈c1=(14)

akl = 5,

a23 = 7 = min
(k,l)∈c2=(23)

akl = x⊕3 (A)⇒ x3 = 6 ≤ x⊕3 (A) = 7, a32 = 8 > min
(k,l)∈c2=(23)

akl = 7.

Hence matrix A is X-conforming.
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The purpose of Lemma 3.6 below is to establish useful inequalities for ex, γ∗(A, x)
and fx and to elucidate the structure of V (A) ∩X.

Lemma 3.6. Let A = (aij) ∈ B(n, n), X = [x, x] ⊆ B(n) be given and A be X-
conforming. Let cu, for u = 1, . . . , k be the elementary cycles of G(A, γ(A, x)).

(i) x ≤ ex < γ∗(A, x), γ∗(A, x) ≤ fx ≤ x and ex, fx ∈ V (A) ∩X,

(ii) (∀x ∈X ∩ V (A))[ex ≤ x ≤ fx],

(iii) V (A) ∩X = {(x1, . . . , xn)T : ∃α1, . . . , αk s.t. ∀i xi = αu ∈ [ei, fi] for i ∈ cu, 1 ≤
u ≤ k}.

P r o o f . Let us first recall that since A is X-conforming it is also a level-γ(A, x) per-
mutation matrix.

(i) The inequalities x ≤ ex < γ∗(A, x) follow from the conditions x < c∗(A),
maxi∈N xi < mini∈N xi and the definition of ex. To obtain γ∗(A, x) ≤ fx ≤ x, re-
call that x⊕(A) ≥ γ∗(A, x) as x⊕(A) is the largest eigenvector, and that x ≥ γ∗(A, x)
by (1), implying fx ≥ γ∗(A, x).

To show that ex, fx ∈ V (A) we need to prove that A⊗ex = ex, A⊗fx = fx. As matrix
A is level-γ(A, x) permutation, for each i ∈ N there is j ∈ N such that aij ≥ γ(A, x).

To prove A⊗ ex = ex observe that

(A⊗ ex)i =
⊕
t6=j

ait ⊗ et ⊕ aij ⊗ ej = aij ⊗ ej = ej = ei

because i, j lie in the same cycle (ei = ej) and aij ≥ γ(A, x) > ei ≥ ait for all t 6= j by
the definition of X-conforming matrix.

To prove A⊗ fx = fx observe that

(A⊗ fx)i =
⊕
t∈N

ait ⊗ ft = aij ⊗ fj = fj = fi

because of i, j are lying in the same cycle (fi = fj), aij =
⊕

t∈N ait ≥ x⊕i (A) ≥
xi ⊗ x⊕i (A) ≥ fi and ait < γ(A, x) ≤ fi = fj for t 6= j.

(ii) Suppose that (∃x ∈X ∩V (A)[ex � x], i. e., there is at least one index i ∈ N such
that xi ≤ xi < ei. Since A is level-γ(A, x) permutation and i ∈ N , then there is a cycle
c = {i1, . . . , is} such that i1 = i ∈ c,

airir+1 ≥ γ(A, x) > ei > xi and eir = max
k=i1,...,is

xk for r = 1, . . . , s.

If s = 1 we immediately obtain a contradiction with the definition of the vector ex.
Suppose now that s ≥ 2, then for the eigenvector x = (x1, . . . , xn) we have

xi1 = (A⊗ x)i1 =
⊕
t∈N

ai1t ⊗ xt ≥ ai1i2 ⊗ xi2 = xi2
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because of ai1i2 ≥ γ(A, x) > xi1 and we obtain xi1 ≥ xi2 ,

xi2 = (A⊗ x)i2 =
⊕
t∈N

ai2t ⊗ xt ≥ ai2i3 ⊗ xi3 = xi3

because of ai2i3 ≥ γ(A, x) > xi1 ≥ xi2 and we obtain xi2 ≥ xi3 . Proceeding in the same
way for xi3 , . . . , xis we have xi1 = · · · = xis < ei1 = . . . = eis . However, this implies
xik < xik for some ik, which is a contradiction.

Suppose that (∃x ∈X∩V (A)[x � fx], i. e., there is at least one index i ∈ N such that
fi < xi ≤ xi. Since x is an eigenvector of A the equality

⊕
t∈N avt ≥ xv holds for each

v ∈ N . Moreover using part (ii) of Definition 3.3 and that A is X-conforming, we have
ait ≤ ei ≤ fi < xi for each (i, t) /∈ {(i1, i2), . . . , (is, i1)}. Let i = i1 ∈ c = {i1, . . . , is}.
Then

xi1 = (A⊗ x)i1 =
⊕
t∈N

ai1t ⊗ xt = ai1i2 ⊗ xi2 ⇒ xi2 ≥ xi1 ,

xi2 = (A⊗ x)i2 =
⊕
t∈N

ai2t ⊗ xt = ai2i3 ⊗ xi3 ⇒ xi3 ≥ xi2 ,

since ai1t < xi1 for t 6= i2 and ai2t ≤ ei2 ≤ fi2 = fi1 < xi1 for t 6= i3. Proceeding in the
same way for xi3 , . . . , xis we obtain that

xi1 = · · · = xis > fi1 = . . . = fis = min
k=i1,...,is

(xk, x⊕k (A)) for r = 1, . . . , s.

This implies that xil > xil or xil > x⊕il (A) for some il: in both cases, a contradiction.

(iii) By part (ii) each x ∈ V (A) ∩X satisfies ex ≤ x ≤ fx, and it remains to show
that

x = (x1, . . . , xn)T ; xi = αu for i ∈ cu and 1 ≤ u ≤ k.

As A is X-conforming, A is also a level-γ(A, x) fulfilling (5) and (6) and ars ≤ er <
γ(A, x) for (r, s) /∈ ∪ku=1{(iu1 , iu2 ), . . . (iusu−1, i

u
su

), (iusu
, iu1 )}.

Suppose that x ∈ V (A)∩X. Then ex ≤ x ≤ fx by (ii), and without loss of generality
let us assume u = 1, that is, c1 = (i11, . . . , i

1
s1).

We shall consider two cases.

Case 1. xi11 = ei11 . Then we have that

xi11(= ei11) = (A⊗ x)i11 =
⊕
t∈N

ai11t ⊗ xt =
⊕
t 6=i12

ai11t ⊗ xt ⊕ ai11i12 ⊗ xi12 ≥ ai11i12 ⊗ xi12 .

Hence we have that xi11 ≥ xi12 because of ai11i12 ≥ γ(A, x) > ei11 = xi11 . For the index i12
we get

xi12 = (A⊗ x)i12 =
⊕
t∈N

ai12t ⊗ xt =
⊕
t6=i13

ai12t ⊗ xt ⊕ ai12i13 ⊗ xi13 ≥ ai12i13 ⊗ xi13 .
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Hence we have that xi12 ≥ xi13 because of ai12i13 ≥ γ(A, x) > ei11 = xi11 ≥ xi12 . Proceeding
in the same way we get xi11 = · · · = xi1s1

= ei11 ∈ [ei11 , fi11 ].

Case 2. xi11 > ei11 . Then we get

xi11 =
⊕
t∈N

ai11t ⊗ xt =
⊕
t6=i12

ai11t ⊗ xt ⊕ ai11i12 ⊗ xi12 = ai11i12 ⊗ xi12

because inequalities xi11 > ei11 ≥ ai11t holds for each t 6= i12 since A is X-conforming.
Thus, we obtain xi11 = ai11i12 ⊗ xi12 and hence xi11 ≤ xi12 . Similarly for xi12 we get

xi12 =
⊕
t∈N

ai12t ⊗ xt =
⊕
t 6=i13

ai12t ⊗ xt ⊕ ai12i13 ⊗ xi13 = ai12i13 ⊗ xi13

because of xi12 ≥ xi11 > ei11 ≥ ai11t for each t 6= i13 and we obtain xi12 = ai12i13 ⊗ xi13 . Hence
xi12 ≤ xi13 . Proceeding in the same way we get xi11 = · · · = xi1s1

= α1 ∈ [ei11 , fi11 ]. �

Remark 3.7. By Lemma 3.6 (iii) it follows that the structure of each eigenvector
x ∈ V (A) ∩ X of a given X-conforming matrix A depends on elementary cycles in
G(A, γ(A, x)) and all entries of x corresponding to the same cycle have an equal value.

The main result of the paper, given in the next theorem, describes an equivalent
condition for A having an X-simple image eigenspace and which immediately yields an
O(n2 log n) algorithm for checking X-simplicity of image eigenspace. The proof of the
theorem technically works with the properties of X-conformism on the detail level of
vector coordinates.

Theorem 3.8. Let A = (aij) ∈ B(n, n), X = [x, x] ⊆ B(n) be given fulfilling (5). Then
A has X-simple image eigenspace if and only if A is an X-conforming matrix.

P r o o f . The “only if” part: As the matrix A has X-simple image eigenspace, it is also
a level-γ(A, x) permutation fulfilling (5) and (6).

For the sake of a contradiction suppose that (∃u ∈ {1, . . . , l})(∃iur ∈ cu = (iu1 , . . . , i
u
su

))
such that

xiur+1
< eiur+1

and aiur k ≥ eiur for some k 6= iur+1, k ∈ N (7)

or
xiur+1

= eiur+1
and aiur k > eiur for some k 6= iur+1, k ∈ N (8)

or
aiur iur+1

= min
(k,l)∈cu

akl = x⊕iur+1
(A) = fiur+1

and xiur+1
> x⊕iur+1

(A). (9)

We shall consider three cases and for each case we shall construct an eigenvector
e′ ∈ V (A) ∩X with |S(A, e′) ∩X| ≥ 2.
Denote du = maxatv<γ(A,x);t∈cu,v∈N atv(= aiupv). The first two cases (7) and (8) will be
treated simultaneously.

Case 1. xiur+1
< eiur+1

and aiur k ≥ eiur (⇔ xiur+1
< eiur+1

= eiur ≤ aiur k).
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Case 2. xiur+1
= eiur+1

and aiur k > eiur (⇔ xiur+1
= eiur+1

= eiur < aiur k).

Define vector e′ as follows

e′i =

{
du, if i ∈ cu
γ(A, x), otherwise.

We shall show that A ⊗ e′ = e′. Since the matrix A is level-γ(A, x) permutation, the
equalities (A ⊗ e′)i = (A ⊗ γ∗(A, x))i = γ(A, x) = e′i hold for i /∈ cu, so it suffices to
show that

(A⊗ e′)iut = e′iut for t = 1, . . . , su.

Using the definition of du and e′ we obtain

(A⊗ e′)iut =
⊕
j 6=iut+1

aiut j ⊗ e
′
j ⊕ aiut iut+1

⊗ e′iut+1
≤ du ⊕ aiut iut+1

⊗ du = du = e′iut

and
(A⊗ e′)iut =

⊕
j∈N

aiut j ⊗ e
′
j ≥ aiut iut+1

⊗ e′iut+1
= aiut iut+1

⊗ du = du = e′iut .

In particular, we have

aiut iut+1
⊗ e′iut+1

= e′iut , t = 1, . . . , su.

To obtain a contradiction we shall show that the system A⊗ y = e′ has at least two
solutions, which will be denoted by y′, y′′. We have aiur k ≥ eiur and xiur+1

< eiur+1
(case 1),

or aiur k > eiur and xiur+1
= eiur+1

(case 2), and aiupv = du for some indices p and v. Define

y′ = e′, y′′i =

{
xi, if i = iup+1

e′i, otherwise.

We need to show that y′iup+1
> y′′iup+1

, to make sure that y′ and y′′ are actually different
in this position, and y′ ≥ y′′. Next we also need to show that A ⊗ y′′ ≥ e′, hence
A⊗ y′′ = e′.

To see the difference, observe that if p = r, aiur k ≥ eiur and xiur+1
< eiur+1

then

y′′iur+1
= xiur+1

< eiur+1
= eiur ≤ aiur k ≤ du = e′iur+1

,

if p = r, aiur k > eiur and xiur+1
= eiur+1

then

y′′iur+1
= xiur+1

= eiur+1
= eiur < aiur k ≤ du = e′iur+1

,

and if p 6= r then

y′′iup+1
= xiup+1

≤ eiup+1
= eiup ≤ aiupk < du = e′iup+1

.
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By the definition of du and e′ and since A is a level-γ(A, x) permutation matrix, we
have (A ⊗ y′′)iut = aiut iut+1

e′iut+1
= e′iut for each t 6= p. For t = p we obtain the following

inequalities

(A⊗ y′′)iup =
⊕
j 6=iup+1

aiup j ⊗ y
′′
j ⊕ aiup iup+1

⊗ y′′iup+1
≥ aiupv ⊗ e

′
v ≥ du = e′iup ,

where k 6= iur+1 and e′k ≥ du. This implies A⊗ y′′ ≥ e′ hence A⊗ y′′ = e′.

Case 3. Suppose that (9) holds true and we will show that the system A ⊗ y = fx has
at least two solutions: y′ = fx and y′′ = (y′′1 , . . . , y

′′
n)T , where

y′′i =

{
xi if i = iur+1

fi otherwise.

Observe that the vectors y′, y′′ are different in the iur+1th position:

y′′iur+1
= xiur+1

> x⊕iur+1
(A) = fiur+1

= y′iur+1
.

Since A is level-γ(A, x) permutation and fx ≥ γ∗(A, x) we have (A⊗ y′′)iut = aiut iut+1
⊗

fiut+1
= fiut for each t 6= r. As for the case of r, recalling that aiur iur+1

= fiur+1
and

fiur+1
< xiur+1

we obtain the following equalities

(A⊗ y′′)iur =
⊕

k 6=iur+1

aiur k ⊗ y
′′
k ⊕ aiur iur+1

⊗ y′′iur+1
=

⊕
k 6=iur+1

aiur k ⊗ fk ⊕ aiur iur+1
⊗ xiur+1

=
⊕

k 6=iur+1

aiur k ⊗ fk ⊕ (aiur iur+1
⊗ fiur+1

)⊗ xiur+1
=

⊕
k∈N

aiur k ⊗ fk = fiur .

Here we have used the equality aiur iur+1
= fiur+1

and the inequality fiur+1
< xiur+1

, both
following from the conditions describing Case 3.

The “if” part: Suppose that A is an X-conforming matrix and we shall show that
(∀x ∈ V (A) ∩ X)[|S(A, x) ∩ X| = 1]. For the contrary suppose that (∃x ∈ V (A) ∩
X)[|S(A, x) ∩X| > 1]. By Lemma 3.6 (iii) x = (x1, . . . , xn)T , xi = αu ∈ [ei, fi] for i ∈
cu, 1 ≤ u ≤ k and there is a solution y′ 6= x of the system A ⊗ y = x. Then there is
j ∈ N such that xj 6= y′j . We shall consider three possibilities: (i) y′j < ej , (ii) fj < y′j ,
(iii) y′j ∈ [ej , fj ].

(i) y′j < ej . Since A is level-γ(A, x) permutation there is p ∈ N such that apj ≥
γ(A, x), so that we can substitute p for ij and j for ij+1 in Definition 3.3. As xj ≤ y′j < ej
by condition (i) of that definition we have that xj < ej ⇒ apt < ep = ej for t 6= j and
we obtain

xp = (A⊗ y′)p =
⊕
t6=j

apt ⊗ y′t ⊕ apj ⊗ y′j < ep ≤ xp,

which is a contradiction.

(ii) fj < y′j . As A is level-γ(A, x) permutation there is p ∈ N such that apj ≥ γ(A, x),
and by Remark 3.4 we have apj =

⊕
k∈N apk ≥ fp(= fj). We consider two possibilities:
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1. apj > fp = fj . Then we obtain the following

xp = (A⊗ y′)p =
⊕
k 6=j

apk ⊗ y′k ⊕ apj ⊗ y′j ≥ apj ⊗ y′j > fp ≥ xp,

and this is a contradiction.

2. apj = fp = fj . At first we shall prove the following claim.

Claim. If A is level-γ(A, x) permutation and x⊕r (A) = ars, (r, s) ∈ cu then ars =
min(k,l)∈cu

akl.

P r o o f o f C l a i m. For the contrary, assume that A is level-γ(A, x) permutation,
ars = x⊕r (A) and ars > min(k,l)∈cu

akl = aαβ . Using

aαt < c(A) ≤ aαβ < ars = x⊕r (A) = x⊕β (A), t 6= β,

we obtain

x⊕r (A) = x⊕α (A) = (A⊗ x⊕(A))α = aαβ ⊗ x⊕β (A) = aαβ < ars = x⊕r (A).

This is a contradiction. Note that the equalities x⊕α (A) = x⊕β (A) = x⊕r (A) follow from
Lemma 3.6 (since x⊕(A) is an eigenvector).

Now we will continue to analyze “(ii), Case 2”. The assumption apj = fp = fj implies
that apj = fp ≤ min(xp, x⊕p (A)) ≤ x⊕j (A). Moreover from the fact that x⊕(A) is an
eigenvector we obtain apj ≥ x⊕j (A) = x⊕p (A). Hence apj = x⊕j (A) = x⊕p (A) and by
Claim we obtain apj = min(k,l)∈cu

akl. Then by Definition 3.3 we get

apj = fj = x⊕j (A)⇒ xj ≤ x⊕j (A).

We conclude the proof by the following contradiction

xj ≤ x⊕j (A) = fj < y′j ≤ xj .

(iii) y′j ∈ [ej , fj ]. As we also assumed xj 6= y′j , we shall analyze two possibilities:
xj < y′j and xj > y′j .

Let xj > y′j . Using Remark 3.4 and Lemma 3.6, we obtain apj =
⊕

k∈N apk ≥ fp ≥
xp = xj . By Definition 3.3 we have that apk ≤ ep(= ej ≤ y′j < xj = xp) for k 6= j. These
inequalities imply

xp = (A⊗ y′)p =
⊕
k 6=j

apk ⊗ y′k ⊕ apj ⊗ y′j = apj ⊗ y′j = y′j < xp,

which is a contradiction.
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Let xj < y′j . Using Remark 3.4, Lemma 3.6 (i) and the conditions y′j ∈ [ej , fj ] and
xj < y′j , we obtain that

apj =
⊕
k 6=j

apk ≥ fp(= fj ≥ y′j > xj = xp).

This implies that

xp = (A⊗ y′)p =
⊕
k 6=j

apk ⊗ y′k ⊕ apj ⊗ y′j ≥ apj ⊗ y′j > xp ⊗ xp = xp,

which is a contradiction. �

Remark 3.9. Theorem 3.8 implies that in the case when x < c∗(A) and maxi∈N xi <
mini∈N xi, the complexity of checking that a given matrix A has X-simple image
eigenspace requires O(n2 log n) arithmetic operations. It is based on the fact that we
need O(n2) operations to check parts (i) and (ii) of Definition 3.3 and O(n2 log n) oper-
ations to compute the greatest eigenvector x⊕(A) ([5]).
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