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A graph associated to proper

non-small ideals of a commutative ring

S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel

Abstract. In this paper, a new kind of graph on a commutative ring is introduced
and investigated. Small intersection graph of a ring R, denoted by G(R), is
a graph with all non-small proper ideals of R as vertices and two distinct vertices
I and J are adjacent if and only if I ∩ J is not small in R. In this article,
some interrelation between the graph theoretic properties of this graph and some
algebraic properties of rings are studied. We investigated the basic properties of
the small intersection graph as diameter, girth, clique number, cut vertex, planar
property and independence number. Further, it is shown that the independence
number of a small graph of a ring R is equal to the number of its maximal ideals
and the domination number of small graph is at most 2.

Keywords: small ideal; small intersection graph; clique number; independence
number; domination number; planar property

Classification: 05C40, 05C25, 13A15

1. Introduction

In 1988, Beck [3] introduced the concept of the zero-divisor graph. Since then,
others have introduced and studied many researches in this area. One of the most
important graphs which have been studied is the intersection graph. Bosak [5] in
1964 defined the intersection graph of semigroups. In 1969, Csákány and Pollák [8]
studied the graph of subgroups of a finite group. In 2009, the intersection graph
of ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and Sen [6].
The intersection graph of ideals of rings and submodules of modules has been
investigated by several authors ([1], [10], [12], [13] and [14]).

In this paper, we introduce small intersection graph of ideals of a commutative
ring, a new kind of intersection graph of rings. If the Jacobson radical of a
ring R is zero, then the small intersection graph coincides with the intersection
graph which is introduced by Chakrabarty, et al. [6]. The small intersection
graph helps us to consider the algebraic properties of rings using graph theoretical
tools. In our investigation of G(R), maximal ideals play an important role to find
some connections between the graph theoretic properties of this graph and some
algebraic properties of rings. For instance, see Theorem 2.6 and 3.6.

DOI 10.14712/1213-7243.2015.189



2 Atani S.E., Pish Hesari S.D., Khoramdel M.

In Section 2, we show that the small intersection graph of a ring R is con-
nected if and only if |max(R)| 6= 2. Also if G(R) is a connected graph, then
diam(G(R)) ≤ 2 and gr(G(R)) = 3 provided G(R) contains a cycle. For a ring R,
it is proved that G(R) cannot be a complete r-partite graph and G(R) has no cut
vertex. Moreover, if R is a ring with finitely many maximal ideals, then G(R)
cannot be a complete graph and we give an example of a ring R with infinite
maximal ideals such that its small intersection graph is complete. At the end of
this section, it is shown that if G(R) contains an end vertex then |max(R)| = 2.

In Section 3, it is shown that if ω(G(R)) is finite, then the number of maximal
ideals of R is finite, R is semiperfect and R has finitely many maximal ideals.
This enables us to show that, if the set of proper non-small ideals is nonempty
and finite, then the set of ideals of R is finite. Also, it is proved that G(R) is
a planar graph if and only if either |max(R)| = 2 and R = R1 × R2, where Ri

(i = 1, 2) is a local principle ideal ring with maximal ideal Mi such that Mn
i = 0,

for some n ≤ 4 or |max(R)| = 3 and R is semisimple. Among other results, it
is shown that the independence number of a small graph of a ring R is equal to
the number of its maximal ideals and the domination number of small graph is
at most 2.

Throughout this paper R is a commutative ring with unity. Jacobson radical
of R, denoted by J(R), is the intersection of all maximal ideals of R and max(R)
denotes the set of all maximal ideals of R. An ideal I of R (I ≤ R) is small
(denoted by I ≪ R) if I + K = R, for some ideal K of R, implies K = R.
A module M is said to be hollow module if every proper submodule of M is a
small submodule.

Let I be an ideal of a ring R. It is said that idempotents of R/I can be lifted,
if for every idempotent a + I ∈ R/I, there exists idempotent e ∈ R such that
a + I = e + I. A ring R is called semiperfect in case R/J(R) is semisimple and
every idempotent of R/J(R) can be lifted (see [15]).

A graph G is called connected , if for any vertices x and y of G there is a path
between x and y. Otherwise, G is called disconnected. The distance between
two distinct vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting them (if such a path does not exist, then d(a, b) = ∞, also d(a, a) = 0).
The diameter of a graph Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈
V (Γ)}. A graph is complete if it is connected with diameter less than or equal to
one. The girth of a graph Γ, denoted by gr(Γ), is the length of a shortest cycle
in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞. A clique of a graph is
its maximal complete subgraph and the number of vertices in the largest clique of
graph G, denoted by w(G), is called the clique number of G. For r a nonnegative
integer, an r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph is
one in which each vertex is joined to every vertex that is not in the same subset.
The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted
by Km,n. We will sometimes call K1,n a star graph. Note that a graph whose
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vertices-set is empty is a null graph and a graph whose edge-set is empty is an
empty graph.

Let G = (V, E) be a graph. The (open) neighborhood N(v) of a vertex v of V
is the set of vertices which are adjacent to v. For each S ⊆ V , N(S) =

⋃
v∈S N(v)

and N [S] = N(S) ∪ S. A set of vertices S in G is a dominating set , if N [S] = V .
The domination number , γ(G), of G is the minimum cardinality of a dominating
set of G ([9]).

In a graph G = (V, E), a set S ⊆ V is an independent set if the subgraph
induced by S is totally disconnected. The independence number α(G) is the
maximum size of an independent set in G.

2. Some basic properties of G(R)

We begin this section with the following remark which will be used in the next
theorems and lemmas.

Remark 2.1. (i) Let R be a ring and I, J be two ideals of R. If M is a maximal
ideal of R, then I ∩ J ⊆ M implies I ⊆ M or J ⊆ M .

(ii) Let R be a ring with max(R) = {Mi}i∈I and ν be a proper finite subset
of I. Then

⋂
ν Mi is not a small ideal of R. Otherwise, if

⋂
ν Mi ≪ R, then⋂

ν Mi ⊆ Mj for each j ∈ I \ ν. Hence Mi ⊆ Mj for some i ∈ ν, which is
a contradiction.

We begin with the key definition of this paper.

Definition 2.2. Let R be a ring. The small intersection graph G(R) is the graph
with all non small proper ideals of R as vertices and two distinct vertices I and
J are adjacent if and only if I ∩ J 6≪ R.

Proposition 2.3. Let R be a ring. Then G(R) is a null graph if and only if R
is a local ring.

Proof: The proof is clear. �

Since all definitions of graph theory are for non-null graph, in this paper all
graphs are considered non-null ([4]).

Theorem 2.4. Let R be a ring. Then G(R) is an empty graph if and only if
max(R) = {M1, M2}, where M1 and M2 (M1 6= M2) are finitely generated hollow
R-modules.

Proof: Let G(R) be an empty graph. If |max(R)| = 1, then G(R) is a null
graph by Proposition 2.3, a contradiction. Suppose, |max(R)| ≥ 3 and M1, M2

and M3 ∈ max(R). By Remark 2.1, M1 and M2 are adjacent, a contradiction. So
|max(R)| = 2. Let max(R) = {M1, M2} with M1 6= M2. We show that M1 and
M2 are hollow R-modules. Since R

M2

= M1+M2

M2

∼= M1

M1∩M2

, M1 ∩ M2 is a maximal
submodule of M1. We show that this is the only maximal submodule of M1. Let
I be a maximal submodule of M1. If I 6≪ R, then I ∩ M1 = I implies I and M1

are adjacent in G(R), a contradiction. So I ≪ R. Hence I ⊆ J(R) = M1 ∩ M2,
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which implies that I = M1 ∩ M2 by maximality of I. So M1 is a local R-module
with maximal submodule M1∩M2. Now, we show that M1 is a finitely generated
R-module. Let x ∈ M1 \ M2, so Rx 6≪ R because Rx 6⊆ M1 ∩ M2 = J(R). If
Rx 6= M1, then Rx ∩ M1 = Rx which implies Rx and M1 are adjacent in G(R),
a contradiction. So Rx = M1. Hence M1 is a finitely generated local R-module.
So M1 is a finitely generated hollow R-module by [15]. By the similar way M2 is
a finitely generated hollow R-module.

Conversely, let max(R) = {M1, M2}, where M1, M2 are finitely generated hol-
low R-modules. By a similar argument as above, M1∩M2 is a maximal submodule
of M1 and M2. Since M1 and M2 are local, M1 ∩ M2 is the only maximal sub-
module of M1 and M2. Let I 6= M1, M2 be a non-small ideal of R. Then I ⊆ M1

or I ⊆ M2. Suppose, without loss of generality, I ⊆ M1. Since M1 is a finitely
generated local R-module, I ⊆ M1 ∩ M2 = J(R). So I ≪ R, a contradiction. So
the only non-small ideals of R are M1 and M2 which are not adjacent. So G(R)
is an empty graph. �

In the following we give an example of a ring R with empty G(R).

Example 2.5. Let R = Z2 ⊕Z2. It is clear that max(R) = {0⊕Z2, Z2 ⊕ 0} and
J(R) = 0. By drawing the G(R), we see that G(R) is an empty graph with two
vertices and M1, M2 are hollow.

We are now in a position to show a finer relationship between the number of
maximal ideals of R and the connectivity of G(R).

Theorem 2.6. Let R be a ring. The following statements are equivalent:

(i) G(R) is not connected;
(ii) |max(R)| = 2;
(iii) G(R) = G1 ∪ G2, where G1, G2 are two disjoint complete subgraphs

of G(R).

Proof: (i) ⇒ (ii) Assume that G(R) is not connected. Let G1 and G2 be two
components of G(R) and I, J be two ideals of R such that I ∈ G1 and J ∈ G2.
Let M1, M2 be maximal ideals of R such that I ⊆ M1 and J ⊆ M2. If M1 = M2,
then I − M1 − J is a path in G(R) which is a contradiction. So M1 6= M2. If
M1 ∩ M2 6≪ R, then I − M1 − M2 − J is a path between G1 and G2, which is
a contradiction. Hence M1 ∩ M2 ≪ R, which gives |max(R)| = 2.

(ii) ⇒ (iii) Let |max(R)| = 2 and J(R) = M1 ∩ M2, where M1, M2 are two
maximal ideals of R. Let Gi = {It ≤ R : It ⊆ Mi and It 6≪ R} for i = 1, 2.
Let I, J be elements of G1. If I and J are not adjacent then I ∩ J ≪ R, which
implies I ∩ J ⊆ M1 ∩ M2. Hence I ∩ J ⊆ M2, which gives I ⊆ M2 or J ⊆ M2

by Remark 2.1. So I ≪ R or J ≪ R, a contradiction. So G1 is a complete
subgraph of G(R). By the similar way G2 is a complete subgraph of G(R). Now,
we show that there is no path between G1 and G2. Suppose, on the contrary, I
and J are adjacent for some ideals I ∈ G1 and J ∈ G2 (note that each vertex in
G(R) is contained in G1 or G2). Since I ∩ J ⊆ M1 ∩ M2 = J(R), so I ∩ J ≪ R,
a contradiction with adjacency of I and J . So none of elements of G1 and G2
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are adjacent. Hence G(R) = G1 ∪G2, where Gi’s are disjoint complete subgraph
of G(R).

(iii) ⇒ (i) It is clear. �

In the following we provide an example of a ring R with two maximal ideals
such that G(R) is not connected.

Example 2.7. Let R = Z4 ⊕Z4. It is clear that max(R) = {2Z4 ⊕Z4, Z4 ⊕ 2Z4}
and V (G(R)) = {2Z4 ⊕ Z4, Z4 ⊕ 2Z4, 0 ⊕ Z4, Z4 ⊕ 0}. An inspection shows that
G(R) is not connected and G(R) = G1 ∪G2, where G1 = {2Z4 ⊕Z4, 0⊕Z4} and
G2 = {Z4 ⊕ 2Z4, Z4 ⊕ 0}.

Theorem 2.8. Let R be a ring and G(R) be a connected graph, then
diam(G(R)) ≤ 2.

Proof: Let I and J be two non-adjacent vertices of G(R). So I ∩ J ≪ R. Let
I ⊆ M1 and J ⊆ M2 for some maximal ideals M1, M2 of R. If I ∩ M2 6≪ R,
then I − M2 − J is a path in G(R), hence d(I, J) = 2. By the similar way
if J ∩ M1 6≪ R, then d(I, J) = 2. Suppose I ∩ M2 ≪ R and J ∩ M1 ≪ R.
Since G(R) is connected, |max(R)| ≥ 3 by Theorem 2.6. Let M3 ∈ max(R).
Since I ∩ J ≪ R, so I ∩ J ⊆ J(R) ⊆ M3 which implies I ⊆ M3 or J ⊆ M3.
Suppose, without loss of generality, I ⊆ M3. Now, we show that J ∩ M3 6≪ R.
If J ∩ M3 ≪ R, then J ∩ M3 ⊆ J(R) ⊆ M1, which implies J ⊆ M1. Hence
J = J ∩ M1 ≪ R, a contradiction. So J ∩ M3 6≪ R. Thus I − M3 − J is a path
in G(R), so d(I, J) = 2. �

Theorem 2.9. Let R be a ring. If G(R) contains a cycle, then gr(G(R)) = 3.

Proof: If |max(R)| = 2, then G(R) is a union of two disjoint complete subgraph
by Theorem 2.6. Thus if G(R) contains a cycle, then gr(G(R)) = 3. If |max(R)| ≥
3, then by Remark 2.1, M1−M2−M3−M1 is a cycle in G(R), where Mi ∈ max(R).
So gr(G(R)) = 3. �

A vertex x of a connected graph G is a cut vertex of G if there are vertices y and
z of G such that x is in every path from y to z (and x 6= y, x 6= z). Equivalently,
for a connected graph G, x is a cut vertex of G if G − {x} is not connected.

Theorem 2.10. Let R be a ring with G(R) connected. Then G(R) has no cut
vertex.

Proof: Let I be a cut vertex of G(R), so G(R)\{I} is not connected. Thus there
exist vertices J, K such that I lies on every path from K to J . By Theorem 2.8,
the shortest path from I to J is of length 2. So J − I − K is a path between
J , K. Hence J ∩ K ≪ R, J ∩ I 6≪ R and K ∩ I 6≪ R. At first we show that
I is a maximal ideal of R. If not, there exists an ideal L of R such that I ⊂ L
(as I is non-small ideal, L is non-small). Since J ∩ I ⊆ J ∩ L and J ∩ I 6≪ R,
J ∩L 6≪ R. By a similar way K ∩L 6≪ R. So J −L−K is a path in G(R) \ {I},
a contradiction. So I is a maximal ideal of R. We claim that there exists a
maximal ideal Mi 6= I of R such that J 6⊆ Mi. Otherwise, if J ⊆ Mi for each
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I 6= Mi ∈ max(R), then J ⊆ (
⋂

Mi 6=I Mi), so J ∩ I ⊆
⋂

Mi∈max(R) Mi = J(R).

Hence J ∩ I ≪ R, a contradiction. By the similar way there exists a maximal
ideal Mj 6= I of R such that K 6⊆ Mj . Now, we show that for each Mt ∈ max(R),
K ⊆ Mt or J ⊆ Mt. Because J ∩ K ≪ R, so J ∩ K ⊆ J(R) ⊆ Mt for each
Mt ∈ max(R). So J ⊆ Mt or K ⊆ Mt for each Mt ∈ max(R). Since G(R) is
connected, |max(R)| ≥ 3 by Theorem 2.6. Now, let I 6= Mi, Mj ∈ max(R) such
that K 6⊆ Mi and J 6⊆ Mj. So K ⊆ Mj and J ⊆ Mi. Hence J − Mi − Mj − K is
a path in G(R) \ {I}, a contradiction. So G(R) has no cut vertex. �

Theorem 2.11. Let R be a ring. Then G(R) cannot be a complete r-partite
graph (r ∈ N).

Proof: Let G(R) be a complete r-partite graph with r parts V1, V2, . . . , Vr.
By Remark 2.1, Mi and Mj are adjacent, for each Mi, Mj ∈ max(R). Hence
each Vi contains at most one maximal ideal of R. So by Pigeon hole principle
|max(R)| ≤ r. Now, we show that |max(R)| = r. Suppose, on the contrary,
max(R) = {M1, M2, . . . , Mt}, where t < r. Let Mi ∈ Vi for 1 ≤ i ≤ t. So Vt+1

contains no maximal ideal. Since |max(R)| is finite,
⋂

j 6=i Mj 6≪ R, by Remark 2.1.

Since
⋂

j 6=i Mj ∩ Mi = J(R) ≪ R, so
⋂

j 6=i Mj and Mi are not adjacent. Hence
⋂

j 6=i Mj ∈ Vi, because Mi ∈ Vi. Let I be a vertex in Vt+1 and I ⊆ Mk for some

Mk ∈ max(R). So I is adjacent to Mk. Since G(R) is a complete r-partite graph
and Mk ∈ Vk, so I is adjacent to all elements of Vk. Thus I is adjacent to

⋂
j 6=k Mj,

which is a contradiction, because I ∩ (
⋂

j 6=k Mj) ⊆ Mk ∩ (
⋂

j 6=k Mj) = J(R) ≪ R.

Hence |max(R)| = r. Now, consider the ideal J =
⋂r

i=3 Mi. By Remark 2.1,
J 6≪ R. Since J ∩M1 =

⋂
i6=2 Mi 6≪ R, J is adjacent to M1. By the similar way J

is adjacent to M2. So J /∈ V1, V2. Moreover, J ∩Mi = J 6≪ R, for each 3 ≤ i ≤ r.
So J is adjacent to all maximal ideals Mi of R. So J /∈ Vi for each 1 ≤ i ≤ r,
which is a contradiction. �

Theorem 2.12. Let R be a ring with finitely many maximal ideals. Then

(i) there is no vertex in G(R) which is adjacent to every other vertex;
(ii) G(R) cannot be a complete graph.

Proof: (i) Let max(R) = {M1, M2, . . . , Mt}. Suppose, on the contrary, there
exists a vertex I in G(R) such that I is adjacent to every other vertex. Let
I ⊆ Mi. By Remark 2.1, K =

⋂
j 6=i Mj is not a small ideal of R. Since I

is adjacent to every vertex, I and K are adjacent. Thus I ∩ K 6≪ R. But
I ∩ K ⊆ Mi ∩ (

⋂
j 6=i Mj) = J(R). So I ∩ K ≪ R, a contradiction. Thus there is

no vertex in G(R) which is adjacent to every other vertex.
(ii) By the similar argument as in (i), G(R) cannot be a complete graph. �

The following example shows that the condition “max(R) is finite” in Theo-
rem 2.12 is not superficial.

Example 2.13. Let R = Z. It is clear that max(R) is infinite and the only small
ideal of R is {0}. Since for every non-zero ideals I and J of R, I ∩ J 6= {0}, thus



A graph associated to proper non-small ideals of a commutative ring 7

I and J are adjacent in G(R). So G(R) is a complete graph and each vertex is
adjacent to every other vertex.

Theorem 2.14. Let R be a ring. Then the following statements hold:

(i) G(R) contains an end vertex if and only if |max(R)| = 2 and G(R) =
G1 ∪ G2, where G1, G2 are two disjoint complete subgraph of G(R) and
|V (Gi)| = 2 for some i = 1, 2;

(ii) G(R) cannot be a star graph.

Proof: (i) Let I be an end vertex of G(R). Suppose, |max(R)| ≥ 3. By Re-
mark 2.1, for each Mi ∈ max(R), Mi is adjacent to every other maximal ideals
of R, so deg(Mi) ≥ 2. Hence I is not a maximal ideal of R. Without loss of
generality, suppose I ⊆ M1, hence I and M1 are adjacent. Since deg(I) = 1, so
the only vertex of G(R) which is adjacent to I is M1 and there is no maximal
ideal Mi 6= M1 of R such that I ⊆ Mi. Also I ∩ M2 ≪ R. So I ∩ M2 ⊆ Mj for
each Mj 6= M1, M2. Thus I ⊆ Mj, which is a contradiction. So |max(R)| = 2. By
Theorem 2.6, G(R) = G1∪G2, where G1, G2 are complete subgraph of G(R). Let
I ∈ Gi. Since Gi is a complete subgraph of G(R) and deg(I) = 1, |V (Gi)| = 2.
The converse is clear.

(ii) Let G(R) be a star graph. So G(R) contains an end vertex. So |max(R)| = 2
by (i). By Theorem 2.6, G(R) is not connected, which is a contradiction. So G(R)
cannot be a star graph. �

As we see in Example 2.7, G(R) contains an end vertex.
For every nonnegative integer r, the graph G is called r-regular if the degree

of each vertex of G is equal to r.

Theorem 2.15. Let R be a ring. Then the following holds:

(i) if I and J are two vertices of G(R) such that I ⊆ J , then deg(I) ≤ deg(J);
(ii) if G(R) is an r-regular graph, then |max(R)| = 2 and |V (G(R))| = 2r+2.

Proof: (i) Let I and J be two vertices of G(R) such that I ⊆ J . Let K be
a vertex adjacent to I. So I ∩ K 6≪ R, which implies J ∩ K 6≪ R. Thus K is
adjacent to J . Hence deg(I) ≤ deg(J).

(ii) Let G(R) be an r-regular graph. So for each Mi ∈ max(R), deg(Mi) = r.
By Remark 2.1, Mi is adjacent to all maximal ideals of R, hence max(R) is finite.
Suppose |max(R)| ≥ 3. Then deg(M1∩M2) ≤ deg(M1) by (i) and deg(M1∩M2) 6=
deg(M1), because I =

⋂
j 6=2 Mj is adjacent to M1 but I is not adjacent to M1∩M2

(note that I 6≪ R by Remark 2.1). Thus deg(M1 ∩ M2) < r, a contradiction. So
|max(R)| ≤ 2. If |max(R)| = 1, then R is a local ring hence G(R) is a null
graph, which is a contradiction. So |max(R)| = 2 and G(R) is a union of two
disjoint complete subgraph G1, G2 by Theorem 2.6. Let max(R) = {M1, M2} and
Mi ∈ Gi. Since deg(M1) = r, so |G1| = r + 1. By the similar way |G2| = r + 1.
Hence |V (G(R))| = 2r + 2. �



8 Atani S.E., Pish Hesari S.D., Khoramdel M.

3. Clique number, independence number, domination number and

planar property

In this section, we will investigate clique number, independence number, do-
mination number and planar property of the small graph. Now we start with the
following proposition.

Proposition 3.1. Let R be a ring. The following statements hold.

(i) ω(G(R)) ≥ |max(R)|.
(ii) If ω(G(R)) < ∞, then the number of maximal ideals of R is finite.
(iii) ω(G(R)) = 1 if and only if max(R) = {M1, M2}, where M1 and M2 are

finitely generated hollow R-modules.
(iv) If the number of maximal ideals of R is finite, then

ω(G(R)) ≥ 2|max(R)|−1 − 1.

Proof: (i) By Remark 2.1, the subgraph of G(R) with vertex set {Mi}Mi∈max(R)

is a complete subgraph of G(R). Hence ω(G(R)) ≥ |max(R)|.
(ii) It is clear by (i).
(iii) It is clear by Theorem 2.4.
(iv) Let max(R) = {M1, M2, . . . , Mt} and for each 1 ≤ i ≤ t, set Ai =

{M1, M2, . . . , Mi−1, Mi+1, . . . , Mt}. Let P (Ai) be the power set of Ai. For
each X ∈ P (Ai), set TX =

⋂
T∈X T . Then by Remark 2.1, the subgraph

of G(R) with vertex set {TX}X∈P (Ai) is a complete subgraph of G(R). Since

|P (Ai) \ {}| = 2|max(R)|−1 − 1, so |{TX}X∈P (Ai)| = 2|max(R)|−1 − 1. Hence

ω(G(R)) ≥ 2|max(R)|−1 − 1. �

For any ring R, we use I(R) and NSI(R) to denote the set of ideals of R and
the set of proper non-small ideals of R, respectively.

We now state our next theorem, which gives us some information on the struc-
ture of the rings for which their small intersection graphs have finite clique num-
ber.

Theorem 3.2. Let R be a ring. If ω(G(R)) < ∞, then the following holds.

(i) R is semiperfect.
(ii) R = R1 ×R2 × · · · × Rt where t ≥ 2, (Ri, Mi) is a local ring and G(R) is

finite.
(iii) ω(G(R)) ≥ max{(

∏t

j=1,j 6=i |I(Ri)|) − 1 : 1 ≤ i ≤ t}.

(iv) R is artinian.

Proof: (i) Let R be a ring such that ω(G(R)) < ∞. Then by Proposition 3.1,
max(R) is finite. Hence R/J(R) is semisimple. Now, we show that idempotent of
R/J(R) can be lifted. Let a + J(R) be a nonzero idempotent of R/J(R). As a /∈
J(R), an /∈ J(R) for each n ∈ N. Hence Ra ⊇ Ra2 ⊇ Ra3 ⊇ . . . is a descending
chain of non-small proper ideals of R (if Ran = R, then a+J(R) = 1+J(R)). Since
ω(G(R)) < ∞, there exists n ∈ N such that Ran = Ran+1. Hence an = an+1r for
some r ∈ R. Let e = anrn. Then e = (an+1r)rn = an+1rn+1. This implies that
e = e2 and a + J(R) = an + J(R) = an+1r + J(R) = (an+1 + J(R))(r + J(R)) =
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(a+J(R))(r+J(R)) = ar+J(R). Hence a+J(R) = (a+J(R))2 = (a+J(R))n =
(ar + J(R))n = e + J(R). Therefore R is semiperfect.

(ii) By [11, Theorem 23.11], R = R1 ×R2 × · · · ×Rt, where (Ri, Mi) is a local
ring for each 1 ≤ i ≤ t. As G(R) is non-null, t ≥ 2, by Proposition 2.3. We show
that G(R) is finite. It suffices to show that I(Ri) is finite for each 1 ≤ i ≤ t. Let
I(Ri) be infinite for some 1 ≤ i ≤ t. Set

C = {R1 × R2 × · · · × Ri−1 × I × Ri+1 × · · · × Rt : I ∈ I(Ri)}.

Then C is an infinite clique in G(R), which is a contradiction. Hence I(Ri) is
finite for each 1 ≤ i ≤ t. Therefore I(R) is finite and so G(R) is finite.

(iii) Set

Cj = {I < R : I = I1 × I2 × · · · × Ij−1 × Rj × Ij+1 × · · · × It, Ik ∈ I(Rk),

∀ 1 ≤ k 6= j ≤ t}

for each 1 ≤ j ≤ t. As 0× 0× · · · ×Rj × · · · × 0 ⊆ I for each I ∈ Cj, Cj is a clique

in R. Since |Cj | = (
∏t

i=1,j 6=i |I(Ri)|) − 1, ω(G(R)) ≥ max{(
∏t

j=1,j 6=i |I(Ri)|) − 1 :

1 ≤ i ≤ t}.
(iv) By the proof of (2), I(R) is finite, hence R is artinian. �

Now, we are in a position to write one of the most important properties of the
ring R, which has been concluded from the graph property of its small intersection
graph.

Corollary 3.3. Let R be a ring such that NSI(R) 6= ∅. Then NSI(R) is finite if
and only if I(R) is finite.

Proof: Let NSI(R) 6= ∅. Then G(R) is non-null. If NSI(R) is finite, then
ω(G(R)) is finite and so G(R) is finite, by Theorem 3.2. Hence I(R) is finite. The
converse is clear. �

A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph is a graph obtained from it
by replacing edges with pairwise internally-disjoint paths. A remarkably simple
characterization of planar graphs was given by Kuratowski in 1930, that says that
a graph is planar if and only if it contains no subdivision of K5 or K3,3 [4]. In
the following theorem, rings for which their small intersection graph is planar are
characterized.

Theorem 3.4. Let R be a ring. Then G(R) is a planar graph if and only if one
of the following cases occurs.

(i) |max(R)| = 2 and R = R1 × R2, where Ri (i = 1, 2) is a local principle
ideal ring with maximal ideal Mi such that Mn

i = 0 for some n ≤ 4.
(ii) |max(R)| = 3 and R is semisimple.
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Proof: Let G(R) be a planar graph. Then G(R) contains no K5 as subgraph
and so ω(G(R)) ≤ 4. By Remark 2.1, |max(R)| ≤ 3. Since G(R) is not a null
graph, |max(R)| 6= 1. So |max(R)| = 2 or 3.

By Theorem 3.2, R is a direct product of local ring. If |max(R)| = 2, then
R = R1 × R2 where Ri is a local ring with maximal ideal Mi (i = 1, 2). Let
{x1, x2, . . . , xn} be a minimal generating set for M1. If n ≥ 3, then

{0 × R2, x1R1 × R2, x2R1 × R2, x3R1 × R2, M1 × R2}

is a clique with five elements in G(R), a contradiction. Hence n ≤ 2. Let M1 =
xR1 + yR1, where {x, y} is a minimal generating set for M1. Then xR1, yR1 and
(x + y)R1 are distinct ideals of R1 and

{0 × R2, xR1 × R2, yR1 × R2, (x + y)R1 × R2, M1 × R2}

is a clique with five elements in G(R), a contradiction. Hence M1 is principle and
so R1 is a principle ideal ring. This implies that

I(R1) = {M i
1 : 1 ≤ i ≤ n},

where n is the smallest number such that Mn
i = 0 and n ≤ 4.

Similarly, R2 is a principle ideal ring and

I(R2) = {M i
2 : 1 ≤ i ≤ n},

where n is the smallest number such that Mn
2 = 0 and n ≤ 4. Hence (i) holds.

If |max(R)| = 3, then R = R1×R2×R3 where Ri is a local ring with maximal
ideal Mi, for each 1 ≤ i ≤ 3. If R1 is not a field, then M1 6= 0 and

{0 × 0 × R3, 0 × R2 × R3, M1 × 0 × R3, M1 × R2 × R3, R1 × 0 × R3}

is a clique with five elements in G(R), a contradiction. Hence R1 is a field.
Similarly, R2 and R3 are fields. Hence R is semisimple and (ii) holds.

Conversely, assume that (i) holds. Then G(R) = G1 ∪ G2, where G1, G2 are
two disjoint complete subgraphs of G(R) by Theorem 2.6. By (i), Gi

∼= Kn (a
complete graph with n vertices) where n ≤ 4 for each i = 1, 2. Hence G(R) is
planar. If (ii) holds, then by drawing G(R), it is clear that G(R) is planar. �

In the following theorem, for a ring R, the domination number of G(R) is
determined.

Theorem 3.5. Let R be a ring. Then the following hold:

(i) γ(G(R)) ≤ 2;
(ii) max(R) is infinite if and only if γ(G(R)) = 1;
(iii) max(R) is finite if and only if γ(G(R)) = 2.

Proof: (i) As G(R) is non-null, |max(R)| ≥ 2. Set S = {M1, M2} where
M1, M2 ∈ max(R). Let I be a vertex of G(R). If I ⊆ M1 or I ⊆ M2, then
I ∩ M1 6≪ R or I ∩ M2 6≪ R. Hence I is adjacent to M1 or M2. Assume
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that I 6⊆ M1 and I 6⊆ M2. If I is not adjacent to M1, then I ∩ M1 ≪ R. So
I ∩M1 ≤ M2. This gives I ⊆ M2, a contradiction. Similarly, I is adjacent to M2.
Hence γ(G(R)) ≤ 2.

(ii) If max(R) is infinite, then R/J(R) is not semisimple. Hence R/J(R) has
an essential ideal I/J(R), where I is an ideal of R. So I is not small and for each
ideal K of R with J(R) ⊂ K we have K ∩ I 6≪ R. Let P be a proper non-small
ideal of R. As I ∩ (P + J(R)) = J(R) + I ∩ P 6≪ R, I ∩ P 6≪ R. Hence I is
adjacent to every other vertex of G(R), and so γ(G(R)) = 1.

Conversely, assume that γ(G(R)) = 1. Hence there is an ideal which is adjacent
to every other vertex of G(R). So max(R) is infinite by Theorem 2.12.

(iii) It is clear from Theorem 2.12 and (ii). �

In the following theorem, it is shown that the independence number of G(R)
is equal to |max(R)|, for a ring R with a finite number of maximal ideals.

Theorem 3.6. Let R be a ring with a finite number of maximal ideals. Then
α(G(R)) = |max(R)|.

Proof: Suppose that max(R) is finite and max(R) = {M1, M2, . . . , Mn}. As
{
⋂n

j=1,i6=j Mj}n
i=1 is an independent set in G(R), n ≤ α(G(R)). Let α(G(R)) = m

and S = {I1, I2, . . . , Im} be a maximal independent set in G(R). For each I ∈ S,
I 6≪ R. Hence I 6⊆ M for some M ∈ max(R). If m > n, then by Pigeon hole
principle, there exist 1 ≤ i, j ≤ n and M ∈ max(R) such that Ii 6⊆ M and
Ij 6⊆ M . Hence Ii ∩ Ij 6⊆ M . As S is an independent set in G(R), Ii and Ij are
not adjacent and Ii ∩ Ij ≪ R. Hence Ii ∩ Ij ⊆ M , a contradiction. This proves
that α(G(R)) = |max(R)|. If α(G(R)) = ∞, then by a similar argument as above
(Pigeon hole principle), we have a contradiction. Hence α(G(R)) = |max(R)|. �

In the ring R = Z, it can be easily seen that |max(R)| = ∞ and α(G(R)) = 0.
So the condition “max(R) is finite” is not superficial in Theorem 3.6.
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