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Abstract. An n x n ray pattern A is called a spectrally arbitrary ray pattern if the
complex matrices in Q(.A) give rise to all possible complex polynomials of degree n.

In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of
nonzeros in an n X n irreducible spectrally arbitrary ray pattern is 3n — 1. In this paper, we
introduce a new family of spectrally arbitrary ray patterns of order n with exactly 3n — 1
nonzeros.
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1. INTRODUCTION

An n x n ray pattern A = (a;;) is an n x n matrix with entries a;; € {el?: 0 <
0 < 2n} U {0}. Its ray pattern class is (see [3])

Q(.A) = {B = (b”) S Mn(C) bij =T, Tij € [R+, 1< i,j < ’I’L}

A ray pattern A is called potentially nilpotent if there is a complex matrix B €
Q(A) and a positive integer k such that B* = 0.

An n x n ray pattern A is called a spectrally arbitrary ray pattern if the complex
matrices in the class give rise to all possible complex polynomials of degree n. It is
clear that any spectrally arbitrary ray pattern must be potentially nilpotent. If A
is a spectrally arbitrary ray pattern and no proper subpattern of A is spectrally
arbitrary, then 4 is a minimal spectrally arbitrary ray pattern.

The concept of spectrally arbitrary sign pattern was introduced in [1] and the
nilpotent Jacobi method involving the Implicit Function Theorem was used to prove
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some sign patterns are spectrally arbitrary. In 2008, McDonald and Stuart extended
the nilpotent Jacobi method to ray patterns. They provided a family of spectrally
arbitrary ray patterns that have exactly 3n nonzeros and demonstrated that every
n x n irreducible spectrally arbitrary ray pattern must have at least 3n — 1 nonzeros
(see [3]). Next, Gao and Shao showed that the n xn ray pattern that they called A, ,,
is a spectrally arbitrary ray pattern ([2]). In [4], we find a family of spectrally
arbitrary ray patterns of order n with exactly 3n — 1 nonzeros, and so the minimum
number of nonzeros in an n X n irreducible spectrally arbitrary ray pattern is 3n — 1.
In this paper, we provide a new family of spectrally arbitrary ray patterns of order n
with exactly 3n — 1 nonzeros.
We consider the n x n (n > 6) ray patterns

r—1 1 0 0 07
1 €% 1 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0 0

(1.1) A= 0 v b e et
1 0 0 O ... 0 1 0 0
0 -1 0 0 ... ... 0 1 0
0O 1 0 0 ... ... ... 0 1
I e A -

where 0 € (n/4,7/2) and 8 € (3n/2,2n). We shall prove that for any 6 € (r/4,1/2),
there exist infinitely many choices for 8 € (3n/2,2n) such that A4, is a minimal
spectrally arbitrary ray pattern.

Lemma 1.1 ([3], Extended nilpotent Jacobi method).
(1) Find a nilpotent matrix in the given ray pattern class.
(2) Change 2n of the positive coefficients (denoted 1,75, . .., 9, ) of the €% in this
nilpotent matrix to variables tq,ta, ..., tay.
(3) Express the characteristic polynomial of the resulting matrix as

"+ (fl(tl, to, ... ,tgn) + igl(tl, to, ... ,f,gn))xn_l 4+ ...+ (fn_l(tl,tg, .. ,f,gn)
+ ignfl(tlat% v ;th))x + (fn(tlatQa v ;th) + ign(tlatQa v ;th))~
(4) Find the Jacobi matrix

J= a(flagla' "afnagn)
a(tltha B 7t2n) .

If the determinant of J evaluated at (ti,ta,...,ton) = (r1,72,...,72,) iS nonzero,
then the given ray pattern and all of its superpatterns are spectrally arbitrary.
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2. MAIN RESULTS

In this section we shall show that the .4, are minimal spectrally arbitrary ray
patterns based upon the extended nilpotent Jacobi method. Using the method,
finding an appropriate nilpotent matrix is a key step.

For convenience, we consider the n x n complex matrix

[ —a 1 0 0 0 7
as rel? 1 0 0
as 0 0 1 0 0 0
a4 0 0 0 1 0 0 0

(21)  Bn=| : : : S S

A3 0 0 0 ... 0 1 0 0
0 —Qn—2 0 0 oo . 0 1 0
0 Gn—1 0 0 e e e 0 1

_rleiﬁ —ibn,1 —ibn,Q —ibn,3 e e e —ibg —ibl J

where r1e'? = a,,—ib, withr; > 0, a, >0,b, > 0,7 > 0,a; >0fori=1,2,...,n—1,
and b; >0 for j=1,2,...,n— 1. Then B, € Q(A,).

Note that the coefficient of A» 7 in the characteristic polynomial for B,, consists
of the sum of signed weighted products of disjoint cycles whose total length is j.
Then we have the following characteristic polynomial of B,, in Table 1.

Let [M — By| = A"+ g A"+ oA 2+ o+ ap A" P 4+ a1 A+, and
ap = fr +igg, k=1,2,...,n.

Lemma 2.1. For any 6 € (n/4,7/2), there exist infinitely many choices for § €
(3n/2,2n) such that the ray patterns A,, allow nilpotence.

Proof. Let B, € Q(A,) have the form (2.1), and suppose that B, is nilpotent.
By Table 1, we have that
a; =rcos#,
ag = r(bysinf — ag cosb),
ag = rsinf(a1by + ba),
aq = 7sinf(a1by + bs),
(2.2) a; =rsinf(aibj_o+bj_1), 5<j<n—4,
ap—3 =7rsinf(a1by_5 + bp—a) + an_o2,
10p—2 = ap—1 — rsin@(arb,—4 + by_3),

a1ay—1 = rsinf(a1b,_3 + by—2),

an = a1b,_orsinb,
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Term Coefficient

An-t ay — rcos® +i(by — rsind)
A2 —ag — a1rcosf + byrsind +i[be + (a1 — r cos )by — ayrsinf)
\n—3 —a3 + a1birsind -+ byrsin f

+i[bs + (a1 — 7 cos )by — azby — a1b1r cosb]

—ay4 + a1barsin@ -+ bsrsin 0

n—4
A +i[bg + (a1 — 7 cos 0)bs — azba — azby — arbar cos b
\n—i —a; +a1bj_arsin® +b;_17sind
j—1
(5<j<n—3) +i [bj + (a1 —rcosf)bj_1 — > agbj_k — a1bj_ar cos 9}
k=2
—Qp—3 + a1bp—57rsin € + b,,_4rsinf + a,,_o
3 n—4
X +1i |:bn_3 + (a1 —rcosbp_g — > apbp_k—3 — arby_sr cos 9}
k=2
a1ap—2 + a1by_4arsin€ + b,,_3rsin€ — a,_1
32 +1i |:bn_2 + (a1 —rcosf)b,_3
n—3
— > agbp—k—2 + ap_2by — arb,_4r cos 9}
k=2
—a1ap_1 + a1bp_3rsinf + b, _orsinf
n—3
A +i {bn,l + (a1 —rcos®)bp_o — > arbn_k—1
k=2
+an—2b2 — an_1b1 + a1apn—2b1 — a1b,—37 cos 9}
—ay, + a1b,_orsin
)\0 n—3
+i [bn — > agbp—k + a1(an—2bs — an—1by + by—1 — by—_orcos 9)}
k=2
Table 1. The characteristic polynomial of By,.
and
by = rsiné,
by = r(by cosf + a1 sinf) — a1by,
bs = (rcos@ — ay)by + azby + a1byr cosb,
j—1
bj = (rcosf —ai)bj_1+ > arbj_i +aibj_orcosd, 4 < j<n—3,
(2.3) _ =3
bp—o = (rcost —ai)bp—3+ > arbn_g—2 — an—2b1 + a1bp_4rcosb,
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k=2

n—3
bp—1 = (rcos@ —a1)bn—2 + > arbp—r—1 — an—2(b2 + a1b1) + an—1b1
k=2

+a1b,_3rcosé,
n—3
bn = > agbp—i — a1(ap—2b2 — ap_1b1 + by—1 — bp_ar cosh).
k=2



For convenience, let r =1, cos§ = p, sinf = ¢ = /1 — p2. Then for 6 € (n/4,7/2)
we have 0 < p < v/2/2.
First, by (2.2) and (2.3), we can obtain that

a1 =p,

by = gq,

ag = q* —p* =1-2p%,
(2.4) by = pq,

a3 = 2pq?,

bs = ¢°,

as = ¢*(p* + ¢%).
Via the substitution (2.4), we can obtain that
aj = q(bj—1 +pbj-2), 5<jsn—4,

j—1
bj =¢*bj_o+ > arbj_p, 5<j<n—3,
i=3

and
Ap—3 = Ap_2 + q(bn74 +pbn75)7

pPln—2 = Ap—-1 — Q(bn—B +pbn—4)a

n—3
bp—2 = qun—4 —qQap_2 + E akbn—Q—k7
k=3
pan—1 = q(bn72 +pbn73)7
n—3
bn—1 = ¢*bn—s — 2pqan—2 + qan_1 + > apbp_k_1,
k=3

an = pgby_2,

n—=3
bn = qzbn72 + Z akbnfk _p(pqan72 —qan-1 + bn71)~
k=3

It is easy to verify that a; >0for 1 <j<n—4,b; >0for1 <j<n—-3,and
bn72 > q2bn74 > p2bn74~

Next, we consider the remaining seven equations.

(2.5 a) Ap—3 = Qp—2 + q(bn—4 +pbn—5)7
n—3

(2.5 D) b2 = @bp-a — qan_2+ Y. apbp_k—2,
k=3

(25 C) pPan—2 = Ap—1 — q(bnf?y +pbn74);
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(2.5 d) pan—1 = q(bn—2 + pby_3),

(2.5 e) bn—1 = ¢*bn—3 — 2pqan—2 + qan—1 + :2: arbn—k—1,

(2.5 f) an = pgby—2, :

(2.5 g) bn = ¢bp—2 — p(Pgan—2 — qan—1 + bo_1) + :Z:?: kb k-

Firstly, substituting (2.5 a) into (2.5 b), we can obtain that
n—4
bp—o = 2q2bn—4 + 3pq2bn—5 + Z agbp_2-k, and bp_2 > 2q2bn—4 > prn—4-
k=4

Thus by (2.5 d), we can obtain that there is a positive solution a,_1. By (2.5 f), we
can obtain that there is a positive solution a,.
Secondly, we can eliminate by (2.5 ¢) and (2.5 d). Then

p2an—2 = Q(bn—Q _prn—4)-

So an—2 > 0, and it is obviously that a,—5 > 0 by (2.5 a).
Next, substituting (2.5 €) and (2.5 a) into (2.5 g) and sorting out, we can obtain
that

n—3
by, = qzbn—Q - p2q2(bn—4 + pbn—5) +pq2bn—3 + Z (ak - pak—l)bn—k
k=4

n—3
=¢*(bn—2 — P*bn-1) + Pg*(bn—3 — P’bu—s) + ¢ > (bki—1 — P*bp—3)bn—r > 0.
k=4
Finally, we shall prove that there is a positive solution b, _1.
Substituting (2.5 a) and (2.5 ¢) into (2.5 e) and sorting out, we can obtain that

n—4
b1 = 2¢%bn—3 + 20¢°bn—s + P*bn_s + Y arbp_p—1 > 0.
k=3
In summary, we obtain that there are some 8 € (3n/2,2x), such that B,, is nilpo-
tent, while r, ry and a1,as,...,a,_1,0n,b1,b2,...,b,_1,b, are positive. O
Let B, be nilpotent evaluated at
P = (tlatQa v 7t2n) = (T; ai, blv sy O,y bka <oy An—1, bn717r1)~

We can prove the following result.

Lemma 2.2.

a(flaglvf2a92a~~~afkagk7~~'7fn72vgn72vfnflvgnflafnagn) 7& 0

Jlp = det
| | a(rvalvblv"'7an71;bn71;r1) P
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Proof. The determinant |.J|p has the following form

where

—2bsy
2qb2
—2pb2
a4
—p(bs + pb2)

a
—p(bg—1 + pbr—2)

An—4
—p(bn—5 + pbn_¢)
an—-3 — Qp—2
—p(bp—a + pbn—s)
Ap—1 — PAn—2
—p(bn—3 + pbn_4)
pan—1
—p(bp—2 + pbn—3)
Pgbn—2
—p?bp_s

bp—2 — pby_3 + qan_2

an72b2 - an—Q —qan—-1 + bnfl B

qbr—2
br—1 — pbr—2

qbnfG
bn—5 — pbn—s

gbn_s
bp—a — pbn—s
Gbp—4 + an—2
bp—3 — pbn—4
gbp—3 — an—1

qbn72

has two 2n-columns, O is (2n — 8) x 5 zero matrix,

1 0
0 0
P 0
q 1
C= 0 .
200 0
0  pq
pba  —q

o O O O O

cos f3

0
0
0
0
0
1
0
p —sing |
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and B has only zeros in the upper triangle, B =

0 0 0
1 0 :
q -1
0 1
pq q -1
- —q 0 0
0 0 pq 0
—a3 —b2 —¢? —q -1
. . . 0 )
0 0 0 0 q
—ag—1  —bp_o —as —q 0
0 0 0 0o ... 0 0 |
—Gp_5 —bp—6 —apn—6 —bp—7...=bp_p_4—an_p_4... 0 1 0
0 0 0 o ... 0 0 0 g -1 0
—Qp—4q —bp—5 —ap—s5 —bp—g...=bp_p_3—ap_p—3...—q 0 0 1
0 0 0 0o ... 0 0 0 pg 0 ¢
an—2—0p—3 —bp_a —ap—a —bp_5...=byp_p_o—ap_g_o... b2 fq2 —q 0
0 0 0 0o ... 0 0 0 0 0 pg
PAp—9—ap—1 —bp_3 an—2—an—3 —bp_g4 ... —bp_p_1 —Gp—pg—1 --.- —bz —az —ba —q2
0 0 0 0o ... 0 0 0O 0 0 O
—pap—1 —bp—2  pap—s —bp—3... =byp_r —apn_g ...—bs—as —bz —a3z ]
Let
li=p,
la =gq,

l3 = a2 — pli + qla = 2ax,

ly = —2by + 011 + 0l + 0l3 = —2bs,

Is = 2qby + ¢*l1 + pgla + Ols + q(—l4) = 3as,

le = — 2pby + 0l — ¢°ly — qls + 0(—14) + Ols = —3b3,
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lak—1 = ap + gbp—2ly + pq(—log—4) + b(=lar—2) = kag,
log = —p(bk—1 + Pbr—2) + (br—1 — pbr—2)l1 — ax—1l2 + ¢*log—4

k-1 k-3
— > br—jloj_1 + > ap—jlaj = —kbyg,
= =

lok—7 = an—3 — an—2 + gbp_sli + pg(—lan—10) + b(—lan—s) = (n — 3)(an—3 — an—2),
lon—6 = —p(bp—a + Pby—5) + (bp—a — Pbn—5)l1 — an—als + ¢*l2n—10
n—4 n—6
— > bpz—jlaj1+ D an—3—jlaj = —(n —3)bn_3,
i= i=
lon—s = n—1 — pan—2 + p(gbn—a + an—2) + pg(—lon—s) + ¢(—lon—s)
=(n—2)ap—1 — (n — 3)pan—_a,

lon—a = —p(bp_3 + Pby_a) + p(bpn—3 — pbn_1a) + q(@n—2 — @n—3) + ¢*lon—s

n—3

n—>5
- Z bp—o—jloj—1+ D an—a2—jla; = —(n —2)by_q,
=2 =2

lon—2 = —p(bp—2 + Pby_3) + P(bpn—2 — pby_3 + qan—2) + q(pan—2 — an—1) + ¢*l2n—6

n—2 n—4
+(an-3 —an—2)la — Y bn_1-jloj—1+ Y an—1-jloj = —(n — 1)by_1.
=2 =3

First, add [; times the 2nd column and I5 times the 3rd column to the first column.
Secondly, add ly;_1 times the (2j)th column and —Is; times the (25 + 1)th column to
the first column, for j = 2,...,n — 3. Next, add ls,,_5 times the (2n — 2)th column,
(=lan—4) times the (2n — 3)th column and —l2,_o times the (2n — 1)th column to
the first column. Finally, expand the determinant along the first row from the top
downwards. Then we have that

o -1 0 1 0 0 0 0
o 0o 1 0 0 0 0 0
o 0 ¢ p 0 -1 0 0
P L S
t 0 pq 0 q —-p 0 0
0 —p¢g —¢* 2p¢ 0 —¢ 1 0
s 0 0 0 pq 0 0 «cosp
I —bs —as p’¢ —¢* —pg p —sinf

where

t= pan—1 +p(qbn73 - anfl) + pQ(_Ianﬁ) + q(_12n74) - p12n75 = (n - 3)p2an727
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5 = pgbp_2 + p(qbn—2) + pq(—l2n—4) = npgb, 2,
l = —p?bp—2 + p(an—2bs — an—1q +by—1 — pbp_2) — pqan_1 — Pay—aly

n—3 n—3
- Z bn—rlok—1 + Z an—tlok + ¢Plon—1 — pqlon—_s5 — plan—2 = —nby,.
k=2 k=3

|J|p = (=1)""3(bst cos B — sp® sin B — Ip* cos )
= (=1)""3[(n — 3)p*¢®a,_2 cos B + 2np?b,, cos B] # 0.
U

By virtue of the extended nilpotent Jacobi method and Lemmas 2.1 and 2.2, the
following theorem is immediate.

Theorem 2.1. For any 6 € (n/4,7/2) there exist infinitely many choices for
B € (3n/2,2n) such that the ray patterns A, and all of their superpatterns are
spectrally arbitrary.

Lemma 2.3 ([3]). AnnXxn irreducible spectrally arbitrary ray pattern must have
at least 3n — 1 nonzero entries.

Note that there are 3n—1 nonzeros in the ray pattern A,,. So we have the following.

Theorem 2.2. If A, is spectrally arbitrary, then A, is a minimal spectrally
arbitrary ray pattern.
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