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Abstract. For a graphical property P and a graph G, a subset S of vertices of G is a P-set
if the subgraph induced by S has the property P . The domination number with respect to
the property P , denoted by γP (G), is the minimum cardinality of a dominating P-set. We
define the domination multisubdivision number with respect to P , denoted by msdP (G),
as a minimum positive integer k such that there exists an edge which must be subdivided
k times to change γP(G). In this paper
(a) we present necessary and sufficient conditions for a change of γP (G) after subdividing
an edge of G once,

(b) we prove that if e is an edge of a graph G then γP (Ge,1) < γP (G) if and only if
γP(G − e) < γP (G) (Ge,t denotes the graph obtained from G by subdivision of e
with t vertices),

(c) we also prove that for every edge of a graph G we have γP (G − e) 6 γP (Ge,3) 6
γP(G− e) + 1, and

(d) we show that msdP (G) 6 3, where P is hereditary and closed under union with K1.

Keywords: dominating set; edge subdivision; domination multisubdivision number;
hereditary graph property
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1. Introduction

All graphs considered in this article are finite, undirected, without loops or multi-

ple edges. For the graph theory terminology not presented here, we follow Haynes et

al. [14]. We denote the vertex set and the edge set of a graph G by V (G) and E(G),

respectively. The subgraph induced by S ⊆ V (G) is denoted by 〈S,G〉. For a vertex x

of G, N(x,G) denotes the set of all neighbors of x in G, N [x,G] = N(x,G) ∪ {x}

and the degree of x is deg(x,G) = |N(x,G)|. The maximum and minimum de-

grees of vertices in the graph G are denoted by ∆(G) and δ(G), respectively. For
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a graph G, let x ∈ X ⊆ V (G). A vertex y is a private neighbor of x with respect

to X if N [y,G] ∩ X = {x}. The private neighbor set of x with respect to X is

pnG[x,X ] = {y : N [y,G] ∩ X = {x}}. For a graph G, the subdivision of the edge

e = uv ∈ E(G) with a vertex x leads to a graph with the vertex set V ∪ {x} and

the edge set (E − {uv}) ∪ {ux, xv}. Let Ge,t denote the graph obtained from G by

a subdivision of the edge e with t vertices (instead of the edge e = uv we put a path

(u, x1, x2, . . . , xt, v)). For t = 1 we write Ge.

Let I denote the set of all mutually non-isomorphic graphs. A graph property is

any nonempty subset of I. We say that a graph G has the property P whenever

there exists a graph H ∈ P which is isomorphic to G. For example, we list some

graph properties:

⊲ O = {H ∈ I : H is totally disconnected};

⊲ C = {H ∈ I : H is connected};

⊲ T = {H ∈ I : δ(H) > 1};

⊲ M = {H ∈ I : H has a perfect matching};

⊲ F = {H ∈ I : H is a forest};

⊲ UK = {H ∈ I : each component of H is complete};

⊲ Dk = {H ∈ I : ∆(H) 6 k}.

A graph property P is called:

(a) hereditary (induced-hereditary), if the fact that a graph G has property P

implies that all subgraphs (induced subgraphs) of G also belong to P , and

(b) nondegenerate if O ⊆ P . Any set S ⊆ V (G) such that the induced subgraph

〈S,G〉 possesses the property P is called a P-set.

Note that:

(a) I, F and Dk are nondegenerate and hereditary properties;

(b) UK is nondegenerate, induced-hereditary and is not hereditary;

(c) all C, T andM are neither induced-hereditary nor nondegenerate. For a survey

on this subject we refer to Borowiecki et al. [2].

A set of vertices D ⊆ V (G) is a dominating set of a graph G if every vertex not

in D is adjacent to a vertex in D. The domination number with respect to the prop-

erty P , denoted by γP(G), is the smallest cardinality of a dominating P-set of G.

A dominating P-set of G with cardinality γP(G) is called a γP -set of G. If a prop-

erty P is nondegenerate, then every maximal independent set is a P-set and thus

γP(G) exists. Note that γI(G), γO(G), γC(G), γT (G), γM(G), γF(G) and γDk
(G)

are well known as the domination number γ(G), the independent domination num-

ber i(G) ([5]), the connected domination number γc(G) ([24]), the total domination

number γt(G) ([3]), the paired-domination number γpr(G) ([16]), the acyclic domi-

nation number γa(G) ([17]) and the k-dependent domination number γk(G) ([9]).

The concept of domination with respect to any graph property P was introduced by
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Goddard et al. [10] and has been studied, for example, in [19], [20], [21], [22], [23]

and elsewhere.

It is often of interest to know how the value of a graph parameter is affected when

a small change is made in a graph. In [20], the present author began the study of the

effects on γP(G) when a graph G is modified by deleting a vertex or by adding an

edge (P is nondegenerate). In this paper we concentrate on effects on γP(G) when

a graph is modified by deleting/subdividing an edge. An edge e of a graph G is

called a γP -ER−-critical edge of G if γP(G) > γP(G− e). Note that

(a) γ-ER−-critical edges do not exist (see [13]),

(b) Grobler [11] was the first who began the investigation of γP -ER−-critical edges

when P = O, and

(c) necessary and sufficient conditions for an edge of a graph G to be γP -ER−-

critical, where P is hereditary, may be found in [20].

One measure of the stability of the domination number of G under edge subdivi-

sion is the domination subdivision number with respect to the property P , denoted

sd+γP
(G), which is the minimum number of edges that must be subdivided (where

each edge in G can be subdivided at most once) in order to increase γP(G). The

following special cases for sd+γP
(G) have been investigated up to now:

(a) sd+γI
(G)—the domination subdivision number defined by Velammal [25],

(b) sd+γT
(G)—the total domination subdivision number introduced by Haynes et al.

in [15],

(c) sd+γM
(G)—the paired domination subdivision number introduced by Favaron et

al. in [8],

(d) sd+γC
(G)—the connected domination subdivision number introduced by Favaron

et al. in [7], and

(e) sd+γP
(G)—the domination subdivision number with respect to the nondegener-

ate property P introduced by the present author in [23].

Here we focus on the existence of critical edges with respect to the subdivi-

sion/multisubdivision. Results in this direction, in the case when P = I, were re-

cently obtained by Lemańska, Tey and Zuazua [18] and Dettlaff, Raczek and Topp [6].

For any nondegenerate property P ⊆ I we define an edge e of a graph G to be

(i) a γP -S
+-critical edge of G if γP(G) < γP(Ge), and

(ii) a γP -S
−-critical edge of G if γP(G) > γP(Ge).

In Section 2:

(a) we present necessary and sufficient conditions for a change of γP(G) after sub-

dividing an edge of G once, and

(b) we prove that an edge e of a graph G is γH-S
−-critical if and only if e is

γH-ER−-critical, for any graph property H ⊆ I which is induced-hereditary

and closed under union with K1.
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In Section 3 we deal with changes of γP(G) when an edge of G is multiple subdi-

vided. To present our results we need the following definitions.

For every edge e of a graph G let

⊲ msdP(e) = min{t : γP(Ge,t) 6= γP(G)};

⊲ msd+
P
(e) = min{t : γP(Ge,t) > γP(G)};

⊲ msd−
P
(e) = min{t : γP(Ge,t) < γP(G)}.

If γP(Ge,t) > γP(G) for every t > 1, then we write msd−
P
(e) = ∞. If γP(Ge,t) 6

γP(G) for every t > 1, then we write msd+
P
(e) = ∞.

Definition 1.1. For every graph G with at least one edge and every nonde-

generate property P , we define the domination multisubdivision (plus domination

multisubdivision, minus domination multisubdivision) number with respect to the

property P , denoted msdP (G) (msd+
P
, msd−

P
(G), respectively) to be

⊲ msdP(G) = min{msdP(e) : e ∈ E(G)},

⊲ msd+
P
(G) = min{msd+

P
(e) : e ∈ E(G)},

⊲ msd−
P
(G) = min{msd−

P
(e) : e ∈ E(G)},

respectively. If γP(Ge,t) > γP(G) for every t and every edge e ∈ E(G), then we write

msd−
P
(G) = ∞.

The parameters msd+(G) and msd+
T
(G) (in our designation) were introduced by

Dettlaff, Raczek and Topp in [6] and by Avella-Alaminos, Dettlaff, Lemańska and

Zuazua in [1], respectively. Note that in the case when P = I, clearly, msd(G) =

msd+(G), and msd−(G) = ∞. In Section 3 we prove that for every edge of a graph G

we have γP(G−e) 6 γP(Ge,3) 6 γP(G−e)+1 and we present necessary and sufficient

conditions for the validity of γP(G− e) = γP(Ge,3). Our main result in that section

is that msdP(G) 6 3 for any graph G and any graph property P which is hereditary

and closed under union with K1.

2. Single subdivision: critical edges

We begin this section with a characterization of γP -S
+-critical edges of a graph.

Note that if a property P is induced-hereditary and closed under union with K1

then P is nondegenerate.

Theorem 2.1. Let H ⊆ I be hereditary and closed under union with K1. Let G

be a graph and e = uv ∈ E(G). Then γH(Ge) 6 γH(G) + 1. If e is a γH-S
+-critical

edge of G then γH(Ge) = γH(G)+1 and for each γH-setM of G one of the following

conditions holds:

(i) u, v ∈ V (G)−M ;
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(ii) u ∈ M , v ∈ pnG[u,M ] and pnG[u,M ] is not a subset of {u, v};

(iii) v ∈ M , u ∈ pnG[v,M ] and pnG[u,M ] is not a subset of {u, v}.

If e is not γP -S
+-critical and for each γH-set M of G one of (i), (ii) and (iii) holds

then there is a dominating H-set R of G− uv with u, v ∈ R and |R| 6 γH(G).

P r o o f. Let x ∈ V (Ge) be the subdivision vertex and let M be a γH-set of G.

If u, v 6∈ M then M ∪ {x} is a dominating H-set of Ge (H is closed under union

with K1) and we have γH(Ge) 6 γH(G) + 1. If both u and v are in M then M

is a dominating H-set of Ge(H is hereditary), which implies γH(Ge) 6 γH(G). If

u ∈ M , v 6∈ M and v 6∈ pnG[u,M ] then again M is a dominating H-set of Ge and

hence γH(Ge) 6 γH(G). So, let u ∈ M , v 6∈ M and v ∈ pnG[u,M ]. If either {v} or

{u, v} coincides with pnG[u,M ] then (M − {u}) ∪ {x} is a dominating H-set of Ge;

hence γH(Ge) 6 γH(G). If neither pnG[u,M ] = {v} nor pnG[u,M ] = {u, v} then

M ∪ {v} is a dominating H-set of Ge and we have γH(Ge) 6 γH(G) + 1. Thus

γH(Ge) 6 γH(G)+1 and if the equality is fulfilled then one of (i), (ii) and (iii) holds.

Now, let for each γH-set M of G one of (i), (ii) and (iii) holds. Assume γH(Ge) 6

γH(G) and let R be a γH-set of Ge.

Case 1 : u, v 6∈ R. Hence x ∈ R. If u, v 6∈ pnGe
[x,R] then R − {x} is a dom-

inating H-set of G, a contradiction with γH(Ge) 6 γH(G). If u ∈ pnGe
[x,R] and

v 6∈ pnGe
[x,R] then R1 = (R− {x}) ∪ {u} is a dominating H-set of G of cardinality

|R1| = |R| = γH(Ge). Since γH(Ge) 6 γH(G), we have that R1 is a γH-set of G.

But then u ∈ R1, v 6∈ R1 and v 6∈ pnG[u,R1], contradicting (ii). If u, v ∈ pnG[x,R]

then as above R1 is a γH-set of G and since u ∈ R1 and {u, v} = pnG[u,R1], again

we arrive at a contradiction with (ii).

Case 2 : u ∈ R and v 6∈ R. Hence x 6∈ R, otherwise R−{x} is a dominating H-set

of G, contradicting γH(Ge) 6 γH(G). This implies that R is a γH-set of G, u ∈ R

and v 6∈ pnG[u,R], a contradiction with (ii).

Case 3 : u, v ∈ R. Hence R is a dominating H-set of G− uv and |R| = γH(Ge) 6

γH(G). �

When we restrict our attention to the case where H = I, we can describe more

precisely when an edge of a graph G is γ-S+-critical.

Corollary 2.2. Let G be a graph and e = uv ∈ E(G). Then e is a γ-S+-critical

edge of G if and only if for each γ-set M of G one of (i), (ii) and (iii) stated in

Theorem 2.1 holds.

P r o o f. Necessity: The result immediately follows by Theorem 2.1.

Sufficiency: Assume γ(Ge) 6 γ(G). Then by Theorem 2.1, there is a dominating

set R of G− uv with u, v ∈ R and |R| 6 γ(G). But it is a well known fact that if f
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is an edge of a graph G then always γ(G− f) > γ(G). Hence R is a γ-set of both G

and G− e and u, v ∈ R, contradicting all (i), (ii) and (iii). �

Theorem 2.3. LetH ⊆ I be induced-hereditary and closed under union withK1.

An edge e of a graph G is γH-S
−-critical if and only if e is γH-ER−-critical.

P r o o f. As we have already shown, H is nondegenerate and then all γH(G− e),

γH(Ge) and γH(G) exist. Let v be the subdivision vertex of Ge.

Sufficiency: Let e = xy be a γH-ER−-critical edge of G and M a γH-set of G− e.

Hence γH(G− e) < γH(G) and x, y ∈ M . But then M is a dominating H-set of Ge,

which leads to γH(Ge) 6 γH(G− e) < γH(G).

Necessity: Let e = xy be a γH-S
−-critical edge of G andM a γH-set of Ge. Hence

γH(Ge) < γH(G). Assume v 6∈ M . Hence at least one of x and y is in M . If both

x, y ∈ M thenM is a dominating H-set of G−e and the result follows. If x 6∈ M and

y ∈ M then M is a dominating H-set of G, a contradiction. Thus we may assume v

is in all γH-sets of Ge. Since H is induced-hereditary, at least one of x and y is not

in M . First let x ∈ M and y 6∈ M . Then y ∈ pnGe
[v,M ], which implies M − {v}

is a dominating H-set of G, a contradiction. Hence neither x nor y are in M . If

x, y 6∈ pnGe
[v,M ] thenM−{v} is a dominatingH-set of G, a contradiction. Hence at

least one of x and y, say y, is in pnGe
[v,M ]. But then (M−{v})∪{y} is a dominating

H-set of G, a contradiction. �

Note that

(a) there do not exist γ-ER−-critical edges (see [13]), and

(b) necessary and sufficient conditions for an edge of a graph G to be γH-ER−-

critical may be found in [20].

Now we define the following classes of graphs:

⊲ (CS−

P
) γP(G) > γP(Ge) for every edge e of G, and

⊲ (CER−

P
) γP(G) > γP(G− e) for every edge e of G.

As an immediate consequence of Theorem 2.3 we obtain the next result.

Corollary 2.4. If H ⊆ I is induced-hereditary and closed under union with K1

then the classes of graphs CS−

P
and CER−

P
coincide.

Note that the class CER−

P
in the case when P = O was introduced by Grobler [11]

and also considered in [12], [13], [4].
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3. Multiple subdivision

We first state our theorems, then we pose a problem they generate, and after that

we give the proofs.

Recall that Ge,t denotes the graph obtained from a graph G by the subdivision

of the edge e ∈ E(G) with t vertices (instead of edge e = uv we put a path

(u, x1, x2, . . . , xt, v)). For any graph G and any nondegenerate property P let us

denote by V −

P
(G) the set {v ∈ V (G) : γP (G − v) < γP(G)}. Our first result shows

that the value of the difference γP(Ge,3)− γP(G− e) is either 0 or 1.

Theorem 3.1. LetH ⊆ I be induced-hereditary and closed under union withK1.

If e = uv is an edge of a graph G then γH(G − e) 6 γH(Ge,3) 6 γH(G − e) + 1.

Moreover, the following conditions are equivalent:

(A1) γH(G− e) = γH(Ge,3);

(A2) at least one of the following holds:

(i) u ∈ V −

H
(G− e) and v belongs to some γH-set of G− u;

(ii) v ∈ V −

H
(G− e) and u belongs to some γH-set of G− v.

If in addition H is hereditary then (A1) and (A2) are equivalent to

(A3) γH(G− e) = 1 + γH(G).

The main result in this section is the following.

Theorem 3.2. Let e be an edge of a graph G and let H ⊆ I be hereditary and

closed under union with K1.

(i) Then γH(G) = γH(Ge,3) if and only if γH(G) = γH(G− e) + 1.

(ii) If γH(G) = γH(G − e) + 1 then msdH(e) = msd−
H
(e) = 1, msd+

H
(e) = 6 and

γH(G) = γH(Ge,1) + 1 = γH(Ge,2) + 1 = γH(Ge,3) = γH(Ge,4) = γH(Ge,5) =

γH(Ge,6)− 1.

(iii) Then msdH(e) 6 3. In particular (Dettlaff, Raczek and Topp [6] when H = I),

msdH(G) 6 3.

E x am p l e 3.3. It is easy to see that if G = K3n2...nm
, where m > 2 and ni > 3

for 2 6 i 6 m, then γO(G) = γO(Ge,3) = γO(G − e) + 1 = 3 for every edge e of G.

Hence by Theorem 3.2, msdO(G) = msd−
O
(G) = 1 and msd+

O
(G) = 6.

In view of Theorem 3.2 (iii), we can split the family of all graphs G into three

classes with respect to the value of msdP(G), where P ⊆ I is hereditary and closed

under union with K1. We define that a graph G belongs to the class Si
P
when-

ever msdP (G) = i, i ∈ {1, 2, 3}. It is straightforward to verify that if k > 1 and

O ⊆ P ⊆ I then

15



⊲ P3k, C3k ∈ S1
P
; P3k+2, C3k+2 ∈ S2

P
; and P3k+1, C3k+1 ∈ S3

P
.

Thus, none of S1
P
, S2

P
and S3

P
is empty.

We conclude this part with an open problem.

P r o b l e m 3.4. Characterize the graphs belonging to Si
P
, or find further proper-

ties of such graphs.

Remark that Dettlaff, Raczek and Topp recently characterized all trees belonging

to S1 and S3 (see [6]).

3.1. Proofs. For the proofs of Theorems 3.1 and 3.2, we need the following results.

Theorem A ([20]). LetH ⊆ I be nondegenerate and closed under union withK1.

Let G be a graph and v ∈ V (G).

(i) If v belongs to no γH-set of G then γH(G− v) = γH(G).

(ii) If γH(G− v) < γH(G) then γH(G− v) = γH(G)− 1. Moreover, if M is a γH-set

of G− v then M ∪ {v} is a γH-set of G and {v} = pnG[v,M ∪ {v}].

Theorem B ([20]). LetH ⊆ I be hereditary and closed under union withK1. Let

e = uv be an edge of a graph G. If γH(G) < γH(G− e) then γH(G) = γH(G− e)− 1.

Moreover, γH(G) = γH(G − e) − 1 if and only if at least one of the conditions (i)

and (ii) stated in Theorem 3.1 holds.

Theorem C ([20]). Let e = xy be an edge of a graph G and let H ⊆ I be

hereditary and closed under union with K1. If γH(G) > γH(G− e) then:

(i) no γH-set of G− e is an H-set of G;

(ii) both x and y are in all γH-sets of G− e;

(iii) γH(G− x) > γH(G− e) and γH(G− y) > γH(G− e);

(iv) if γH(G− x) = γH(G− e) then y belongs to no γH-set of G− x;

(v) if γH(G− y) = γH(G− e) then x belongs to no γH-set of G− y.

P r o o f of Theorem 3.1. Let D be a γH-set of G − e. Then since H is closed

under union with K1, D ∪ {x2} is a dominating H-set of Ge,3. Hence γH(Ge,3) 6

|D ∪ {y}| 6 γH(G− e) + 1.

For the left-hand side inequality, let D̃ be a γH-set of Ge,3 and S = D̃∩{x1, x2, x3}.

If S = {x2} then D̃ − {x2} is a dominating H-set of G − e and γH(G − e) 6

|D̃ − {x2}| = γH(Ge,3) − 1. If S = {x1, x2} then pnGe,3
[x1, D̃] = {u} and hence

D̃1 = (D̃−{x1, x2})∪{u} is a dominating H-set of G−e, which implies γH(G−e) 6

|D̃1| < |D̃| = γH(Ge,3).
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Let S = {x1}. If u ∈ pn[x1, D̃] then D̃2 = (D̃−{x1})∪{u} is a dominating H-set

of G − e and hence γH(G − e) 6 |D̃2| = |D̃| = γH(Ge,3). If u 6∈ pn[x1, D̃] then

D̃ − {x1} is a dominating H-set of G− e and γH(G− e) 6 |D̃| − 1 = γH(Ge,3)− 1.

If S = {x1, x3} then at least one of pnGe,3
[x1, D̃] = {x1, u} and pnGe,3

[x3, D̃] =

{x3, v} holds, otherwise (D̃−{x1, x3})∪ {x2} would be a dominating H-set of Ge,3,

contradicting the choice of D̃. Say, without loss of generality, pnGe,3
[x3, D̃] = {x3, v}.

Then D̃3 = (D̃ − {x3}) ∪ {v} is a γH-set of Ge,3 and D̃3 ∩ {x1, x2, x3} = {x1}. As

above we obtain γH(G − e) < γH(Ge,3). By reason of symmetry, the left-hand side

inequality is proved.

(A2) ⇒ (A1) Let us assume without loss of generality that (i) holds. Let D

be a γH(G − u)-set and v ∈ D. By Theorem A, D ∪ {u} is a γH-set of G − e

and pnG−e[u,D ∪ {u}] = {u}. Hence D ∪ {x1} is a dominating H-set of Ge,3 and

γH(Ge,3) 6 |D ∪ {x1}| = γH(G − e). But we have already shown that γH(Ge,3) >

γH(G− e). Therefore γH(Ge,3) = γH(G− e).

(A1) ⇒ (A2) Suppose γH(G − e) = γH(Ge,3). Let D̃ be a γH(Ge,3)-set and

S = D̃ ∩ {x1, x2, x3}. If S = {x2} then D̃ − {x2} is a dominating H-set of G − e,

a contradiction. If S = {x1, x2} then clearly pnGe,3
[x1, D̃] = {u}, which implies that

(D̃ − {x1, x2}) ∪ {u} is a dominating H-set of G− e, a contradiction.

Let S = {x1}. Hence v ∈ D̃. If u 6∈ pnGe,3
[x1, D̃] then D̃ − {x1} is a dominating

H-set of G − e, a contradiction. If u ∈ pnGe,3
[x1, D̃] then D1 = (D̃ − {x1}) ∪ {u}

is a γH-set of G− e, u, v ∈ D1, D1 − {u} is a γH-set of G− u (by Theorem A) and

v ∈ D1 − {u}. In addition it follows that u ∈ V −

H
(G− e). Thus, (i) holds.

By symmetry we still have the case when S = {x1, x3}. If u 6∈ pnGe,3
[x1, D̃]

and v 6∈ pnGe,3
[x3, D̃] then D̃ − {x1, x3} is a dominating H-set of G − e, a con-

tradiction. If u ∈ pnGe,3
[x1, D̃] and v 6∈ pnGe,3

[x3, D̃] then (D̃ − {x1, x3}) ∪ {u}

is a dominating H-set of G − e, a contradiction. So, u ∈ pnGe,3
[x1, D̃] and v ∈

pnGe,3
[x3, D̃]. Then D2 = (D̃ − {x1, x3}) ∪ {u, v} is a γH-set of G − e and both

{u} = pnG−e[x1, D2] and {v} = pnG−e[x3, D2] hold. Thus both (i) and (ii) are

fulfilled.

(A2) ⇔ (A3) By Theorem B. �

P r o o f of Theorem 3.2. (i) Necessity: Let γH(G) = γH(Ge,3). By Theorem 3.1

we know that γH(G− e) 6 γH(Ge,3) 6 γH(G− e) + 1 and if γH(G − e) = γH(Ge,3)

then γH(Ge,3) = γH(G) + 1. Thus γH(G) = γH(Ge,3) = γH(G− e) + 1.

Sufficiency: Let γH(G − e) + 1 = γH(G). Assume γH(G) 6= γH(Ge,3). Now

by Theorem 3.1, γH(Ge,3) = γH(G − e). Applying again Theorem 3.1 we obtain

γH(G) = γH(G− e)− 1, a contradiction. Thus, γH(G) = γH(Ge,3).

(ii) By (i), γH(G) = γH(Ge,3). Let M be a γH-set of G − e and e = uv. By

Theorem C (ii), both u and v are in M . Then
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(a) M is a dominating H-set of Ge,1 and Ge,2,

(b) M ∪ {x3} is a dominating H-set of Ge,4 and Ge,5, and

(c) M ∪ {x3, x5} is a dominating H-set of Ge,6. Hence

(A) γH(Ge,i) 6 γH(G − e) = γH(G) − 1 for i = 1, 2; γH(Ge,j) 6 γH(G − e) + 1 =

γH(G) for i = 4, 5; γH(Ge,6) 6 γH(G− e) + 2 = γH(G) + 1.

By Theorem C, min{γH(G − u), γH(G − v)} > γH(G − e) and by Theorem A we

have γH(G− {u, v}) = γH((G− u)− v) > γH(G− u)− 1 > γH(G− e)− 1. Suppose

that γH(G − {u, v}) = γH(G − e) − 1. Then both γH(G − u) = γH(G − e) and

γH((G − u)− v) = γH(G − u)− 1 hold. By the second equality and Theorem A we

deduce that v belongs to some γH-set of G− u. On the other hand, since γH(G) =

γH(G− e) + 1 > γH(G− u), v belongs to no γH-set of G− u, a contradiction. Thus,

(B) min{γH(G− u), γH(G− v), γH(G− {u, v})} > γH(G− e).

Let Dt be a γH-set of Ge,t and Ut = Dt ∩ {x1, . . . , xt}, where t = 1, . . . , 6.

Case 1 : t ∈ {1, 2}. Assume Ut 6= ∅. Then Dt − Ut is a dominating H-set for at

least one of the graphs G− e, G− u, G− v and G− {u, v}. Using (B) we have

γH(G) = γH(G− e) + 1 6 |Dt − Ut|+ 1 = γH(Ge,t)− |Ut|+ 1

6 γH(Ge,t),

contradicting (A). Thus Ut is empty. But then Dt is a dominating H-set of G − e,

which leads to γH(Ge,t) > γH(G−e). Now by (A) the equality γH(Ge,t) = γH(G−e)

follows.

Case 2 : t ∈ {4, 5}. Obviously Ut 6= ∅. As in Case 1 we obtain γH(G) 6 γH(Ge,t).

Since by (A) γH(Ge,t) 6 γH(G), we have γH(Ge,t) = γH(G).

Case 3 : t = 6. Clearly |U6| > 2. As in Case 1 we obtain γH(G) 6 γH(Ge,6) −

|U6|+1. Since |U6| > 2, we have γH(G) 6 γH(Ge,6)− 1. Now by (A) we deduce that

γH(G) = γH(Ge,6)− 1.

(iii) Immediately by (i) and (ii). �
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