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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 6 , P AGES 8 4 8 – 8 6 5

DEFECTS AND TRANSFORMATIONS
OF QUASI-COPULAS

Michal Dibala, Susanne Saminger-Platz, Radko Mesiar, and Erich Peter
Klement

Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from
a copula, are discussed. This is done by means of extremal non-positive volumes of specific
rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions,
six transformations of quasi-copulas are investigated which give rise to six different partitions
of the set of all quasi-copulas. For each of these partitions, each equivalence class contains
exactly one copula being a fixed point of the transformation under consideration. Finally, an
application to the construction of so-called imprecise copulas is given.

Keywords: copula, quasi-copula, transformation of quasi-copulas, imprecise copula

Classification: 26B25, 62E10, 26B35, 60E05, 62H10

1. INTRODUCTION

Copulas were introduced in [34] (see also [1, 14, 27, 33, 35]) in order to represent and
construct joint distribution functions of random vectors by means of the related one-
dimensional marginal distribution functions. As a more general concept, quasi-copulas
were introduced in [2] and later characterized by means of their 1-Lipschitz property
(with respect to the L1-norm) in [16].

Quasi-copulas have interesting applications in several areas, such as fuzzy logic [18,
31], fuzzy preference modeling [9, 10] or similarity measures [8]. Other deep results
concerning quasi-copulas can be found in [6, 19, 28].

While copulas are characterized by the non-negativity of the volume of each sub-
rectangle of [0, 1]2 which is a Cartesian product of two subintervals of [0, 1], this is
no more true for quasi-copulas. This defect of quasi-copulas can be described in several
ways, indicating how far away they are from copulas. We introduce several such descrip-
tions and apply them to transform the original quasi-copulas. Note that the sequence of
iterative transformations always converges to a copula. This allows us to introduce an
equivalence relation on the set of quasi-copulas by grouping quasi-copulas converging to
the same copula into an equivalence class. An interesting application of our approach
to the so-called imprecise copulas [25, 26, 30, 36] will also be given.
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The paper is organized as follows. In Section 2, some preliminary notions and ex-
amples concerning copulas and quasi-copulas are given. Six types of functions induced
by quasi-copulas and characterizing their defects are introduced and discussed in Sec-
tion 3. In Section 4, the corresponding transformations of quasi-copulas are studied.
The concept of imprecise copulas is recalled, and their relations to the transformations
in Section 4 are shown in Section 5.

2. COPULAS AND QUASI-COPULAS

In this paper, we restrict ourselves to the case of real functions defined on the unit
square [0, 1]2. Therefore, there is no need to use adjectives like binary, 2-dimensional
or bivariate, even if, e. g., for copulas, multivariate generalizations exist.

Definition 2.1. A function C : [0, 1]2 → [0, 1] is called a copula if the following condi-
tions are satisfied:

(i) C is grounded, i. e., we have C(0, x) = C(x, 0) = 0 for all x ∈ [0, 1];

(ii) 1 is a neutral element of C, i. e., we have C(x, 1) = C(1, x) = x for all x ∈ [0, 1];

(iii) C is 2-increasing, i. e., for each rectangle [a, b]× [c, d] ⊆ [0, 1]2 we have

VC([a, b]× [c, d]) = C(a, c) + C(b, d)− C(a, d)− C(b, c) ≥ 0. (2.1)

The set of all copulas will be denoted by C. Note that for each copula C we have
W ≤ C ≤M , where the Fréchet–Hoeffding lower and upper bound W and M are given
by W (x, y) = max(x+ y − 1, 0) and M(x, y) = x ∧ y, respectively, and where the order
on C is the pointwise partial order inherited from the linear order on [0, 1]. This means
that the partially ordered set C has M as top element and W as bottom element, but C
is not a lattice since the supremum of two copulas is not necessarily a copula (see, e. g.,
C1 ∨ C2 in Example 2.3 below). For more details about copulas and their applications
see [14, 27].

The value VC([a, b] × [c, d]) given by (2.1) is called the C-volume of the rectangle
[a, b]× [c, d]. Observe that it formally can be defined for each function F : G2 → R and
each rectangle [a, b]× [c, d] ⊆ G2 ⊆ R2.

Definition 2.2. A function Q : [0, 1]2 → [0, 1] is called a quasi-copula if it satisfies
conditions (i) and (ii) in Definition 2.1 and inequality (2.1) for all rectangles [a, b]×[c, d] ⊆
[0, 1]2 such that {a, b, c, d} ∩ {0, 1} 6= ∅.

The set of all quasi-copulas will be denoted by Q and, evidently, we have C ⊂ Q.
Quasi-copulas which are not copulas, i. e., elements of Q \ C, are called proper quasi-
copulas (see, for instance, Example 2.4). From Definitions 2.1 and 2.2 it follows that
they have a negative volume for some rectangle [a, b]× [c, d] ⊂ [0, 1]2.

Observe that a function Q : [0, 1]2 → [0, 1] is a quasi-copula if and only if it is mono-
tone non-decreasing in each coordinate, grounded, has 1 as neutral element and is 1-
Lipschitz, i. e., for all (x1, x2), (y1, y2) ∈ [0, 1]2 we have

|Q(x1, x2)−Q(y1, y2)| ≤ |x1 − y1|+ |x2 − y2|. (2.2)
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C1 C2

C1 ∨ C2 C1 ∧ C2

Fig. 1. Copulas C1, C2, C1 ∧ C2 and proper quasi-copula C1 ∨ C2

from Example 2.3.

From C ⊂ Q it follows that also each copula is non-decreasing in each coordinate and
1-Lipschitz.

From a lattice-theoretic point of view, Q is the smallest complete lattice containing C,
i. e., for each quasi-copula Q we have Q = inf{Ci | i ∈ I} = sup{Cj |j ∈ J} for some
families of copulas (Ci)i∈I and (Cj)j∈J (in fact, Q was shown in [29] to be order-
isomorphic to the Dedekind-MacNeille completion of C). In particular, for each family of
copulas both its infimum and its supremum are quasi-copulas, and the Fréchet–Hoeffding
bounds M and W are the top and the bottom element of Q. For more details on quasi-
copulas see [16] and [17].

Example 2.3. Consider the copulas C1 and C2 illustrated in Figure 1 (top). The unit
mass of copula C1 is uniformly distributed on the line segments connecting the points
(0, 1

3 ) and ( 2
3 , 1), and ( 2

3 , 0) and (1, 1
3 ), respectively. The unit mass of copula C2 is

uniformly distributed on the line segments connecting the points (0, 2
3 ) and (1

3 , 1), and
( 1
3 , 0) and (1, 2

3 ), respectively. In Figure 1, also the functions C1 ∨ C2 and C1 ∧ C2 are
visualized. Observe that C1 ∨C2 is a proper quasi-copula since, e. g., VC1∨C2(

[
1
3 ,

2
3

]2) =
− 1

3 , while C1 ∧ C2 is a copula.
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Fig. 2. The proper quasi-copula Q in Example 2.4.

Example 2.4. The function Q given by

Q(x, y) = med(x · y, 1
2 , x+ y − 1) =

{
x · y if x · y ≤ 1

2 ,

max(x+ y − 1, 1
2 ) otherwise,

(2.3)

where med is the shortcut for the median, is a proper quasi-copula, and it is visualized
in Figure 2. Observe that the minimal value of the Q-volume of a rectangle in [0, 1]2 is
attained for the square

[
2
3 ,

3
4

]2 where VQ(
[
2
3 ,

3
4

]2) = − 1
18 .

3. DEFECTS OF QUASI-COPULAS

Consider an arbitrary point (x0, y0) ∈ [0, 1]2. Then it is clear that each rectangle [a, b]×
[c, d] ⊆ [0, 1]2 (i. e., its edges are parallel to the axes of the unit square) which has (x0, y0)
as one of its vertices belongs (with the exception of line segments, i. e., when a = b = x0

or c = d = y0, or of the trivial rectangle consisting of the point (x0, y0) only, i. e., when
a = b = x0 and c = d = y0) to exactly one of the following sets:

R↗(x0, y0) = {[x0, x0 + α]× [y0, y0 + β] ⊆ [0, 1]2 | α, β ≥ 0},
R↘(x0, y0) = {[x0, x0 + α]× [y0 − β, y0] ⊆ [0, 1]2 | α, β ≥ 0},
R↙(x0, y0) = {[x0 − α, x0]× [y0 − β, y0] ⊆ [0, 1]2 | α, β ≥ 0},
R↖(x0, y0) = {[x0 − α, x0]× [y0, y0 + β] ⊆ [0, 1]2 | α, β ≥ 0}.

Based on these sets of rectangles, we can introduce four different defect functions for
a given quasi-copula:
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Fig. 3. Support of the proper quasi-copula Q (left), and the

northeast-defect function DQ
↗ (Example 3.4).

Definition 3.1. LetQ : [0, 1]2 → [0, 1] be a quasi-copula. Then we consider the following
defect functions DQ

↗, D
Q
↘, D

Q
↙, D

Q
↖ : [0, 1]2 → R given by

DQ
↗(x, y) = inf{VQ(R) | R ∈ R↗(x, y)}, (northeast-defect of Q) (3.1)

DQ
↘(x, y) = inf{VQ(R) | R ∈ R↘(x, y)}, (southeast-defect of Q) (3.2)

DQ
↙(x, y) = inf{VQ(R) | R ∈ R↙(x, y)}, (southwest-defect of Q) (3.3)

DQ
↖(x, y) = inf{VQ(R) | R ∈ R↖(x, y)}. (northwest-defect of Q) (3.4)

It is obvious that each of these defect functions is non-positive. As a consequence of
the continuity of Q, each infimum in Definition 3.1 is actually attained (and, therefore,
can be replaced by a minimum).

Moreover, we have the following result which immediately follows from the Defini-
tions 2.1 and 2.2.

Proposition 3.2. Let Q : [0, 1]2 → [0, 1] be a quasi-copula. Then Q is a copula if and
only if one (and, subsequently, each) of the defect functions DQ

↗, DQ
↘, DQ

↙, and DQ
↖

given by (3.1)–(3.4) is identically zero.

Based on Definition 3.1, it is possible to introduce additional defect functions, two of
which are given below:

Definition 3.3. Let Q : [0, 1]2 → [0, 1] be a quasi-copula. Then the following defect
functions DQ

M, D
Q
O : [0, 1]2 → R are given by

DQ
M = DQ

↗ ∧D
Q
↙, (main-defect of Q) (3.5)

DQ
O = DQ

↖ ∧D
Q
↘. (opposite-defect of Q) (3.6)

Observe that the main-defect DQ
M(x, y) of Q is related to rectangles in R↗(x, y) ∪

R↙(x, y), i. e., having (x, y) as lower left or upper right vertex. Similarly, the opposite-
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D
Q
↘ D

Q
↙ D

Q
M

D
Q
↗ D

Q
↖ D

Q
O

Fig. 4. Supports of the six defect functions of Q (Example 3.4).

defect DQ
O(x, y) of Q is related to R↖(x, y) ∪R↘(x, y), i. e., to rectangles having (x, y)

as lower right or upper left vertex.
Obviously, all the six defect functions introduced in Definitions 3.1 and 3.3 vanish

at the boundary points of the unit square [0, 1]2. On the other hand, for each proper
quasi-copula each of these six defect functions is strictly negative on a subset of [0, 1]2

with positive Lebesgue measure.

Example 3.4. Put Q = C1∨C2, i. e., the proper quasi-copula considered in Example 2.3
and Figure 1 (bottom left). The support of Q is given in Figure 3 (left). Note that on the
thick line segments the mass 4

3 is uniformly distributed, while on the dashed line segment
the mass − 1

3 is uniformly distributed. The northeast-defect function DQ
↗ given by (3.1)

is visualized in Figure 3 (right). Similarly the supports of all six defect functions of Q
can be illustrated (see Figure 4 and notice that the extra thick line in the support of DQ

O

indicates that the line segment connecting the points ( 1
3 ,

1
3 ) and ( 2

3 ,
2
3 ) carries twice as

much mass). Finally, in Figure 5, the main-defect function DQ
M and the opposite-defect

function DQ
O of the quasi-copula Q are given.

All the defect functions discussed so far have their values in the interval
[
− 1

3 , 0
]
,

and the extremal value can be attained only in vertices of the square
[
1
3 ,

2
3

]2 (compare
Example 3.4). We even have the following stronger result:
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D
Q
M D

Q
O

Fig. 5. Main- and opposite-defect functions (Example 3.4).

Theorem 3.5. Define the functions D↗, D↘, D↙, D↖, DM, DO : [0, 1]2 → R by

D↗ = inf{DQ
↗ | Q ∈ Q}, D↙ = inf{DQ

↙ | Q ∈ Q},

D↖ = inf{DQ
↖ | Q ∈ Q}, D↘ = inf{DQ

↘ | Q ∈ Q},

DM = inf{DQ
M | Q ∈ Q}, DO = inf{DQ

O | Q ∈ Q}.

Then we have DM = D↗ ∧D↙ and DO = D↖ ∧D↘ and, for all (x, y) ∈ [0, 1]2,

D↗(x, y) = max(−x,−y, x−1
2 , y−1

2 ),
D↙(x, y) = max(x− 1, y − 1,−x

2 ,−
y
2 ),

D↖(x, y) = max(x− 1,−y,−x
2 ,

y−1
2 ),

D↘(x, y) = max(−x, y − 1, x−1
2 ,−y

2 ).

P r o o f . The result for DM and DO follows directly from Definition 3.3.
Now fix a point (x, y) ∈ [0, 1]2. Then for each quasi-copula Q and each rectangle

R = [x, x1]× [y, y1] ∈ R↗(x, y) we have

VQ(R) + x = VQ([x, x1]× [y, y1]) + VQ([0, x]× [0, 1])
= VQ([0, x]× [0, y]) + VQ([0, x1]× [y, y1]) + VQ([0, x]× [y1, 1]).

Each of the three rectangles considered in the last line shares an edge with the boundary
of [0, 1]2 and, therefore, has a nonnegative Q-volume. Therefore, VQ(R) ≥ −x for each
rectangle R ∈ R↗(x, y) and each Q ∈ Q, implying D↗(x, y) ≥ −x. In an analogous
way D↗(x, y) ≥ −y is shown.

For each quasi-copula Q and each rectangle R = [x, x1] × [y, y1] ∈ R↗(x, y) we get,
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Fig. 6. Support of the quasi-copula Qx,y.

using similar arguments, also

2VQ(R) + 1− x = 2VQ(R) + VQ([x, 1]× [0, 1])
= VQ([x, x1]× [y, 1]) + VQ([x, x1]× [0, y1]) + VQ([x, 1]× [y, y1])

+ VQ([x1, 1]× [y1, 1]) + VQ([x1, 1]× [0, y])
≥ 0,

implying D↗(x, y) ≥ x−1
2 . Of course, D↗(x, y) ≥ y−1

2 is shown in complete analogy.
Summarizing, we know now that D↗(x, y) ≥ max(−x,−y, x−1

2 , y−1
2 ).

Now fix a point (x, y) satisfying x ≤ 1
3 and x ≤ y ≤ 1 − 2x. Then y − x ≥ 0,

y + 2x ≤ 1 and 3x ≤ 1, implying max(−x,−y, x−1
2 , y−1

2 ) = −x. Denote now by Qx,y

the quasi-copula whose support is visualized in Figure 6.
Observe that the restriction of Qx,y to the square [0, 3x] × [y − x, y + 2x] is a linear

transformation of the proper quasi-copula C1 ∨ C2 considered in Examples 2.3 and 3.4.
Because of VQx,y

([x, 2x]× [y, y + x]) = −x we have D↗(x, y) = −x.
In a similar way, for each point (x, y) the existence of a proper quasi-copula Q and of

a rectangle R ∈ R↗(x, y) with VQ(R) = max(−x,−y, x−1
2 , y−1

2 ) is shown, proving the
validity of D↗(x, y) = max(−x,−y, x−1

2 , y−1
2 ).

Note that for each quasi-copula Q ∈ Q also the function Q̂ : [0, 1]2 → [0, 1] given by

Q̂(x, y) = x+ y − 1 +Q(1− x, 1− y) (3.7)

is a quasi-copula and, moreover, the mapping Q 7→ Q̂ is an involution, i. e., we have(̂
Q̂
)

= Q.

This implies D↙(x, y) = D↗(1 − x, 1 − y) for all (x, y) ∈ [0, 1]2 and, subsequently,
D↙(x, y) = max(x− 1, y − 1,−x

2 ,−
y
2 ).

The remaining equalities for D↖ and D↘ follow from results in [20]: for each quasi-
copula Q ∈ Q also the functions Q−, Q− : [0, 1]2 → [0, 1] given by

Q−(x, y) = x−Q(x, 1− y), Q−(x, y) = y −Q(1− x, y), (3.8)
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respectively, are quasi-copulas. Therefore D↖(x, y) = D↗(1 − x, y) and D↘(x, y) =
D↗(x, 1− y) for each (x, y) ∈ [0, 1]2, completing the proof. �

Remark 3.6. Note that there is no quasi-copula Q ∈ Q such that DQ
↗ = D↗ (an

analogous statement holds for each of the other defect functions). Assuming the contrary,
i. e., DQ

↗ = D↗ for some Q ∈ Q, this means in particular

DQ
↗

(1
3
,

1
3

)
= D↗

(1
3
,

1
3

)
= −1

3
.

Then, as a consequence of [14, Theorem 7.4.4], we necessarily get Q( 1
3 ,

1
3 ) = 0 and

Q
(1

3
,

2
3

)
= Q

(2
3
,

1
3

)
= Q

(2
3
,

2
3

)
=

1
3
.

From the latter equality it follows easily that Q coincides with the Fréchet–Hoeffding
lower bound W on the square

[
2
3 , 1
]2, implying that DQ

↗
(

2
3 ,

2
3

)
= DW

↗
(

2
3 ,

2
3

)
= 0, i. e.,

D↗

(2
3
,

2
3

)
= −1

6
< 0 = DQ

↗

(2
3
,

2
3

)
.

Because of some symmetries of the defects introduced in (3.1)–(3.6) we may restrict
our considerations to, say, northeast-defects of quasi-copulas only.

Remark 3.7. Using similar arguments as in the proof of Theorem 3.5, it is possible
to show that for each quasi-copula Q ∈ Q and for the quasi-copulas Q̂, Q− and Q−
considered in (3.7) and (3.8) the following equalities hold for all (x, y) ∈ [0, 1]2:

D
bQ
↗(x, y) = DQ

↙(1− x, 1− y), D
bQ
↘(x, y) = DQ

↖(1− x, 1− y),

DQ−

↗ (x, y) = DQ
↘(x, 1− y), DQ−

↙ (x, y) = DQ
↖(x, 1− y),

D
Q−
↗ (x, y) = DQ

↖(1− x, y), D
Q−
↙ (x, y) = DQ

↘(1− x, y).

As a consequence, the main- and the opposite-defect of a quasi-copulaQ can be expressed
by northeast-defects of the quasi-copulas Q, Q̂, Q−, and Q−, i. e., for all (x, y) ∈ [0, 1]2

we have

DQ
M(x, y) = DQ

↗(x, y) ∧D bQ
↗(1− x, 1− y),

DQ
O(x, y) = DQ−

↗ (1− x, y) ∧DQ−
↗ (x, 1− y).

An important tool for the construction of new quasi-copulas from given ones is the
so-called ordinal sum. Based on earlier results in the context of partially ordered sets [4]
and of abstract semigroups [5], the concept of an ordinal sum of triangular norms was
introduced in [24, 32] (compare also [1, 21, 33]), and it can be carried over to the case
of (quasi-)copulas in a straightforward way.

The following example shows that, for an ordinal sum of quasi-copulas, also the
corresponding defect functions given in Definitions 3.1 and 3.3 have an ordinal sum
structure:
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copula proper quasi-copula

Fig. 7. Examples 4.1 (left) and 4.2.

Example 3.8. Let (]ai, bi[)i∈I be a pairwise disjoint family of non-empty open subin-
tervals of [0, 1], (Qi)i∈I be a family of quasi-copulas, and assume that the quasi-copula
Q = (〈ai, bi, Qi〉)i∈I is the ordinal sum of the summands (]ai, bi[ , Qi)i∈I given by

Q(x, y) =

{
ai + (bi − ai) ·Qi

(
x−ai

bi−ai
, y−ai

bi−ai

)
if (x, y) ∈ [ai, bi]

2
,

M(x, y) otherwise.
(3.9)

Then also the structure of the defect functions DQ
↗, D

Q
↘, D

Q
↙, D

Q
↖, D

Q
M, and DQ

O given
in (3.1)–(3.6) is that of an ordinal sum. We give here the exact formula for DQ

↗ only
(remember that DM

↗ (x, y) = 0 for all (x, y) ∈ [0, 1]2):

DQ
↗(x, y) =

{
(bi − ai) ·DQi

↗
(

x−ai

bi−ai
, y−ai

bi−ai

)
if (x, y) ∈ [ai, bi]

2
,

DM
↗ (x, y) otherwise.

4. DEFECT-BASED TRANSFORMATIONS OF QUASI-COPULAS

Several constructions and transformations of copulas and quasi-copulas have been con-
sidered so far (see, e. g., [3, 7, 11, 13, 15, 20, 22, 23]). Here we use the defect functions
given in Definitions 3.1 and 3.3 to introduce new types of transformations of quasi-
copulas.

For a quasi-copula Q, consider the functions Q↗, Q↙, Q↖, Q↘, QM, QO : [0, 1]2 →
[0, 1] defined by, respectively,

Q↗ = Q−DQ
↗, Q↙ = Q−DQ

↙, (4.1)

Q↖ = Q+DQ
↖, Q↘ = Q+DQ

↘, (4.2)

QM = Q−DQ
M, QO = Q+DQ

O . (4.3)
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Q↘ Q↙ QM

Q↗ Q↖ QO

Fig. 8. Supports of the six transformations of Q (Example 4.1).

A natural question arises: given an arbitrary quasi-copula Q, is each of the functions
Q↗, Q↙, Q↖, Q↘, QM, and QO given above a (quasi-)copula?

Example 4.1. Consider again the quasi-copula Q = C1∨C2 introduced in Example 2.3
and discussed in Example 3.4. Observe that the function Q↗ visualized in Figure 7 (left)
is a copula (actually, it turns out to be a shuffle of the Fréchet–Hoeffding upper bound
M). For more details about shuffles of M see [12, 14, 27]. In analogy, the functions
Q↙, Q↖, Q↘, QM, and QO are shuffles of M and, therefore, copulas (for a visualization
of their supports see Figure 8).

In general, however, we don’t obtain copulas using these transformations.

Example 4.2. Consider the proper quasi-copula Q given by (2.3) in Example 2.4 (see
also Figure 2). Then the function Q↙ (see Figure 7 right) is a proper quasi-copula
(observe that, e. g., VQ↙

([
3
4 ,

4
5

]2) = − 1
80 ). Also the other functions Q↗, Q↖, Q↘, QM,

and QO are proper quasi-copulas.

Theorem 4.3. Let Q ∈ Q be a quasi-copula. Then each of the six functions Q↗, Q↙,
Q↖, Q↘, QM, and QO given in (4.1)–(4.3) is a quasi-copula.

P r o o f . Fix an arbitrary quasi-copula Q ∈ Q. Then each of the six functions Q↗, Q↙,
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Q↖, Q↘, QM, and QO satisfies the boundary conditions, i. e., it is grounded and has 1
as neutral element.

Now fix an arbitrary point (x, y) ∈ ]0, 1[2 and ε ∈ ]0, 1− x[. Then we have Q(x, y) ≤
Q↗(x, y) and Q(x+ ε, y) ≤ Q↗(x+ ε, y).

If DQ
↗(x, y) = 0 then Q↗(x, y) = Q(x, y) ≤ Q(x+ε, y) ≤ Q↗(x+ε, y). If DQ

↗(x, y) <
0 then the continuity of Q implies the existence of a rectangle R = [x, x1] × [y, y1] ∈
R↗(x, y) such that DQ

↗(x, y) = VQ(R).
Suppose first that x1 ≤ x+ ε. Then we get

Q↗(x+ ε, y)−Q↗(x, y) ≥ Q(x+ ε, y)−Q(x1, y) +Q(x1, y1)−Q(x, y1) ≥ 0,

i. e., Q↗(x, y) ≤ Q↗(x+ ε, y).
On the other hand, if x1 > x+ ε then

Q↗(x, y) = Q(x, y1) +Q(x1, y)−Q(x1, y1)
= Q(x+ ε, y)− (Q(x1, y1)−Q(x+ ε, y1)−Q(x1, y) +Q(x+ ε, y))
− (Q(x+ ε, y1)−Q(x, y1))

≤ Q(x+ ε, y)− VQ([x+ ε, x1]× [y, y1])
≤ Q↗(x+ ε, y).

Therefore, Q↗ is monotone non-decreasing in its first coordinate. The monotonicity in
the second coordinate is shown analogously. Using similar arguments, the monotonicity
of the functions Q↙, Q↖, and Q↘ is verified.

Recall that for the quasi-copula Q− given by Q−(x, y) = x − Q(x, 1 − y) we have
DQ
↗(x, y) = DQ−

↘ (x, y) for all (x, y) ∈ [0, 1]2. As a consequence, for each ε ∈ ]0, 1− x[
we obtain

0 ≤ Q↗(x+ ε, y)−Q↗(x, y)

= Q(x+ ε, y)−DQ
↗(x+ ε, y)−Q(x, y) +DQ

↗(x, y)

= x+ ε−Q−(x+ ε, 1− y)−DQ−

↘ (x+ ε, 1− y)− x+Q−(x, 1− y) +DQ−

↘ (x, 1− y)

= ε+Q−↘(x, 1− y)−Q−↘(x+ ε, 1− y)

≤ ε,

where the latter inequality follows from the monotonicity of Q−↘, thus proving the 1-
Lipschitz property of Q−↗ in the first coordinate. In a similar way, the 1-Lipschitz
property of Q↗ in the second coordinate can be shown, completing the proof that Q↗
is a quasi-copula.

In the same way, one verifies that Q↙, Q↖, and Q↘ are quasi-copulas. Since Q is a
lattice, also QM = Q↗ ∨Q↙ and QO = Q↖ ∧Q↘ are quasi-copulas. �

Observe that for each quasi-copula Q ∈ Q we have the inequalities

QO ≤ Q↖ ≤ Q ≤ Q↗ ≤ QM,

QO ≤ Q↘ ≤ Q ≤ Q↙ ≤ QM.
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If Q ∈ Q is a proper quasi-copula then we obtain the strict inequalities

Q↖ < Q, Q↘ < Q, Q < Q↗, Q < Q↙.

Example 4.4. Let (]ai, bi[)i∈I be a pairwise disjoint family of non-empty open subin-
tervals of [0, 1], (Qi)i∈I be a family of quasi-copulas, and assume that the quasi-copula
Q = (〈ai, bi, Qi〉)i∈I is the ordinal sum of the summands (]ai, bi[ , Qi)i∈I given by (3.9).

Then each of the six quasi-copulas Q↗, Q↙, Q↖, Q↘, QM, and QO given in (4.1)–
(4.3) is an ordinal sum of quasi-copulas, i. e., Q↗ = (〈ai, bi, (Qi)↗〉)i∈I , and analogously
for Q↙, Q↖, Q↘, QM, and QO.

Based on the results of Theorem 4.3, it is possible to define the following six trans-
formations ↗,↙,↘,↖,M,O: Q → Q by

↗(Q) = Q↗, ↙(Q) = Q↙, ↘(Q) = Q↘, ↖(Q) = Q↖,

M(Q) = QM, O(Q) = QO.

Of course, any composition of these transformations is again a transformation on Q.
In particular, if we write ↙1 = ↙, ↙2 = ↙ ◦ ↙, . . . , ↙n+1 = ↙ ◦ ↙n, we

obtain, for each quasi-copula Q ∈ Q, the sequence (↙n (Q))n∈N which is monotone
non-decreasing, implying that its supremum ↙∗ (Q) coincides with its pointwise limit.
Obviously, we have↙ ◦ ↙∗ =↙∗ and, subsequently, D↙

∗(Q)
↙ = 0, implying that↙∗ (Q)

is a copula. In a similar way, we can construct the copulas ↗∗ (Q) and M∗(Q).
For the transformations ↘, ↖, and O, the sequences (↘n (Q))n∈N, (↖n (Q))n∈N,

and (On(Q))n∈N are monotone non-increasing, and their respective limits (i. e., infima)
↘∗ (Q), ↖∗ (Q), and O∗(Q) are copulas, too.

This allows us to construct six different partitions of the set of all quasi-copulas,
considering the six equivalence relations ∼↗, ∼↙, ∼↘, ∼↖, ∼M, and ∼O on Q which
are defined by

Q1 ∼↗ Q2 ⇐⇒ ↗∗ (Q1) =↗∗ (Q2);
Q1 ∼↙ Q2 ⇐⇒ ↙∗ (Q1) =↙∗ (Q2);
Q1 ∼M Q2 ⇐⇒ M∗(Q1) = M∗(Q2);
Q1 ∼↘ Q2 ⇐⇒ ↘∗ (Q1) =↘∗ (Q2);
Q1 ∼↖ Q2 ⇐⇒ ↖∗ (Q1) =↖∗ (Q2);
Q1 ∼O Q2 ⇐⇒ O∗(Q1) = O∗(Q2).

Obviously, each of the respective equivalence classes contains exactly one element which
is a copula.

Example 4.5. Consider again the proper quasi-copula Q given by (2.3) in Example 2.4
(see also Example 4.2 and Figures 2 and 7). After some computation we get for each
n ∈ N

↙n (Q)(x, y) =

{
x · y if x · y ≤ 1

2 ,

max(x+ y − 1,Kn(x, y)) otherwise,
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where

Kn(x, y) =
2n−2

2n−1√2xy
+

1 + 2n−1

2
.

Since, for x · y ≥ 1
2 , we have lim

n→∞
Kn(x, y) =

1 + log(2xy)
2

, the copula ↙∗ (Q) is given
by

↙∗ (Q)(x, y) =

{
x · y if x · y ≤ 1

2 ,

max
(
x+ y − 1, 1+log(2xy)

2

)
otherwise.

5. AN APPLICATION TO IMPRECISE COPULAS

Imprecise copulas were studied in [30] and [26] (see also [25, 36]) in order to construct
two-dimensional probability boxes (briefly p-boxes), which are represented by ordered
pairs of comparable distribution functions, from two given one-dimensional p-boxes.

Definition 5.1. A pair (A,B) of functions A,B : [0, 1]2 → [0, 1] is called an imprecise
copula if A and B are grounded and have 1 as neutral element, and if for each rectangle
[a, b]× [c, d] ⊆ [0, 1]2 we have

A(b, d) +B(a, c)−A(a, d)−A(b, c) ≥ 0; (IC1)
B(b, d) +A(a, c)−A(a, d)−A(b, c) ≥ 0; (IC2)
B(b, d) +B(a, c)−B(a, d)−A(b, c) ≥ 0; (IC3)
B(b, d) +B(a, c)−A(a, d)−B(b, c) ≥ 0. (IC4)

It is not difficult to check that, for each imprecise copula (A,B), we have A,B ∈ Q,
i. e., both A and B are quasi-copulas, and A ≤ B.

The properties (IC1)–(IC4) in Definition 5.1 can be equivalently expressed in the
following form:

B ≥ A↗; (IC1∗)
B ≥ A↙; (IC2∗)
A ≤ B↖; (IC3∗)
A ≤ B↘. (IC4∗)

Obviously, (IC1∗) and (IC2∗) are simultaneously satisfied if and only if we have B ≥
A↗ ∨ A↙ = AM. Similarly, A ≤ B↖ ∧ B↘ = BO is equivalent to the joint validity of
(IC3∗) and (IC4∗).

Summarizing these observations, the following result is immediate.

Theorem 5.2. A pair (A,B) of quasi-copulas A,B : [0, 1]2 → [0, 1] is an imprecise
copula if and only if B ≥ AM and A ≤ BO.

Evidently, each pair (C1, C2) of copulas satisfying C1 ≤ C2 is an imprecise copula, in
particular, each pair (C,C) with C ∈ C. However, for a proper quasi-copula Q, the pair
(Q,Q) is never an imprecise copula because of QO < Q < QM.

The partially ordered set of imprecise copulas forms an upper semi-lattice with top
element (W,M):
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Theorem 5.3. Let ((Ai, Bi))i∈I be a family of imprecise copulas. Then also∨
i∈I

(Ai, Bi) =
(∧

i∈I

Ai,
∨
i∈I

Bi

)
is an imprecise copula.

P r o o f . Evidently, both A =
∧

i∈I Ai and B =
∨

i∈I Bi are quasi-copulas. Note first
that for each i ∈ I and for each rectangle [a, b] × [c, d] ⊆ [0, 1]2 we have Ai(b, d) +
Bi(a, c)−Ai(a, d)−Ai(b, c) ≥ 0 and, therefore, also

Ai(b, d) +Bi(a, c) ≥ Ai(a, d) +Ai(b, c) ≥ A(a, d) +A(b, c).

As a consequence, A(b, d) + B(a, c) ≥ A(a, d) + A(b, c), i. e., (IC1) holds for the pair
(A,B). The validity of the other inequalities (IC2)–(IC4) for the pair (A,B) is shown
in a similar way. �

As an immediate corollary of Theorem 5.3 we have the following result already men-
tioned in [26, 30]:

Corollary 5.4. For each family (Ci)i∈I of copulas the pair (C,C), where the two
functions C,C : [0, 1]2 → [0, 1] are given by

C =
∧
i∈I

Ci and C =
∨
i∈I

Ci,

is an imprecise copula.

The problem whether all imprecise copulas can be obtained in this way (already posed
in [26, 30]) is still open, namely, whether for each each imprecise copula (A,B) there is
a family (Ci)i∈I of copulas such that A = C and B = C.

Example 5.5. For each quasi-copula Q ∈ Q and for each n ∈ N the two pairs
(Mn(Q),M∗(Q)) and (O∗(Q),On(Q)) are imprecise copulas.

CONCLUSION

We have introduced different functions measuring the defect of a quasi-copula expressed
by means of extremal non-positive volumes of specific rectangles (such that defect zero
characterizes copulas). These defect functions were applied to define new transforma-
tions of quasi-copulas, each of them leading to a new quasi-copula comparable with the
original one, and each of them having copulas as the only fixed points. Therefore, start-
ing with any quasi-copula Q, the iterative application of each of these transformations
has a limit which necessarily is a copula, and which can be seen as an attractor of Q
under the respective transformation. Then, for each transformation, the domains of at-
traction of copulas form a partition of the set of all quasi-copulas. Finally, an application
to the construction of so-called imprecise copulas was added.

Several problems are still open and will be the subject of future research.
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First of all, starting with a quasi-copula Q and considering Examples 4.1, 4.2 and
Theorem 4.3, what are (sufficient) conditions for the six functions Q↗, Q↙, Q↖, Q↘,
QM, and QO to be copulas?

Second, are there (for some of the transformations under consideration) any singleton
members of the corresponding partition of quasi-copulas, i. e., is there a copula which
does not admit any proper quasi-copula in its domain of attraction (up to the trivial cases
of the Fréchet–Hoeffding upper bound M with respect to the transformations↖,↘ and
O, and of the Fréchet–Hoeffding lower bound W with respect to the transformations↗,
↙ and M)?

A third problem is to think about similar defect functions and transformations of
quasi-copulas in the case of dimensions higher than two. A positive solution of this
problem could help to solve the still open problem of imprecise copulas of higher dimen-
sions.
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[20] J. Kalická: On some construction methods for 1-Lipschitz aggregation functions. Fuzzy
Sets and Systems 160 (2009), 726–732. DOI:10.1016/j.fss.2008.06.017

[21] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers,
Dordrecht 2000. DOI:10.1007/978-94-015-9540-7

[22] E. P. Klement, R. Mesiar, and E. Pap: Invariant copulas. Kybernetika 38 (2002), 275–285.

[23] E. P. Klement, R. Mesiar, and E. Pap: Transformations of copulas. Kybernetika 41 (2005),
425–436.

[24] C. M. Ling: Representation of associative functions. Publ. Math. Debrecen 12 (1965),
189–212.

[25] I. Montes, E. Miranda, and S. Montes: Decision making with imprecise probabilities and
utilities by means of statistical preference and stochastic dominance. European J. Oper.
Res. 2342 (2014), 209–220. DOI:10.1016/j.ejor.2013.09.013

[26] I. Montes, E. Miranda, R. Pelessoni, and P. Vicig: Sklar’s theorem in an imprecise setting.
Fuzzy Sets and Systems 278 (2015), 48–66. DOI:10.1016/j.fss.2014.10.007

[27] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.
DOI:10.1007/0-387-28678-0

[28] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodŕıguez-Lallena, and M. Úbeda-Flores: Some
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