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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 6 , P AGES 9 4 3 – 9 6 6

BOUNDS ON TAIL PROBABILITIES
FOR NEGATIVE BINOMIAL DISTRIBUTIONS

Peter Harremoës

In this paper we derive various bounds on tail probabilities of distributions for which the
generated exponential family has a linear or quadratic variance function. The main result is an
inequality relating the signed log-likelihood of a negative binomial distribution with the signed
log-likelihood of a Gamma distribution. This bound leads to a new bound on the signed log-
likelihood of a binomial distribution compared with a Poisson distribution that can be used to
prove an intersection property of the signed log-likelihood of a binomial distribution compared
with a standard Gaussian distribution. All the derived inequalities are related and they are all
of a qualitative nature that can be formulated via stochastic domination or a certain intersection
property.

Keywords: tail probability, exponential family, signed log-likelihood, variance function,
inequalities

Classification: 60E15, 62E17, 60F10

1. INTRODUCTION

Let X1, . . . , Xn be i.i.d. random variables such that the moment generating function
β y E[exp(βX1)] is finite in a neighborhood of zero. For a fixed value of x one is
interested in approximating the tail distribution: Pr(

∑n
i=1Xi ≤ n · x) . If x is close to

the mean of X1 one would usually approximate the tail probability by the tail probability
of a Gaussian random variable. If x is far from the mean of X1 the tail probability can be
estimated using large deviation theory. According to the Sanov theorem the probability
that the deviation from the mean is as large as x is of the order exp (−D) where D is a
constant that can be calculated as an information divergence between two distributions
in an exponential family. The more precise formulation of the result is that

−
ln (Pr(

∑n
i=1Xi ≤ n · x))
n

→ D

for n → ∞. Bahadur and Rao [2, 3] improved the estimate of this large deviation
probability, and in [5] such Gaussian tail approximations were extended to situations
where one normally uses large deviation techniques.
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Fig. 1. Plot of the quantiles of a standard Gaussian vs. the quantiles

of the signed log-likelihood of the negative binomial distribution

neg (1, 3.5) (horisontal steps) and of the signed log-likelihood of the

Gamma distribution Γ (1, 3.5) (lower full line). The line through (0,0)

corresponds to a perfect mach with a Gaussian.

The distribution of the signed log-likelihood is close to a standard Gaussian for a
variety of distributions. Asymptotic results for large sample sizes are not new [2, 3],
but in this paper we are interested in inequalities that hold for any sample size. Some
inequalities of this type can be found in [1, 7, 6, 10, 11]. In [6] a tail probability of the
log-likelihood of a negative binomial distribution was compared with the tail probability
of a standard Gaussian distribution. The result can be visualized by Figure 1 where
the quantiles of the signed log-likelihood of a negative binomial distribution (blue) are
plotted against the corresponding quantiles of a standard Gaussian. The result in [6]
is that the right end points of the horizontal lines are to the right of the red line that
corresponds a perfect match with a Gaussian distribution. In [6] there is no result related
to the left end points of the blue lines and Figure 1 demonstrates that the left end points
can be above or below the red line. In Figure 1 the green curve depicts the log-likelihood
of a Gamma distribution against a standard Gaussian and we see that the green curve
intersects all the horizontal lines. This reflects that the negative binomial distributions
and the Gamma distributions are discrete and continuous versions of waiting times of
the same type of process. We will prove the intersection property and use it to derive a
new inequality relation binomial and Poisson distributions.

In this paper we let τ denote the circle constant 2π and φ will denote the standard
Gaussian density

exp
(
−x

2

2

)
τ 1/2

.

We let Φ denote the distribution function of the standard Gaussian

Φ (t) =
∫ t

−∞
φ (x) dx .
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The rest of the paper is organized as follows. In Section 2 we define the signed log-
likelihood of an exponential family and look at some of the fundamental properties of
the signed log-likelihood. The proof of the main result concerning negative binomial
distributions is quite long. Therefore as much material as possible has been moved from
the main proof to some sections with some more preliminary results on the exponen-
tial distributions (Section 3) and more general Gamma distributions (Section 4), and
geometric distributions (Section 5) and then we generalize the results to negative bi-
nomial distributions (Section 6). The negative binomial distributions are waiting times
in Bernoulli processes, so in Section 7 our inequalities between negative binomial dis-
tributions and Gamma distributions are translated into inequalities between binomial
distributions and Poisson distributions. Combined with our domination inequalities for
Gamma distributions we obtain an intersection inequality between binomial distribu-
tions and the standard Gaussian distribution. In this paper the focus is on intersection
inequalities and stochastic domination inequalities, but in the discussion we mention
some related inequalities of other types and how our inequalities might be tightened.

2. THE SIGNED LOG-LIKELIHOOD FOR EXPONENTIAL FAMILIES

Let P0 denote a probability measure on the real numbers. For any real number β the
moment generating function is given by Z(β) =

∫
exp (β · x) dP0x. When Z(β) <∞ the

distributions Pβ are given by

dPβ
dP0

(x) =
exp (β · x)
Z (β)

and these distributions form a one-dimensional exponential family. Let Pµ denote the
element in the exponential family with mean value µ, and let β̂ (µ) denote the corre-
sponding maximum likelihood estimate of β. Let µ0 denote the mean value of P0. Then

D (Pµ‖P0) =
∫

ln
(

dPµ

dP0
(x)
)

dPµx.

With this definition the divergence D becomes a differentiable function of µ. The vari-
ance function of an exponential family is defined so that V (µ) is the variance of Pµ. The
variance functions uniquely characterizes the corresponding exponential families and the
most important exponential families have very simple variance functions. If we know the
variance function the divergence can be calculated according to the following formula.

D (Pµ1‖Pµ2) =
∫ µ2

µ1

µ− µ1

V (µ)
dµ.

Definition 2.1. (From Barndorff-Nielsen [4]) Let X be a random variable with dis-
tribution P0. Then the signed log-likelihood G (X) of X is the random variable given
by

G (x) =

{
− [2D (P x‖P0)]

1/2
, for x < µ0;

+ [2D (P x‖P0)]
1/2
, for x ≥ µ0.

We will need the following general lemma.
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Lemma 2.2. If the variance function is increasing then

G (x)
x− µ0

is a decreasing function of x.

P r o o f . We have

d
dx

(
G (x)
x− µ0

)
=

(x− µ0) D
′(x)
G(x) −G (x)

(x− µ0)2

=
(x− µ0)

∫ µ0

x
−1
V (µ) dµ− 2D

(x− µ0)2
G (x)

=
(x− µ0)

∫ x
µ0

1
V (µ) dµ− 2D

(x− µ0)2
G (x)

.

We have to prove that the numerator is positive for x < µ0 and negative for x > µ0.
The numerator can be calculated as

(x− µ0)
∫ x

µ0

1
V (µ)

dµ− 2D = (x− µ0)
∫ x

µ0

1
V (µ)

dµ+ 2
∫ x

µ0

µ− x
V (µ)

dµ

=
∫ x

µ0

(
x− µ0

V (µ)
+ 2

µ− x
V (µ)

)
dµ

=
∫ x

µ0

2µ− µ0 − x
V (µ)

dµ.

If x > µ0 then∫ x

µ0

2µ− µ0 − x
V (µ)

dµ =
∫ x+µ0

2

µ0

2µ− µ0 − x
V (µ)

dµ+
∫ x

x+µ0
2 0

2µ− µ0 − x
V (µ)

dµ

≤
∫ x+µ0

2

µ0

2µ− µ0 − x
V
(
x+µ0

2

) dµ+
∫ x

x+µ0
2 0

2µ− µ0 − x
V
(
x+µ0

2

) dµ

=
∫ x

µ0

2µ− µ0 − x
V
(
x+µ0

2

) dµ = 0.

The inequality for x < µ0 is proved in the same way. �

3. EXPONENTIAL DISTRIBUTIONS

Although the tail probabilities of the exponential distribution are easy to calculate the
inequalities related to the signed log-likelihood of the exponential distribution are non-
trivial and will be useful later.

The exponential distribution Expθ has density

f (x) =
1
θ

exp
(
−x
θ

)
, x ≥ 0.
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The distribution function is

Pr (X ≤ x) =
∫ x

0

1
θ

exp
(
− t
θ

)
dt = 1− exp

(
−x
θ

)
, x ≥ 0.

The mean of the exponential distribution Expθ is θ and the variance is θ2 so the variance
function is V (µ) = µ2. The divergence can be calculated as

D
(
Expθ1‖Expθ2

)
=
∫ θ2

θ1

µ− θ1

µ2
dµ

=
θ1

θ2
− 1− ln

θ1

θ2
.

This is the well-known Itakura-Saito divergence. We see that

GExpθ (x) = ±
[
2
(x
θ
− 1− ln

x

θ

)]1/2
= γ

(x
θ

)
where γ denotes the function

γ (x)=

{
− [2 (x− 1− lnx)]

1/2
, whenx ≤ 1;

+ [2 (x− 1− lnx)]
1/2
, whenx > 1.

Note that the saddle-point approximation is exact for the family of exponential distri-
butions, i. e.

f (x) =
τ 1/2

e
· φ (G (x))

[V (x)]
1/2
.

Lemma 3.1. The density of the signed log-likelihood of an exponential random variable
is given by

τ 1/2

e
· zφ (z)
γ−1 (z)− 1

.

P r o o f . Let X be a Expθ distributed random variable. Without loss of generality we
may assume that θ = 1. The density of the signed log-likelihood is

f
(
γ−1 (z)

)
γ′ (γ−1 (z))

=
τ
1/2

e ·
φ(γ(γ−1(z)))
[V (γ−1(z))]

1/2

γ′ (γ−1 (z))

=
τ 1/2

e
· φ (z)

[V (γ−1 (z))]
1/2
γ′ (γ−1 (z))

.

The variance function is V (x) = x2 so the density is

τ 1/2

e
· φ (z)
γ−1 (z) · γ′ (γ−1 (z))

.
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Fig. 2. The signed log-likelihood γ (x) of an exponential distribution.

From γ2 = 2D it follows that γ · γ′ = D′ so that

γ′ (z) =
dD
dz

γ (z)
=

1
θ −

1
z

γ (z)
.

Hence the density of γ (X) can be written as

τ 1/2

e
· φ (z)

γ−1 (z) ·
1
θ−

1
γ−1(z)

γ(γ−1(z))

=
τ 1/2

e
· zφ (z)
γ−1 (z)− 1

,

which proves the lemma. �

Lemma 3.2. (From Harremoës and Tusnády [7]) Let X1 and X2 denote random vari-
ables with density functions f1 and f2. If there exists a real number x0 such that
f1 (x) ≥ f2 (x) for x ≤ x0 and f1 (x) ≤ f2 (x) for x ≥ x0, then X1 is stochastically dom-
inated by X2. In particular, if f2(x)

f1(x) is increasing then X1 is stochastically dominated by
X2.

Theorem 3.3. (From Harremoës and Tusnády [7]) The signed log-likelihood of an
exponentially distributed random variable is stochastically dominated by the standard
Gaussian.

The proof below is a simplified version of the proof in [7].

P r o o f . The quotient between the density of a standard Gaussian and the density of
G (X) is

e
τ 1/2
· γ
−1 (z)− 1

z
.
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Fig. 3. Plot of the quantiles of a standard Gaussian vs. the quantiles

of the signed log-likelihood of an exponential distribution.

We have to prove that this quotient is increasing. The function γ is increasing so it is
sufficient to prove that t−1

γ(t) is increasing or equivalently that

γ (t)
t− 1

is decreasing. This follows from Lemma 2.2 because the variance function is increasing.

�

4. GAMMA DISTRIBUTIONS

The sum of k exponentially distributed random variables is Gamma distributed Γ (k, θ)
where k is called the shape parameter and θ is the scale parameter. It has density

f (x) =
1
θk

1
Γ (k)

xk−1 exp
(
−x
θ

)
and this formula is used to define the Gamma distribution when k is not an integer.
The mean of the Gamma distribution Γ (k, θ) is µ = k · θ and the variance is k · θ2 so
the variance function is V (µ) = µ2/k. The divergence can be calculated as

D (Γ (k, θ1) ‖Γ (k, θ2)) =
∫ kθ2

kθ1

µ− kθ1

µ2/k
dµ

= k

(
θ1

θ2
− 1− ln

θ1

θ2

)
.

Therefore we have that
GΓ(k,θ) (x) = k

1/2γ
( x
kθ

)
.
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Fig. 4. The quantiles of a standard Gaussian vs. Gamma

distributions for k = 1 (full), k = 5 (dash), and k = 20 (dot). The line

through (0,0) corresponds to a perfect match with a standard

Gaussian.

Note that the saddle-point approximation is exact for the family of Gamma distributions,
i. e.

f (x) =
kk exp (−k)

Γ (k)
·

exp
(
−k
(
x
kθ − 1− ln x

kθ

))
x

=
kkτ 1/2 exp (−k)

Γ (k) k1/2
·
φ
(
GΓ(k,θ) (x)

)
[V (x)]

1/2
.

The following lemma is proved in the same way as Lemma 3.1.

Lemma 4.1. The density of the signed log-likelihood of a Gamma random variable is
given by

kkτ 1/2 exp (−k)
Γ (k) k1/2

·
z
k1/2φ (z)

γ−1
(

z
k1/2

)
− 1

.

Theorem 4.2. (From Harremoës and Tusnády [7]) The signed log-likelihood of a
Gamma distributed random variable is stochastically dominated by the standard Gaus-
sian, i. e.

Pr (X ≤ x) ≥ Φ (GΓ (x)) .

P r o o f . This is proved in the same way as the corresponding result for exponential
distributions. �

Theorem 4.3. Let X1 and X2 denote Gamma distributed random variables with shape
parameters k1 and k2. Then the signed log-likelihood of X1 is dominated by the signed
log-likelihood of X2 if and only if k1 ≤ k2.
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P r o o f . We have to prove that
z

k
1/2
1

φ (z)

γ−1

(
z

k
1/2
1

)
− 1
≤

z

k
1/2
2

φ (z)

γ−1

(
z

k
1/2
2

)
− 1

for z > 0 and the reverse inequality for z < 0. For z > 0 the inequality is equivalent to

γ−1

(
z

k
1/2
2

)
− 1

z

k
1/2
2

≤
γ−1

(
z

k
1/2
1

)
− 1

z

k
1/2
1

.

This follows because the function
t− 1
γ(t)

is increasing. �

5. GEOMETRIC DISTRIBUTIONS

A geometric distribution can be obtained by compounding a Poisson distribution Po (λ)
with rate parameter λ distributed according to an exponential distribution Exp (θ).
This geometric distribution will be denoted by Geoθ. We note that this is an unusual
way of parameterizing the geometric distributions, but it will be useful for some of our
calculations. Since λ is both the mean and the variance of Po (λ) the mean of Geoθ is
θ and the variance function is V (µ) = µ+ µ2.

For m = 0, 1, 2, . . . the point probabilities of a geometric distribution can be written
as

Pr (M = m) =
∫ ∞

0

λm

m!
exp (−λ) · 1

θ
exp

(
−λ
θ

)
dλ

=
∫ ∞

0

(θt)m

m!
exp (−θt) · exp (−t) dt

=
θm

(θ + 1)m+1 .

The distribution function can be calculated as

Pr (M ≤ m) =
m∑
j=0

θj

(θ + 1)j+1

= 1−
(

θ

θ + 1

)m+1

.

The divergence is given by

D
(
Geoθ1

∥∥Geoθ2) =
∫ θ2

θ1

µ− θ1

µ+ µ2
dµ

= θ1 ln
θ1

θ2
− (θ1 + 1) ln

θ1 + 1
θ2 + 1

.
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Fig. 5. Plot the quantiles of the signed log-likelihood of Exp3.5 vs.

the quantiles of the signed log-likelihood of Geo3.5.

Hence the signed log-likelihood of the geometric distribution with mean θ is given by

gθ (x) = ±
[
2
(
x ln

x

θ
− (x+ 1) ln

x+ 1
θ + 1

)]1/2

. (1)

A QQ-plot of the distributions of the signed log-likelihood of an exponential distri-
bution and a geometric distribution can be seen in Figure 5 and as one can see we get
a nice pattern that we will now formalize.

Theorem 5.1. Assume that the random variable M has a geometric distribution Geoθ

and let the random variable X be exponentially distributed Expθ. If

Pr (X ≤ x) = Pr (M < m)

then
GGeoθ (m− 1) ≤ GExpθ (x) ≤ GGeoθ (m) . (2)

P r o o f . First we note that GExpθ (x) = γ (x/θ) and Pr (X ≤ x) = Pr (X/θ ≤ x/θ) .
Therefore we introduce the variable y = x/θ and the random variable Y = X/θ that
is exponentially distributed Exp1.

We will prove that
Pr (Y ≤ y) = Pr (M < m) (3)

implies
gθ (m− 1) ≤ γ (y) ≤ gθ (m) .

One has to prove that Pr (Y ≤ y) = Pr (M < m) implies that gθ (m− 1) ≤ γ (y).
Equivalently we have to prove that

γ (y)− gθ (m− 1) =
γ (y)2 − gθ (m− 1)2

γ (y) + gθ (m− 1)
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is positive. The probability Pr (M < m) is a decreasing function of θ. Therefore the
probability Pr (Y ≤ y) is a decreasing function of θ, but the distribution of Y does
not depend on θ so y must be a decreasing function of θ. Therefore the denominator
γ (y) + gθ (m− 1) is a decreasing function of θ and it equals zero when θ = m− 1. The
numerator also equals zero when θ = m−1 so it is sufficient to prove that the numerator
is a decreasing function of θ. Therefore we have to prove the inequality

d
dθ

(
γ (y)2 − gθ (m− 1)2

)
≤ 0

or, equivalently, that
d
dθ

(
gθ (m− 1)2

)
≥ d

dθ

(
γ (y)2

)
.

One also have to prove that Pr (Y ≤ y) = Pr (M < m) implies that γ (y) ≤ gθ (m)
and it is sufficient to prove that

d
dθ

(
γ (y)2

)
≥ d

dθ

(
gθ (m)2

)
.

We have

d
dθ

(
γ (y)2

)
=

dy
dθ
· d

dy

(
γ (y)2

)
=

dy
dθ
· 2
(

1− 1
y

)
.

For the geometric distribution we have

d
dθ

(
(gθ(m))2

)
=

d
dθ

(
2
(
m ln

m

θ
− (m+ 1) · ln m+ 1

θ + 1

))
= 2

(
−m
θ

+
m+ 1
θ + 1

)
= 2

θ −m
θ + θ2

.

Therefore we have to prove that

2
θ −m+ 1
θ + θ2

≥ 2
dy
dθ
·
(

1− 1
y

)
≥ 2

θ −m
θ + θ2

.

Equation (3) can be solved as

1− exp (−y) = 1−
(

θ

θ + 1

)m
y = m ln

(
θ + 1
θ

)
.
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The derivative is

dy
dθ

= m

(
1

θ + 1
− 1
θ

)
= − m

θ + θ2
.

Finally we have to prove that

θ −m+ 1
θ + θ2

≥ − m

θ + θ2
·

(
1− 1

m ln
(
θ+1
θ

)) ≥ θ −m
θ + θ2

θ −m+ 1 ≥ −m+
1

ln
(
θ+1
θ

) ≥ θ −m
θ + 1 ≥ 1

ln
(
θ+1
θ

) ≥ θ
(θ + 1) ln

(
θ + 1
θ

)
≥ 1 ≥ θ ln

(
1 +

1
θ

)
,

which is easily checked. �

Corollary 5.2. Assume that the random variable M has a geometric distribution Geoθ

and let the random variable X be exponential distributed Expθ. If

GExpθ (x) = GGeoθ (m)

then
Pr (M < m) ≤ Pr (X ≤ x) ≤ Pr (M ≤ m) .

If we plot quantiles of an exponential distribution against the corresponding quantiles
of the signed log-likelihood of a geometric distribution we get a staircase function, i. e.
a sequence of horizontal lines. The inequality means that the left endpoint of any step
is to the left of the line y = x and that each right endpoint is to the right of the line.
Actually the line y = x intersects each step and we say that the plot has an intersection
property as illustrated in Figure 5.

P r o o f . According to Theorem 5.1 we have the implication

Pr (X ≤ x) = Pr (M < m) implies GExpθ (x) ≤ GGeoθ (m) .

Both Pr (X ≤ x) and GExpθ (x) are increasing functions of x so the previous implication
is equivalent to the following implication

GExpθ (x) = GGeoθ (m) implies Pr (M < m) ≤ Pr (X ≤ x) .

Since

Pr (X ≤ x) = Pr (M < m) implies GGeoθ (m− 1) ≤ GExpθ (x)
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we have that GGeoθ (m− 1) = GExpθ (x) implies that Pr (X ≤ x) ≤ Pr (M < m). Hence
GGeoθ (m+ 1) = GExpθ (x) implies that

Pr (X ≤ x) ≤ Pr (M < m+ 1) = Pr (M ≤ m) .

Since GGeoθ (m) ≤ GGeoθ (m+ 1) we also have that GGeoθ (m) = GExpθ (x) implies that
Pr (X ≤ x) ≤ Pr (M ≤ m) . �

6. INEQUALITIES FOR NEGATIVE BINOMIAL DISTRIBUTIONS

Compounding a Poisson distribution Po (λ) with rate parameter λ distributed accord-
ing to a Gamma distribution Γ (k, θ) leads a negative binomial distribution. The link
to waiting times in Bernoulli processes will be explored in Section 7. In this section we
will parametrize the negative binomial distribution as neg (k, θ) where k and θ are the
parameters of the corresponding Gamma distribution. We note that this is an unusual
parametrization the negative binomial distribution, but it will be useful for our calcula-
tions. Since λ is both the mean and the variance of Po (λ) we can calculate the mean
of neg (k, θ) as µ = kθ and the variance as V (µ) = µ+ µ2

k .
The point probabilities of a negative binomial distribution can be written in the

following way

Pr (M = m) =
∫ ∞

0

λm

m!
exp (−λ) · 1

θk
1

Γ (k)
λk−1 exp

(
−λ
θ

)
dλ

=
∫ ∞

0

(θt)m

m!
exp (−θt) · 1

Γ (k)
tk−1 exp (−t) dt

=
Γ (m+ k)
m!Γ (k)

· θm

(θ + 1)m+k
.

The divergence is given by

D (neg (k, θ1)‖neg (k, θ2)) =
∫ kθ2

kθ1

µ− kθ1

µ+ µ2

k

dµ

= k

(
θ1 ln

θ1

θ2
− (θ1 + 1) ln

θ1 + 1
θ2 + 1

)
.

The signed log-likelihood is given by

Gneg(k,θ) (x) = k
1/2gθ

(x
k

)
where gθ is given by Equation (1).

We will need the following lemma.

Lemma 6.1. A Poisson random variable K with distribution Po (λ) satisfies

d
dλ

Pr (K ≤ k) = −Pr (K = k) .
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P r o o f . We have

d
dλ

Pr (K ≤ k) =
d

dλ

(
k∑

m=0

λm

m!
exp(−λ)

)

= − exp(−λ) +
k∑

m=1

(
λ(m−1)

(m− 1)!
exp(−λ)− λm

m!
exp(−λ)

)
= −λ

k

k!
exp (−λ) ,

which proves the lemma. �

Lemma 6.2. If the distribution of Mk is neg (k, θ) then the derivative of the point
probability with respect to the mean value parameter equals

d
dµ

Pr (Mk ≤ m) = −Pr (Mk+1 = m) .

where Mk+1 is neg (k + 1, θ) .

P r o o f . We have

d
dµ

Pr (Mk ≤ m) =
1
dµ
dθ

· d
dθ

∫ ∞
0

 m∑
j=0

Po (θt; j)

 · 1
Γ (k)

tk−1 exp (−t) dt


=

1
k
·
∫ ∞

0

(−t · Po (θt;m)) · 1
Γ (k)

tk−1 exp (−t) dt

= −
∫ ∞

0

Po (θt;m) · 1
Γ (k + 1)

tk exp (−t) dt.

The last integral equals −Pr (Mk+1 = m) , which proves the lemma. �

The following theorem generalizes Corollary 5.2 from k = 1 to arbitrary positive
values of k. We cannot use the same proof technique because we do not have an explicit
formula for the quantile function for the Gamma distributions except in the case when
k = 1. Lemma 3.2 cannot be used because we want to compare a discrete distribution
with a continuous function. Instead the proof combines a proof method developed by
Zubkov and Serov [11] with the ideas and results developed in the previous sections.

Theorem 6.3. Assume that the random variable M has a negative binomial distribu-
tion neg (k, θ) and let the random variable X be Gamma distributed Γ (k, θ) . If

GΓ(k,θ) (x) = Gneg(k,θ) (m)

then
Pr (M < m) ≤ Pr (X ≤ x) ≤ Pr (M ≤ m) . (4)
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P r o o f . Below we only give the proof of the upper bound in Inequality 4. The lower
bound is proved the in the same way.

First we note that GΓ(k,θ) (x) = GΓ(k, 1k ) (x/ (kθ)) and

Pr (X ≤ x) = Pr
(
X

kθ
≤ x

kθ

)
.

Therefore we introduce the variable y = x/ (kθ) and the random variable Y = X/ (kθ)
that is Gamma distributed Γ (k, 1/k) . Introduce the difference

δ (µ0) = Pr (M ≤ m)− Pr (Y ≤ y)

where µ0 is the mean value of M. Note that

lim
µ0→0

δ (µ0) = lim
µ0→∞

δ (µ0) = 0. (5)

Note that there exists (at least) one value of µ0 such that dδ
dµ0

= 0. It is sufficient to
prove that δ is first increasing and then decreasing in [0,∞[ .

According to Lemma 6.2 the derivative of Pr (M ≤ m) with respect to µ0 is

d
dµ0

Pr (M ≤ m) = −Γ (m+ k + 1)
m!Γ (k + 1)

· θm

(θ + 1)m+k+1
.

= − m+ k

k (θ + 1)
· Γ (m+ k)
m!Γ (k)

θm

(θ + 1)m+k

= − θ̂ + 1
θ + 1

· Pr (M = m)

where θ = µ0/k is the scale parameter and where and θ̂ = m/k is the maximum likelihood
estimate of the scale parameter. Let P̂r denote the probability of M calculated with
respect to this maximum likelihood estimate θ̂. Then we have

d
dθ

Pr (M ≤ m) = −m+ k

θ + 1
exp (−D) P̂r (M = m) .

The condition
GΓ(k,θ) (x) = Gneg(k,θ) (m)

can be written as
k

1/2γ (y) = k
1/2gθ

(
θ̂
)
,

which implies

(γ (y))2 =
(
gθ

(
θ̂
))2

.

Differentiation with respect to θ gives

2
(

1− 1
y

)
dy
dθ

= 2
θ − θ̂
θ + θ2
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so that
dy
dθ

=
y

y − 1
· θ − θ̂
θ + θ2

.

Therefore

d
dθ

Pr (Y ≤ y) = f (y) · dy
dθ

=
kk exp (−k)

Γ (k) k1/2
· exp (−D)

y
· y

y − 1
· θ − θ̂
θ + θ2

=
kk exp (−k)

Γ (k) k1/2
· exp (−D)
θy − θ

· θ − θ̂
1 + θ

.

Combining these results we get

dδ
dθ

= −m+ k

θ + 1
P̂r (M = m) · exp (−D)− kk exp (−k)

Γ (k) k1/2
· exp (−D)
θy − θ

· θ − θ̂
1 + θ

=
kk exp (−k)

Γ (k)
· exp (−D)

θ + 1
·

(
θ̂ − θ
θy − θ

− Γ (k) (m+ k)
kk exp (−k)

· P̂r (M = m)

)
.

Remark that the first factor is positive and that the value of

Γ (k) (m+ k)
kk exp (−k)

· P̂r (M = m)

does not depend on θ. Therefore it is sufficient to prove that θ̂−θ
θy−θ is a decreasing function

of θ.
The derivative with respect to θ is

− (θ · y − θ)−
(
θ̂ − θ

)(
y + θ · y

y−1 ·
θ−θ̂
θ+θ2 − 1

)
(θy − θ)2

=

(θ̂−θ)2

θ̂(1+θ)(y−1)
− y−1

y

(θy−θ)2
θ̂·y

.

We have to prove that

y − 1
y
≥

(
θ̂ − θ

)2

θ̂ (1 + θ) (y − 1)
.

If θ̂ ≥ θ the inequality is equivalent to

(y − 1)2

y
≥

(
θ̂ − θ

)2

θ̂ (1 + θ)
.

If θ̂ < θ the inequality is equivalent to

(y − 1)2

y
≤

(
θ̂ − θ

)2

θ̂ (1 + θ)
.
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The equation (y−1)2

y = t can be solved with respect to y, which gives the solutions

y = 1 + t
2 ±

[t2+4t]
1/2

2 . For θ̂ ≥ θ we get

y ≥ 1 +

(θ̂−θ)2

θ̂(1+θ)

2
+

[(
(θ̂−θ)2

θ̂(1+θ)

)2

+ 4(θ̂−θ)2

θ̂(1+θ)

]1/2

2

= 1 +
(
θ̂ − θ

) θ̂ − θ +
[(
θ̂ + θ

)2

+ 4θ̂
]1/2

2θ̂ (1 + θ)
.

For θ̂ < θ we get

y ≥ 1 +

(θ̂−θ)2

θ̂(1+θ)

2
−

[(
(θ̂−θ)2

θ̂(1+θ)

)2

+ 4(θ̂−θ)2

θ̂(1+θ)

]1/2

2

= 1 +
(
θ̂ − θ

) θ̂ − θ +
[(
θ̂ + θ

)2

+ 4θ̂
]1/2

2θ̂ (1 + θ)
.

Since γ is increasing and γ(y) = gθ

(
θ̂
)

we have to prove that

gθ

(
θ̂
)
≥ γ

1 +
(
θ̂ − θ

) θ̂ − θ +
[(
θ̂ + θ

)2

+ 4θ̂
]1/2

2θ̂ (1 + θ)


or, equivalently, that

gθ

(
θ̂
)
− γ

1 +
(
θ̂ − θ

) θ̂ − θ +
[(
θ̂ + θ

)2

+ 4θ̂
]1/2

2θ̂ (1 + θ)



=

{
gθ

(
θ̂
)}2

−

{
γ

(
1 +

(
θ̂ − θ

) θ̂−θ+
h
(θ̂+θ)2

+4θ̂
i1/2

2θ̂(1+θ)

)}2

gθ

(
θ̂
)

+ γ

(
1 +

(
θ̂ − θ

) θ̂−θ+
h
(θ̂+θ)2

+4θ̂
i1/2

2θ̂(1+θ)

)

is positive. Both the denominator and the numerator are zero when θ = θ̂. Therefore
it is sufficient to prove that both the denominator and the numerator are decreasing
functions of θ.



960 P. HARREMOËS

First we prove that the denominator is decreasing. The first term is obviously de-

creasing. The second term is composed of γ, which is increasing, and t y 1+ t
2±

[t2+4t]
1/2

2

which is increasing or decreasing depending on the sign of±, and the function θ y (θ̂−θ)2

θ̂(1+θ)

which is decreasing when θ ≤ θ̂ and increasing when θ ≥ θ̂. Therefore the composed
function is a decreasing function of θ.

The numerator can be written as

2

{
θ̂ ln

θ̂

θ
−
(
θ̂ + 1

)
ln
θ̂ + 1
θ + 1

}
− 2


(
θ̂ − θ

) θ̂−θ+
h
(θ̂+θ)2

+4θ̂
i1/2

2θ̂(1+θ)

− ln

(
1 +

(
θ̂ − θ

) θ̂−θ+
h
(θ̂+θ)2

+4θ̂
i1/2

2θ̂(1+θ)

)
 .

We calculate the derivative with respect to θ, which can be written as

−4 2θ+θ̂+4
θ+θ2

(
θ − θ̂

)2

θ
(
θ + θ̂ + 2

)[(
θ̂ + θ

)2

+ 4θ̂
]1/2

+ (θ + 2)
((

θ̂ + θ
)2

+ 4θ̂
) ,

which is obviously less than or equal to zero. �

If we want to give lower bounds and upper bounds to the tail probabilities of a
negative binomial distribution the following reformulation of Theorem 6.3 is useful.

Corollary 6.4. Assume that the random variable M has a negative binomial distribu-
tion neg (k, θ) and let the random variable X be Gamma distributed Γ (k, θ) . Then

Pr (X ≤ xm) ≤ Pr (M ≤ m) ≤ Pr (X ≤ xm+1) (6)

where xm and xm+1 are determined by

GΓ(k,θ) (xm) = Gneg(k,θ) (m) ,
GΓ(k,θ) (xm+1) = Gneg(k,θ) (m+ 1) .

7. INEQUALITIES FOR BINOMIAL DISTRIBUTIONS
AND POISSON DISTRIBUTIONS

We will prove that intersection results for binomial distributions and Poisson distribu-
tions follow from the corresponding intersection result for negative binomial distributions
and Gamma distributions. We note that the point probabilities of a negative binomial
distribution can be written as

Γ (m+ k)
m!Γ (k)

· θm

(θ + 1)m+k
=
km̄

m!
pk (1− p)m
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Fig. 6. Plot the quantiles of the signed log-likelihood of a standard

Gaussian vs. the quantiles of the signed log-likelihood of bin (7, 1/2).

where p = 1
1+θ and where km̄ = k(k + 1)(k + 2) . . . (k + m − 1) denotes the raising

factorial. Let nb (p, k) denote a negative binomial distribution with success probability
p. Then nb (p, k) is the distribution of the number of failures before the k’th success in
a Bernoulli process with success probability p.

Our inequality for the negative binomial distribution can be translated into an in-
equality for the binomial distribution. Assume that K is binomial bin (n, p) and M is
negative binomial nb (p, k) . Then

Pr (K ≥ k) = Pr (M + k ≤ n) .

In terms of p the divergence can be written as

D (nb (p1, k)‖nb (p2, k)) =
k

p1

(
p1 ln

p1

p2
+ (1− p1) ln

1− p1

1− p2

)
.

We have

D (bin (n, p1)‖ bin (n, p2)) = n

(
p1 ln

p1

p2
+ (1− p1) ln

1− p1

1− p2

)
so

D

(
nb

(
k

n
, k

)∥∥∥∥nb (p, k)
)

= n

(
k

n
ln

k
n

p2
+
(

1− k

n

)
ln

1− k
n

1− p2

)

= D

(
bin

(
n,
k

n

)∥∥∥∥ bin (n, p)
)
.

If Gbin is the signed log-likelihood of bin (n, p) and Gnb is the signed log-likelihood of
nb (p, k) then Gbin(n,p) (k) = −Gnb(p,k) (n− k) .
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Assume that L is Poisson distributed with mean λ and X is Gamma distributed with
shape parameter k and scale parameter 1, i. e. the distribution of the waiting time until
k observations from an Poisson process with intensity 1. Then

Pr (L ≥ k) = Pr (X ≤ λ) .

Next we note that

D (Po (k) ‖Po (λ)) = D

(
Γ
(
k,
λ

k

)∥∥∥∥Γ (k, 1)
)
.

If GPo(λ) is the signed log-likelihood for Po (λ) and GΓ(k,1) is the signed log-likelihood
for Γ (k, 1) then GPo(λ) (k) = −GΓ(k,1) (λ) .

Theorem 7.1. Assume that K is binomially distributed bin (n, p) and let Gbin(n,p)

denote the signed log-likelihood function of the exponential family based on bin (n, p) .
Assume that L is a Poisson random variable with distribution Po (λ) and let GPo(λ)

denote the signed log-likelihood function of the exponential family based on Po (λ) . If

Gbin(n,p) (k) = GPo(λ) (k)

then
Pr (K < k) ≤ Pr (L < k) ≤ Pr (K ≤ k) . (7)

P r o o f . Let M denote a negative binomial random variable with distribution nb (p, k)
and let X denote a Gamma random variable with distribution Γ (k, θ) where the param-
eter θ equals 1

p − 1 such that the distributions nb (p, k) and Γ (k, θ) have the same mean
value. Now Gnb(p,k) (n− k) = −Gbin(n,p) (k) and GΓ(k,θ) (λθ) = −GPo(λ) (k) . Then
Gnb(p,k) (n− k) = GΓ(k,θ) (λθ) . The left part of the Inequality 7 is proved as follows.

Pr (K < k) = 1− Pr (K ≥ k)
= 1− Pr (M + k ≤ n)
≤ 1− Pr (X ≤ λθ)
= 1− Pr (L ≥ k)
= Pr (L < k) .

The right part of the inequality is proved in the same way. �

Note that Theorem 6.3 cannot be proved from Theorem 7.1 because the number pa-
rameter for a binomial distribution has to be an integer while the number parameter
of a negative binomial distribution may assume any positive value. Now, our inequali-
ties for negative binomial distributions can be translated into inequalities for binomial
distributions.

We can use the previous theorem to give a new proof of an intersection inequalities
for the binomial family as stated in the following theorem that was recently proved by
Zubkov and Serov [11].
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Fig. 7. Plot of quantiles of a standard Gaussian vs. the signed

log-ligelihood of the Poisson distribution Po (3.5) .

Corollary 7.2. Assume that K is binomially distributed bin (n, p) and let Gbin(n,p)

denote the signed log-likelihood function of the exponential family based on bin (n, p) .
Then

Pr (K < k) ≤ Φ
(
Gbin(n,p) (k)

)
≤ Pr (K ≤ k) . (8)

Similarly, assume that L is Poisson distributed Po (λ) and let GPo(λ) denote the
signed log-likelihood function of the exponential family based on Po (λ) . Then

Pr (L < k) ≤ Φ
(
GPo(λ) (k)

)
≤ Pr (L ≤ k) . (9)

P r o o f . First we prove the left part of Inequality (9). Let X denote a Gamma dis-
tributed Γ (k, 1) and let Z denote a standard Gaussian. Then GPo(λ) (k) = −GΓ(k,1) (λ)
and

Pr (L < k) = 1− Pr (L ≥ k)
= 1− Pr (X ≤ λ)
= Pr (X ≥ λ)

≤ Pr
(
Z ≥ GΓ(k,1) (λ)

)
= Pr

(
Z ≥ −GPo(λ) (k)

)
= Φ

(
GPo(λ) (k)

)
.

The left part of Inequality (8) is obtained by combining the left part of Inequality (9)
with the left part of Inequality (7). The right part of Inequality (8) follows from the left
part of Inequality (8) by replacing p by 1− p and replacing k by n− k. Since a Poisson
distribution is a limit of binomial distributions the right part of Inequality (9) follows
from the right part of Inequality (9). �
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The intersection property of the Poisson distribution can also be proved from the
intersection property of the negative binomial distribution and the Gamma distribution
by using that a Poisson distribution is a limit of negative binomial distributions and
that corresponding Gamma distributions have a Gaussian distribution as limit. The
intersection property for Poisson distributions was first proved in [7].

8. SUMMARY

The main theorems in this paper are domination theorems and intersection theorems.
Inequalities of the first type state that the signed log-likelihood of one distribution is
dominated by the signed log-likelihood of another distribution, i. e. the distribution
function of the first distribution is greater than the distribution function of the second
distribution.

sgn. log-likelihood dom. by sgn. log-likelihood Condition Theorem
Exponential Gaussian 3.3

Gamma Gaussian 4.2
Γk1,θ1 Γk2,θ2 k1 ≤ k2 4.3

Inverse Gaussian Gaussian Ref. [6, Thm. 10]
Inv. Gauss(µ1, λ1) Inv. Gauss(µ2, λ2) µ1

λ1
> µ2

λ2
Unpublished

Tab. 1. Stochastic domination results. Note that the exponential

distributions are special cases of Gamma distributions.

The second type of result are intersection results, i. e. the distribution function of
the log-likelihood of a discrete distribution is a staircase function where each step is
intersected by the distribution function of the log-likelihood of a continuous distribution.

Discrete distribution Continuous distribution Theorem
Geometric Exponential 5.2

Negative binomial Gamma 6.3
Binomial Gaussian 7.2
Poisson Gaussian 7.2

Tab. 2. Intersection results.

9. DISCUSSION

We have proved that a plot of the quantiles of the signed log-likelihood of an exponential
distribution and a geometric distribution satisfies the intersection property via Inequlity
(2). With a minor modification of the proof we get the following bound that is much
sharper.

GGeoθ (m− 1/2) ≤ GExpθ (x)
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We conjecture that a similar inequality holds for any Gamma distribution compared
with the corresponding negative binomial distribution.

We have both lower bounds and upper bounds on the Poisson distributions. The up-
per bound for the Poisson distribution corresponds to the lower bound for the Gamma
distribution presented in Theorem 4.2, but the lower bound for the Poisson distribution
is translated into a new upper bound for the distribution function of the Gamma distri-
bution. Numerical calculations also indicates that the right hand inequality in Inequality
(9) can be improved to

Φ
(
GPo(λ)

(
k +

1
2

))
≤ Pr (L ≤ k) .

This inequality is much tighter than the inequality in (9). Similarly, J. Reiczigel, L.
Rejtő and G. Tusnády conjectured that both the lower bound and the upper bound in
Inequality 8 can be improved significantly when for p = 1/2 [10], and their conjecture
has been a major motivation for initializing this research.

For the most important distributions like the binomial distributions, the Poisson
distributions, the negative binomial distributions, the inverse Gaussian distributions and
the Gamma distributions we can formulate sharp inequalities that hold for any sample
size. All these distributions have variance functions that are polynomials of order 2 and
3. Natural exponential families with polynomial variance functions of order at most 3
have been classified [8, 9] and there is a chance that one can formulate and prove sharp
inequalities for each of these exponential families. Although there may exist very nice
results for the rest of the exponential families with simple variance functions the rest of
these exponential families have much fewer applications than the exponential families
that have been the subject of the present paper.

In the present paper inequalities have been developed for specific exponential families,
but one may hope that a more general inequality may be developed where a bound on
the tail is derived directly from the properties of the variance function.
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[5] L. Györfi, P. Harremoës, and G. Tusnády: Gaussian approximation of large deviation
probabilities. http://www.harremoes.dk/Peter/ITWGauss.pdf, 2012.
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