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Abstract. In this paper, we give a new approach to the study of Weyl-type theorems.
Precisely, we introduce the concepts of spectral valued and spectral partitioning functions.
Using two natural order relations on the set of spectral valued functions, we reduce the ques-
tion of relationship between Weyl-type theorems to the study of the set difference between
the parts of the spectrum that are involved. This study solves completely the question of
relationship between two spectral valued functions, comparable for one or the other order
relation. Then several known results about Weyl-type theorems become corollaries of the
results obtained.
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1. Introduction

Let X be a Banach space, and let L(X) be the Banach algebra of all bounded

linear operators acting on X . For T ∈ L(X), we will denote by N(T ) the null space

of T , by α(T ) the nullity of T , by R(T ) the range of T , by β(T ) its defect and by T ∗

the adjoint of T . We will also denote by σ(T ) the spectrum of T and by σa(T ) the

approximate point spectrum of T . If the range R(T ) of T is closed and α(T ) < ∞

(or β(T ) < ∞), then T is called an upper semi-Fredholm (or a lower semi-Fredholm)

operator. If T ∈ L(X) is either upper or lower semi-Fredholm, then T is called a

semi-Fredholm operator, and the index of T is defined by ind(T ) = α(T )− β(T ). If

both of α(T ) and β(T ) are finite, then T is called a Fredholm operator. An operator

T ∈ L(X) is called a Weyl operator if it is a Fredholm operator of index zero. The
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Weyl spectrum σW(T ) of T is defined by σW(T ) = {λ ∈ C : T − λI is not a Weyl

operator}.

For a bounded linear operator T and a nonnegative integer n, define T[n] to be the

restriction of T to R(T n), viewed as a map from R(T n) into R(T n) (in particular

T[0] = T ). If for some integer n, the range space R(T n) is closed and T[n] is an upper

(lower) semi-Fredholm operator, then T is called an upper (lower) semi-B-Fredholm

operator. A semi-B-Fredholm operator T is an upper or a lower semi-B-Fredholm

operator, and in this case the index of T is defined as the index of the semi-Fredholm

operator T[n], see [9]. Moreover, if T[n] is a Fredholm operator, then T is called

a B-Fredholm operator, see [4]. An operator T ∈ L(X) is said to be a B-Weyl

operator (see [5]), if it is a B-Fredholm operator of index zero. The B-Weyl spectrum

σBW(T ) of T is defined by σBW(T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

The ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N : N(T n) =

N(T n+1)}, and the descent δ(T ) of T , is defined by δ(T ) = inf{n ∈ N : R(T n) =

R(T n+1)}, with inf ∅ = ∞.

According to [17], a complex number λ is a pole of the resolvent of T if and only

if 0 < max(a(T − λI), δ(T − λI)) < ∞. Moreover, if this is true, then

a(T − λI) = δ(T − λI).

An operator T is called Drazin invertible if 0 is a pole of T . The Drazin spectrum

σD(T ) of T is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T ) < ∞ and R(T a(T )+1)

is closed} and let σLD(T ) = {λ ∈ C : T −λI 6∈ LD(X)} be the left Drazin spectrum.

Following [8], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X).

We say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T ) is

a left pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞.

Let SF+(X) be the class of all upper semi-Fredholm operators and SF−

+(X) = {T ∈

SF+(X) : ind(T ) 6 0}. The upper semi-Weyl spectrum σSF−

+

(T ) of T is defined by

σSF−

+

(T ) = {λ ∈ C : T −λI 6∈ SF−

+(X)}. Similarly is defined the upper semi-B-Weyl

spectrum σSBF−

+

(T ) of T .

An operator T ∈ L(X) is called upper semi-Browder if it is an upper semi-

Fredholm operator of finite ascent, and is called Browder if it is a Fredholm operator

of finite ascent and descent. The upper semi-Browder spectrum σuB(T ) of T is de-

fined by σuB(T ) = {λ ∈ C : T − λI is not upper semi-Browder}, and the Browder

spectrum σB(T ) of T is defined by σB(T ) = {λ ∈ C : T − λI is not Browder}.
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Below, we give a list of symbols and notations we will use:

E(T ): eigenvalues of T that are isolated in the spectrum σ(T ) of T ,

E0(T ): eigenvalues of T of finite multiplicity that are isolated in the spectrum

σ(T ) of T ,

Ea(T ): eigenvalues of T that are isolated in the approximate point spectrum

σa(T ) of T ,

E0
a
(T ): eigenvalues of T of finite multiplicity that are isolated in the approximate

point spectrum σa(T ) of T ,

Π(T ): poles of T ,

Π0(T ): poles of T of finite rank,

Πa(T ): left poles of T ,

Π0
a(T ): left poles of T of finite rank,

σB(T ): Browder spectrum of T ,

σD(T ): Drazin spectrum of T ,

σLD(T ): left Drazin spectrum of T ,

σuB(T ): upper semi-Browder spectrum of T ,

σBW(T ): B-Weyl spectrum of T ,

σW(T ): Weyl spectrum of T ,

σSF−

+

(T ): upper semi-Weyl spectrum of T ,

σSBF−

+

(T ): upper semi-B-Weyl spectrum of T .

Hereafter, the symbol ⊔ stands for disjoint union, while iso(A) and acc(A) mean,

respectively, isolated points and accumulation points of a given subset A of C.

The paper is organised as follows: In Section 2 we define the concepts of spectral

valued functions and spectral partitioning functions. They are functions defined on

the Banach algebra L(X) and valued in P(C)× P(C), where P(C) is the set of the

subsets of C. A spectral valued function Φ = (Φ1,Φ2) is a spectral partitioning (a

spectral a-partitioning) function for an operator T ∈ L(X) if σ(T ) = Φ1(T )⊔Φ2(T )

(if σa(T ) = Φ1(T ) ⊔ Φ2(T )). Recall that from [19], if T is a normal operator acting

on a Hilbert space, then σ(T ) = σW (T ) ⊔ E(T ). Thus a spectral valued function

Φ = (Φ1,Φ2) can be considered an “abstract Weyl-type theorem”, and an operator

T ∈ L(X) satisfies the abstract Weyl-type theorem Φ, if Φ is a spectral partitioning

or a-partitioning function for T .

Our main goal here is the study of abstract Weyl-type theorems and their relation-

ships. By the study of relationship between two given abstract Weyl-type theorems Φ

and Ψ we mean the answer to the following question: If an operator T ∈ L(X) sat-

isfies one of the two abstract Weyl-type theorems Φ and Ψ, does T satisfy also the

other one? Two abstract Weyl-type theorems Φ and Ψ are said to be equivalent

if T ∈ L(X) satisfies one of Φ and Ψ if and only if T satisfies the other one. To
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study the relationship between abstract Weyl-type theorems, we introduce two order

relations 6 and ⊂ on the set of spectral valued functions. Then the question of rela-

tionship between two comparable spectral valued functions for the order 6 is solved

in terms of set difference between parts of the spectrum that are involved. In Sec-

tion 3, following the same steps as in Section 2, we consider spectral a-partitioning

functions and we obtain similar results to those of Section 2.

In Section 4, we give some crossed results by considering two spectral valued

functions comparable for the order 6, one partitioning the spectrum and the other

one partitioning the approximate point spectrum. We obtain a new kind of results,

where the set difference σ(T )\σa(T ) plays a crucial role. At the end of Section 4, we

study the case of two comparable spectral valued functions for the order relation ⊂,

and we answer in Theorem 4.8 and Theorem 4.9 the question of relationship between

the two spectral valued functions.

Globally, this study solves completely the question of relationship between two

comparable spectral valued functions, and several known results about Weyl-type

theorems appearing in recent literature become corollaries of the results obtained.

To illustrate this, we give several examples of the application of the results obtained,

linking them to original references where they have been first established.

As mentioned before, the original idea leading to a partition of the spectrum goes

back to the famous paper by Weyl [19]. More recently, several authors worldwide

have worked in this direction, see for example [1], [8], [12], [13]–[16] and [18].

2. Partitioning functions for the spectrum

In this section we study the relationship between two comparable spectral valued

functions, when one of them is spectral partitioning and we state the conditions when

the other one is also spectral partitioning.

Definition 2.1. A spectral valued function is a function Φ = (Φ1,Φ2) : L(X) →

P(C) × P(C) such that for all T ∈ L(X), Φ(T ) ⊂ σ(T ) × σ(T ), where P(C) is the

set of the subsets of C.

Definition 2.2. Let Φ be a spectral valued function. We say that Φ = (Φ1,Φ2)

is a spectral partitioning function for an operator T ∈ L(X), if σ(T ) = Φ1(T )⊔Φ2(T ).

A spectral valued function Φ = (Φ1,Φ2) can be considered an “abstract Weyl-type

theorem”. An operator T ∈ L(X) satisfies the abstract Weyl-type theorem Φ if Φ is

a spectral partitioning function for T .
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E x am p l e 2.3.

⊲ Let ΦW (T ) = (σW (T ), E0(T )) for all T ∈ L(X). From [19] it follows that ΦW is

a partitioning function for each normal operator acting on a Hilbert space.

⊲ Let ΦBW(T ) = (σBW(T ), E(T )) for all T ∈ L(X). From [6] it follows that ΦBW is

a partitioning function for each normal operator acting on a Hilbert space.

Definition 2.4. Let Ψ and Φ be two spectral valued functions. We say that

Ψ 6 Φ, if for all T ∈ L(X), we have Φ1(T ) ⊂ Ψ1(T ) and Ψ2(T ) ⊂ Φ2(T ). We say

that Ψ ⊂ Φ, if for all T ∈ L(X), we have Ψ1(T ) ⊂ Φ1(T ) and Ψ2(T ) ⊂ Φ2(T ).

It is easily seen that both 6 and ⊂ are order relations on the set of spectral valued

functions.

Theorem 2.5. Let T ∈ L(X) and let Φ be a spectral partitioning function for T .

If Ψ is a spectral valued function such that Ψ 6 Φ, then Ψ is a spectral partitioning

function for T if and only if Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

P r o o f. Assume that Ψ is a spectral partitioning function for T , then σ(T ) =

Ψ1(T ) ⊔Ψ2(T ) = Φ1(T ) ⊔ Φ2(T ). Hence Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

Conversely, assume that Ψ1(T ) \ Φ1(T ) = Φ2(T ) \ Ψ2(T ). Since Φ is a spectral

partitioning function for T , we have σ(T ) = Φ1(T ) ⊔ Φ2(T ). As Ψ 6 Φ, we have

Φ1(T ) ⊂ Ψ1(T ) and so σ(T ) = Ψ1(T ) ∪ Φ2(T ) = Ψ1(T ) ∪ (Φ2(T ) \Ψ2(T )) ∪Ψ2(T ).

As Ψ1(T ) \ Φ1(T ) = Φ2(T ) \ Ψ2(T ), we have Φ2(T ) \ Ψ2(T ) ⊂ Ψ1(T ). Hence

σ(T ) ⊂ Ψ1(T ) ∪ Ψ2(T ). As we have always Ψ1(T ) ∪ Ψ2(T ) ⊂ σ(T ), we conclude

that σ(T ) = Ψ1(T )∪Ψ2(T ). Moreover, we have Ψ1(T )∩Ψ2(T ) = (Φ1(T )∪ (Ψ1(T )\

Φ1(T )))∩Ψ2(T ) = (Φ1(T )∩Ψ2(T ))∪((Ψ1(T )\Φ1(T ))∩Ψ2(T )) = (Φ1(T )∩Ψ2(T ))∪

((Φ2(T ) \ Ψ2(T )) ∩ Ψ2(T )) = ∅. Hence σ(T ) = Ψ1(T ) ⊔ Ψ2(T ) and Ψ is a spectral

partitioning function for T . �

In the following corollary, as an application of Theorem 2.5, we give a direct proof

of [8], Theorem 3.9.

Corollary 2.6. If ΦBW is a spectral partitioning function for T , then ΦW is also

a spectral partitioning function for T .

P r o o f. Observe first that ΦW 6 ΦBW. Then if ΦBW is a spectral partitioning

function for T , it is easily seen that σW(T ) \ σBW(T ) = E(T ) \ E0(T ). From Theo-

rem 2.5 it follows that ΦW is also a spectral partitioning function for T . �

Similarly to Theorem 2.5, we have the following theorem, which we give without

proof.
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Theorem 2.7. Let T ∈ L(X) and let Ψ be a spectral partitioning function for T .

If Φ is a spectral valued function such that Ψ 6 Φ, then Φ is a spectral partitioning

function for T if and only if Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

R em a r k 2.8 ([8], Example 3.12). There exist operators T ∈ L(X) such that ΦW

is a spectral partitioning function for T but ΦBW is not a spectral partitioning

function for T . Indeed, let us consider the operatorQ defined for each x = (ξi) ∈ l1 by

Q(ξ1, ξ2, ξ3, . . . , ξk, . . .) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . .),

where (αi) is a sequence of complex numbers such that 0 < |αi| 6 1 and
∞∑

i=1

|αi| < ∞.

We observe that

R(Qn) 6= R(Qn), n = 1, 2, . . .

Indeed, for a given n ∈ N let x
(n)
k

= (1, . . . , 1, 0, 0, . . .) (with n + k times 1). Then

the limit y(n) = lim
k→∞

Qnx
(n)
k
exists and lies in R(Qn). However, there is no element

x(n) ∈ l1 satisfying the equation Qnx(n) = y(n) as the algebraic solution to this

equation is (1, 1, 1, . . .) /∈ l1.

Define T on X = l1 ⊕ l1 by T = Q ⊕ 0. Then N(T ) = {0} ⊕ l1, σ(T ) = {0},

E(T ) = {0}, E0(T ) = ∅. Since R(T n) = R(Qn) ⊕ {0}, R(T n) is not closed for any

n ∈ N; so T is not a B-Weyl operator, and σBW(T ) = {0}. Furthermore, T is not a

Fredholm operator and σW(T ) = {0}.

Hence ΦW is a spectral partitioning function for T but ΦBW is not a spectral

partitioning function for T .

Definition 2.9. The Drazin spectral valued function ΦD and the Browder spec-

tral valued function ΦB are defined by:

ΦD(T ) = (σBW(T ),Π(T )), ΦB(T ) = (σW(T ),Π0(T )), T ∈ L(X).

Theorem 2.10. Let T ∈ L(X). Then the Drazin spectral valued function ΦD

is a spectral partitioning function for T if and only if the Browder spectral valued

function ΦB is a spectral partitioning function for T .

P r o o f. Observe first that ΦB 6 ΦD. If ΦD is a spectral partitioning function

for T , then σW (T )\σBW(T ) = Π(T )\Π0(T ). From Theorem 2.5, we conclude that ΦB

is a spectral partitioning function for T . Conversely, assume that ΦB is a spectral

partitioning function for T . Let us show that σW (T )\σBW(T ) = Π(T )\Π0(T ). The

inclusion Π(T ) \Π0(T ) ⊂ σW (T ) \ σBW(T ) is obvious. For the reverse inclusion, let

λ ∈ σW (T ) \ σBW(T ). Then from [9], Corollary 3.2, λ is isolated in σW (T ). As ΦB
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is a spectral partitioning function for T , we have σ(T ) = σW (T )⊔Π0(T ). Hence λ is

isolated in σ(T ). As λ /∈ σBW(T ), we have from [5], Theorem 2.3, λ ∈ Π(T ) \Π0(T ).

From Theorem 2.7 it follows that ΦD is a spectral partitioning function for T . �

The direct implication of Theorem 2.10 was proved in [8], Theorem 3.15, while

the reverse implication was posed as a question in [8], page 374, and answered in [2],

Theorem 2.1.

R em a r k 2.11. If the Drazin spectral valued function ΦD is a spectral partition-

ing function for T ∈ L(X), then σBW(T ) = σD(T ) and σW(T ) = σB(T ).

E x am p l e s 2.12. The following table summarizes some spectral valued functions

considered recently as partitioning functions.

ΦW (T ) = (σW(T ), E0(T )) ΦB(T ) = (σW(T ),Π0(T ))

ΦgW(T ) = (σBW(T ), E(T )) ΦgB(T ) = (σBW(T ),Π(T ))

ΦBw = (σBW(T ), E0(T )) ΦBb(T ) = (σBW(T ),Π0(T ))

Φaw(T ) = (σW(T ), E0
a(T )) Φab(T ) = (σW(T ),Π0

a(T ))

Φgaw(T ) = (σBW(T ), Ea(T )) Φgab(T ) = (σBW(T ),Πa(T ))

ΦBaw(T ) = (σBW(T ), E0
a(T )) ΦBab(T ) = (σBW(T ),Π0

a(T ))

Table 1. Spectral valued functions.

Among the spectral valued functions listed in Table 1, we consider the following

cases to illustrate the use of Theorem 2.5 and Theorem 2.7:

⊲ It is shown in [11], Theorem 3.5, that if Φgaw is a spectral partitioning function

for T ∈ L(X), then Φgab is also a partitioning function for T . As Φgab 6 Φgaw,

to prove this result using Theorem 2.5, it is enough to prove that ∅ = σBW(T ) \

σBW(T ) = Ea(T ) \Πa(T ), which is the case from [8], Theorem 2.8.

⊲ It is shown in [7], Theorem 2.9, that if ΦW is a spectral partitioning function for

T ∈ L(X), then ΦgW is a partitioning function for T if and only if E(T ) = Π(T ).

As ΦW 6 ΦgW, to prove this result using Theorem 2.7, it is enough to prove that

∅ = σW(T ) \ σW(T ) = E(T ) \Π(T ), which is the case from [5], Corollary 2.6.

⊲ It is shown in [3], Corollary 5, that if ΦW is a spectral partitioning function for

T ∈ L(X), then ΦB is also a spectral partitioning function for T . To see this

using Theorem 2.5, as ΦB 6 ΦW, it is enough to prove that ∅ = σW(T )\σW(T ) =

E0(T ) \Π0(T ), which is the case from [5], Theorem 4.2.
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3. Partitioning functions for the approximate spectrum

In this section we study the relationship between two comparable spectral valued

functions, when one of them is spectral a-partitioning and we state the conditions

when the other one is also spectral a-partitioning.

Definition 3.1. Let Φ be a spectral valued function and let T ∈ L(X). We say

that Φ is a spectral a-partitioning function for T if σa(T ) = Φ1(T ) ⊔ Φ2(T ).

E x am p l e 3.2.

⊲ Let ΦaW(T ) = (σSF−

+

(T ), E0
a(T )) for all T ∈ L(X). From [18] it follows that ΦaW

is a spectral a-partitioning function for each normal operator acting on a Hilbert

space.

⊲ Let ΦgaW(T ) = (σSBF−

+

(T ), Ea(T )) for all T ∈ L(X). In the case of a normal oper-

ator T acting on a Hilbert space, we have σ(T ) = σa(T ) and ΦgaW(T ) = ΦgW(T ).

From [6], Theorem 4.5, it follows that ΦgaW is a spectral a-partitioning function

for T .

Theorem 3.3. Let T ∈ L(X) and let Φ be a spectral a-partitioning function

for T . If Ψ is a spectral valued function such that Ψ 6 Φ, then Ψ is a spectral

a-partitioning function for T if and only if Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

P r o o f. Assume that Ψ is a spectral a-partitioning function for T , then σa(T ) =

Ψ1(T ) ⊔Ψ2(T ) = Φ1(T ) ⊔ Φ2(T ). Hence Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

Conversely, if Φ is a spectral a-partitioning function for T and Ψ1(T ) \ Φ1(T ) =

Φ2(T )\Ψ2(T ), then Ψ1(T ) ⊂ σa(T ) and Ψ2(T ) ⊂ σa(T ). As σa(T ) = Φ1(T )⊔Φ2(T )

and Ψ 6 Φ, we have Φ1(T ) ⊂ Ψ1(T ) and so σa(T ) = Ψ1(T ) ∪ Φ2(T ) = Ψ1(T ) ∪

(Φ2(T ) \ Ψ2(T )) ∪ Ψ2(T ) = Ψ1(T ) ∪ (Ψ1(T ) \ Φ1(T )) ∪ Ψ2(T ) = Ψ1(T ) ∪ Ψ2(T ).

Moreover, we have Ψ1(T )∩Ψ2(T ) = (Φ1(T )∪ (Ψ1(T ) \Φ1(T )))∩Ψ2(T ) = (Φ1(T )∩

Ψ2(T ))∪((Ψ1(T )\Φ1(T ))∩Ψ2(T )) = (Φ1(T )∩Ψ2(T ))∪((Φ2(T )\Ψ2(T ))∩Ψ2(T )) = ∅.

Hence σa(T ) = Ψ1(T )⊔Ψ2(T ) and Ψ is a spectral a-partitioning function for T . �

In the following corollary, as an application of Theorem 3.3, we give a direct proof

of [8], Theorem 3.11.

Corollary 3.4. If ΦgaW is a spectral a-partitioning function for T , then ΦaW is

also a spectral a-partitioning function for T .

P r o o f. If ΦgaW is a spectral a-partitioning function for T , then it is easily seen

that σSF−

+

(T ) \ σSBF−

+

(T ) = Ea(T ) \E0
a(T ). From Theorem 3.3, it follows that ΦaW

is also a spectral a-partitioning function for T . �
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Similarly to Theorem 3.3, we have the following theorem, which we give without

proof.

Theorem 3.5. Let T ∈ L(X) and let Ψ be a spectral a-partitioning function

for T . If Φ is a spectral valued function such that Ψ 6 Φ, then Φ is a spectral

a-partitioning function for T if and only if Ψ1(T ) \ Φ1(T ) = Φ2(T ) \Ψ2(T ).

R em a r k 3.6. The spectral valued function ΦaW is a spectral a-partitioning

function for the operator T considered in Remark 2.8, but ΦgaW is not a spectral

a-partitioning function for T .

Definition 3.7. The left Drazin spectral valued function ΨgaB is defined by:

ΨgaB(T ) = (σSBF−

+

(T ),Πa(T )), ∀T ∈ L(X),

while the upper Browder spectral valued function ΨaB is defined on L(X) by:

ΨaB(T ) = (σSF−

+

(T ),Π0
a(T )), ∀T ∈ L(X).

Theorem 3.8. Let T ∈ L(X). Then the left Drazin spectral valued function ΨgaB

is a spectral a-partitioning function for T if and only if the upper Browder spectral

valued function ΨaB is a spectral a-partitioning function for T .

P r o o f. Observe first that ΨaB 6 ΨgaB. If ΨgaB is a spectral a-partitioning

function for T , then σSF−

+

(T ) \ σSBF−

+

(T ) = Πa(T ) \ Π0
a(T ). From Theorem 3.3, we

conclude that ΨaB is a spectral a-partitioning function for T . Conversely, assume

that ΨaB is a spectral a-partitioning function for T . Let us show that σSF−

+

(T ) \

σSBF−

+

(T ) = Πa(T ) \ Π0
a(T ). The inclusion Πa(T ) \ Π0

a(T ) ⊂ σSF−

+

(T ) \ σSBF−

+

(T )

is obvious. For the reverse inclusion, let λ ∈ σSF−

+

(T ) \ σSBF−

+

(T ). From [9], Corol-

lary 3.2, λ is isolated in σSF−

+

(T ). As ΨaB is a spectral partitioning function for T , we

have σa(T ) = σSF−

+

(T )⊔Π0
a
(T ). Hence λ is isolated in σa(T ). From [8], Theorem 2.8,

it follows that λ ∈ Πa(T ) \Π0
a
(T ). �

The direct implication of Theorem 3.8 was proved in [8], Theorem 3.8, while the

reverse implication was posed as a question in [8], page 374, and answered in [12],

Theorem 1.3, and [2], Theorem 2.2.

R em a r k 3.9. If the left Drazin spectral valued function ΨgaB is a spectral

a-partitioning function for T ∈ L(X), then

σSBF+

−

(T ) = σLD(T ) and σSF+

−

(T ) = σuB(T ).
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E x am p l e s 3.10. The following table summarizes some spectral valued functions

considered recently as a-partitioning functions.

ΨaW(T ) = (σSF−

+

(T ), E0
a
(T )) ΨaB(T ) = (σSF−

+

(T ),Π0
a
(T ))

ΨgaW(T ) = (σSBF−

+

(T ), Ea(T )) ΨgaB(T ) = (σSBF−

+

(T ),Πa(T ))

Ψw(T ) = (σSF−

+

(T ), E0(T )) Ψb(T ) = (σSF−

+

(T ),Π0(T ))

Ψgw(T ) = (σSBF−

+

(T ), E(T )) Ψgb(T ) = (σSBF−

+

(T ),Π(T ))

ΨSBw(T ) = (σSBF−

+

(T ), E0(T )) ΨSBb(T ) = (σSBF−

+

(T ),Π0(T ))

ΨSBaw(T ) = (σSBF−

+

(T ), E0
a(T )) ΨSBab(T ) = (σSBF−

+

(T ),Π0
a(T ))

Table 2. Spectral valued functions.

Among the spectral valued functions listed in Table 2, we consider the following

cases to illustrate the use of Theorem 3.3 and Theorem 3.5:

⊲ It is shown in [10], Theorem 2.15, that if Ψgw is a spectral a-partitioning function

for T ∈ L(X), then Ψgb is also a spectral a-partitioning function for T . Since

Ψgb 6 Ψgw, to prove this result using Theorem 3.3, it is enough to prove that

∅ = σSBF−

+

(T )\σSBF−

+

(T ) = E(T )\Π(T ), which is the case from [6], Theorem 4.2.

⊲ It is shown in [8], Corollary 3.3, that if ΨgaW is a spectral a-partitioning function

for T ∈ L(X), then ΨgaB is a spectral a-partitioning function for T . Since ΨgaB 6

ΨgaW, to prove this result using Theorem 3.3, it is enough to prove that ∅ =

σSBF−

+

(T ) \ σSBF−

+

(T ) = Ea(T ) \Πa(T ), which is the case from [8], Theorem 2.8.

4. Crossed results

In this section we consider the situation of two comparable spectral valued func-

tions. We look for the conditions, when the spectral valued function is spectral

a-partitioning if the other is spectral partitioning, and vice versa.

Theorem 4.1. Let T ∈ L(X) and let Φ be a spectral partitioning function for T .

If Ψ is a spectral valued function such that Ψ 6 Φ, then Ψ is a spectral a-partitioning

function for T if and only if Φ2(T ) \Ψ2(T ) = (Ψ1(T ) \ Φ1(T )) ⊔ (σ(T ) \ σa(T )).

P r o o f. If Ψ is a spectral a-partitioning function for T , then σ(T ) = (Ψ1(T ) ∪

Ψ2(T ))⊔(σ(T )\σa(T )) = (Φ1(T )∪(Ψ1(T )\Φ1(T ))∪Ψ2(T ))⊔(σ(T )\σa(T )). Hence

Φ2(T ) \Ψ2(T ) = (Ψ1(T ) \Φ1(T )) ⊔ (σ(T ) \ σa(T )).

Conversely, assume that Φ is a spectral partitioning function for T and Φ2(T ) \

Ψ2(T ) = (Ψ1(T ) \Φ1(T ))⊔ (σ(T ) \ σa(T )). Then σ(T ) = Φ1(T )⊔Φ2(T ) = Φ1(T )∪

(Φ2(T ) \ Ψ2(T )) ∪ Ψ2(T ) = Φ1(T ) ∪ (Ψ1(T ) \ Φ1(T )) ∪ (σ(T ) \ σa(T )) ∪ Ψ2(T ) =

Ψ1(T ) ∪Ψ2(T ) ∪ (σ(T ) \ σa(T )). Hence σa(T ) ⊂ Ψ1(T ) ∪Ψ2(T ).
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Since Φ2(T )\Ψ2(T ) = (Ψ1(T )\Φ1(T ))⊔(σ(T )\σa(T )), we have Ψ1(T )∪Ψ2(T ) ⊂

σa(T ). Moreover, as Ψ2(T ) ⊂ Φ2(T ), we have Ψ1(T ) ∩ Ψ2(T ) = (Φ1(T ) ∪ (Ψ1(T ) \

Φ1(T )))∩Ψ2(T ) = ∅. Then σa(T ) = Ψ1(T )⊔Ψ2(T ) and Ψ is a spectral a-partitioning

function for T . �

Corollary 4.2. Let T ∈ L(X) and let Ψ be a spectral a-partitioning function

for T . If Φ is a spectral valued function such that Ψ 6 Φ, then Φ is a spectral parti-

tioning function for T if and only if Φ2(T )\Ψ2(T ) = (Ψ1(T )\Φ1(T ))⊔(σ(T )\σa(T )).

P r o o f. Assume that Φ is a spectral partitioning function for T . AsΨ 6 Φ, andΨ

is a spectral a-partitioning function for T , from Theorem 4.1 we have Φ2(T )\Ψ2(T ) =

(Ψ1(T ) \ Φ1(T )) ⊔ (σ(T ) \ σa(T )).

Conversely, assume that Ψ is a spectral a-partitioning function for T and Φ2(T ) \

Ψ2(T ) = (Ψ1(T ) \Φ1(T ))⊔ (σ(T ) \ σa(T )). Then σ(T ) = (Ψ1(T )∪Ψ2(T ))⊔ (σ(T ) \

σa(T )) = (Φ1(T ) ∪ (Ψ1(T ) \ Φ1(T )) ∪ Ψ2(T )) ⊔ (σ(T ) \ σa(T )) = Φ1(T ) ∪ (Φ2(T ) \

Ψ2(T )) ∪Ψ2(T ) = Φ1(T ) ∪ Φ2(T ).

As Φ1(T ) ⊂ Ψ1(T ), we have Φ1(T )∩Φ2(T ) = Φ1(T )∩((Φ2(T )\Ψ2(T ))∪Ψ2(T )) =

Φ1(T )∩ ((Ψ1(T ) \Φ1(T ))∪ (σ(T ) \ σa(T ))∪Ψ2(T )) = ∅. Therefore σ(T ) = Φ1(T )⊔

Φ2(T ) and Φ is a spectral partitioning function for T . �

Similarly to Theorem 4.1 and Corollary 4.2 we have the following two results.

Theorem 4.3. Let T ∈ L(X) and let Φ be a spectral a-partitioning function for T .

If Ψ is a spectral valued function such that Ψ 6 Φ, then Ψ is a spectral partitioning

function for T if and only if Ψ1(T ) \ Φ1(T ) = (Φ2(T ) \Ψ2(T )) ⊔ (σ(T ) \ σa(T )).

P r o o f. If Ψ is a spectral partitioning function for T , then σ(T ) = Ψ1(T ) ⊔

Ψ2(T ) = Φ1(T ) ∪ (Ψ1(T ) \ Φ1(T )) ∪ Ψ2(T ). Hence Ψ1(T ) \ Φ1(T ) = (Φ2(T ) \

Ψ2(T )) ⊔ (σ(T ) \ σa(T )).

Conversely, assume that Φ is a spectral a-partitioning function for T and Ψ1(T ) \

Φ1(T ) = (Φ2(T ) \ Ψ2(T )) ⊔ (σ(T ) \ σa(T )). Then σ(T ) = Φ1(T ) ∪ Φ2(T ) ∪ (σ(T ) \

σa(T )) = Φ1(T ) ∪ (Φ2(T ) \ Ψ2(T )) ∪ Ψ2(T ) ∪ (σ(T ) \ σa(T )) = Φ1(T ) ∪ (Ψ1(T ) \

Φ1(T )) ∪ Ψ2(T ). Hence σ(T ) = Ψ1(T ) ∪ Ψ2(T ). Since Ψ1(T ) \ Φ1(T ) = (Φ2(T ) \

Ψ2(T )) ⊔ (σ(T ) \ σa(T )) and Ψ2(T ) ⊂ Φ2(T ), we have Ψ1(T ) ∩ Ψ2(T ) = (Φ1(T ) ∪

(Ψ1(T ) \ Φ1(T ))) ∩ Ψ2(T ) = ∅. Hence σ(T ) = Ψ1(T ) ⊔ Ψ2(T ) and Ψ is a spectral

partitioning function for T . �

Corollary 4.4. Let T ∈ L(X) and let Ψ be a spectral partitioning function for T .

If Φ is a spectral valued function such that Ψ 6 Φ, then Φ is a spectral a-partitioning

function for T if and only if Ψ1(T ) \ Φ1(T ) = (Φ2(T ) \Ψ2(T )) ⊔ (σ(T ) \ σa(T )).
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P r o o f. Assume that Φ is a spectral a-partitioning function for T . As Ψ 6 Φ,

and Ψ is a spectral partitioning function for T , from Theorem 4.3 we have Ψ1(T ) \

Φ1(T ) = (Φ2(T ) \Ψ2(T )) ⊔ (σ(T ) \ σa(T )).

Conversely, assume that Ψ is a spectral partitioning function for T and Ψ1(T ) \

Φ1(T ) = (Φ2(T ) \Ψ2(T ))⊔ (σ(T ) \ σa(T )). Then σ(T ) = Ψ1(T )∪Ψ2(T ) = Φ1(T )∪

(Ψ1(T ) \ Φ1(T )) ∪ Ψ2(T ) = Φ1(T ) ∪ (Φ2(T ) \ Ψ2(T )) ∪ (σ(T ) \ σa(T )) ∪ Ψ2(T ) =

Φ1(T ) ∪ Φ2(T ) ∪ (σ(T ) \ σa(T )).

Hence σa(T ) ⊂ Φ1(T )∪Φ2(T ). Since Ψ1(T ) \Φ1(T ) = (Φ2(T ) \Ψ2(T ))⊔ (σ(T ) \

σa(T )) and Ψ2(T ) ∩ Ψ1(T ) = ∅, we have Φ1(T ) ∪ Φ2(T ) ⊂ σa(T ). Moreover, we

have Φ1(T )∩Φ2(T ) = Φ1(T )∩ ((Φ2(T )\Ψ2(T ))∪Ψ2(T )) and since Φ1(T ) ⊂ Ψ1(T ),

we have Φ1(T ) ∩ Φ2(T ) = ∅. Therefore σa(T ) = Φ1(T ) ⊔ Φ2(T ) and Φ is a spectral

a-partitioning function for T . �

Among the spectral valued functions listed in Table 1 and Table 2, we consider

the following case to illustrate the use of Theorem 4.1 and Theorem 4.3.

It is shown in [18], Corollary 2.5, that if ΨaW is a spectral a-partitioning function

for T ∈ L(X), then ΦW is a partitioning function for T . When ΨaW is a spectral a-

partitioning function for T , then σW (T ) \ σSF−

+

(T ) = (E0
a
(T \ E0(T ))) ⊔ (σ(T ) \

σa(T )). Since ΦW 6 ΨaW, this result is a direct consequence of Theorem 4.3.

Moreover, combining Theorem 4.3 and Corollary 4.4, we have the following theorem,

characterizing the equivalence of the two properties.

Theorem 4.5. Let T ∈ L(X). The spectral valued function ΨaW is a spectral

a-partitioning function for T if and only if ΦW is a partitioning function for T and

σW (T ) \ σSF−

+

(T ) = (E0
a(T \ E0(T ))) ⊔ (σ(T ) \ σa(T )).

It is shown in [1], Theorem 2.6, that if Ψw is a spectral a-partitioning function for

T ∈ L(X), then ΦB is a spectral partitioning function for T . When Ψw is a spectral

a-partitioning function for T , then σW (T ) \ σSF−

+

(T ) = (E0(T ) \ Π0(T )) ⊔ (σ(T ) \

σa(T )). As ΦB 6 Ψw, this result is a direct consequence of Theorem 4.1. Moreover,

as in Theorem 4.5, we have the following theorem characterizing the equivalence of

the two properties.

Theorem 4.6. Let T ∈ L(X). The spectral valued function Ψw is a spectral

a-partitioning function for T if and only if ΦB is a partitioning function for T and

σW (T ) \ σSF−

+

(T ) = (E0(T ) \Π0(T )) ∪ (σ(T ) \ σa(T )).

E x am p l e 4.7. Let us consider the operator T of Remark 2.8, and the two

spectral valued functions defined by Φgaw(T ) = (Φ1(T ),Φ2(T )) = (σBW , Ea(T )) and

ΦBaw(T ) = (Φ′

1(T ),Φ
′

2(T )) = (σBW(T ), E0
a(T )). Then ΦBaw 6 Φgaw and ΦBaw is

a spectral a-partitioning function for T . Since we have Φ2(T ) \ Φ′

2(T ) = {0}, and
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(Φ′

1(T ) \ Φ1(T )) ∪ (σ(T ) \ σa(T )) = ∅, from Corollary 4.2 we have that Φgaw is not

a spectral partitioning function for T , which is readily verified.

For the study of spectral valued functions, we have considered comparable spectral

valued functions for the order relation 6. This not always the case, as shown by the

spectral valued functions Ψgb and Φgab, defined by Ψgb(T ) = (σSBF−

+

(T ),Π(T )) and

Φgab(T ) = (σBW(T ),Πa(T )) for all T ∈ L(X). We observe that in fact Ψgb and Φgab

are comparable for the order relation ⊂, in the sense that σSBF−

+

(T ) ⊂ σBW(T ), and

Π(T ) ⊂ Πa(T ). To deal with such cases, we have the following two results.

Theorem 4.8. Let T ∈ L(X) and let Φ be a spectral partitioning function for T .

If Ψ is a spectral valued function such that Ψ ⊂ Φ, then Ψ is a spectral a-partitioning

function for T if and only if (Φ1(T ) \Ψ1(T )) ⊔ (Φ2(T ) \Ψ2(T )) = σ(T ) \ σa(T ).

P r o o f. Since Φ is a spectral partitioning function for T , we have σ(T ) = Φ1(T )⊔

Φ2(T ). If Ψ is a spectral a-partitioning function for T , then σ(T ) = Φ1(T )⊔Φ2(T ) =

(Ψ1(T )∪Ψ2(T ))⊔(σ(T )\σa(T )) = Ψ1(T )∪(Φ1(T )\Ψ1(T ))∪Ψ2(T )∪(Φ2(T )\Ψ2(T )).

As (Φ1(T )\Ψ1(T ))∩(Φ2(T )\Ψ2(T )) = ∅, we have σ(T )\σa(T ) = (Φ1(T )\Ψ1(T ))⊔

(Φ2(T ) \Ψ2(T )).

Conversely, assume that σ(T ) \ σa(T ) = (Φ1(T ) \ Ψ1(T )) ⊔ (Ψ2(T ) \ Ψ2(T )). As

σ(T ) = Φ1(T ) ⊔ Φ2(T ), we have σa(T ) = Ψ1(T ) ∪ Ψ2(T ). As we have obviously

Ψ1(T )∩Ψ2(T ) = ∅, then σa(T ) = Ψ1(T )⊔Ψ2(T ), and Ψ is a spectral a-partitioning

function for T . �

Similarly to Theorem 4.8, we have the following result, which we give without

proof.

Theorem 4.9. Let T ∈ L(X) and letΨ be a spectral a-partitioning function for T .

If Φ is a spectral valued function such that Ψ ⊂ Φ, then Φ is a spectral partitioning

function for T if and only if σ(T ) \ σa(T ) = (Φ1(T ) \Ψ1(T )) ⊔ (Φ2(T ) \Ψ2(T )).

We observe that in Theorem 4.9, Φ is a spectral partitioning function for T if and

only if the function Φ \ Ψ defined by (Φ \ Ψ)(T ) = (Φ1(T ) \ Ψ1(T ),Φ2(T ) \Ψ2(T ))

for all T ∈ L(X) is partitioning for the complement of the approximate spectrum

σ(T ) \ σa(T ).
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