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Abstract. On complete pseudoconvex Reinhardt domains in C
2, we show that there

is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In
the proof, we explicitly use the pseudoconvexity property of the domain. We also present
two examples of unbounded non-pseudoconvex domains in C

2 that admit nonzero Hilbert-
Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman
space is finite dimensional. However, in the second example the Bergman space is infinite
dimensional and the Hankel operator Hz1z2 is Hilbert-Schmidt.

Keywords: canonical solution operator for ∂-problem; Hankel operator; Hilbert-Schmidt
operator
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1. Introduction

1.1. Setup and problem. For a domain Ω in Cn, we denote the space of square

integrable functions and the space of square integrable holomorphic functions on Ω by

L2(Ω) and A2(Ω) (the Bergman space of Ω), respectively. The Bergman projection

operator, P , is the orthogonal projection from L2(Ω) onto A2(Ω). It is an integral

operator with the kernel called the Bergman kernel, which is denoted by BΩ(z, w).

Moreover, if {en(z)}
∞
n=0 is an orthonormal basis for A

2(Ω) then the Bergman kernel

can be represented as

BΩ(z, w) =

∞
∑

n=0

en(z)en(w).

On complete Reinhardt domains the monomials {zγ}γ∈Nn (or a subset of them)

constitute an orthogonal basis for A2(Ω).
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For f ∈ A2(Ω), the Hankel operator with the anti-holomorphic symbol f is for-

mally defined on A2(Ω) by

Hf (g) = (I − P )(fg).

Note that this (possibly unbounded) operator is densely defined on A2(Ω).

For a multi-index γ = (γ1, . . . , γn) ∈ N
n, we set

(1) c2γ =

∫

Ω

|zγ |
2
dV (z).

Then on complete Reinhardt domains the set {zγ/cγ}γ∈Nn gives a complete or-

thonormal basis for A2(Ω). Each f ∈ A2(Ω) can be written in the form f(z) =
∑

γ∈Nn

fγz
γ/cγ where the sum converges in A2(Ω), but also uniformly on compact

subsets of Ω. For the coefficients fγ , we have fγ = 〈f(z), zγ/cγ〉Ω.

Definition 1. A linear bounded operator T on a Hilbert space H is called

a Hilbert-Schmidt operator if there is an orthonormal basis {ξj} for H such that

the sum
∞
∑

j=1

‖T (ξj)‖
2 is finite.

The sum does not depend on the choice of the orthonormal basis {ξj}. For more

on Hilbert-Schmidt operators see [10], Section X.

In this paper, we investigate the following problem. On a given Reinhardt domain

in C
n, characterize the symbols for which the corresponding Hankel operators are

Hilbert-Schmidt. This question was first studied in C on the unit disc in [2]. The

problem was studied on higher dimensional domains in [13], Theorem at page 2,

where the author showed that when n > 2, on an n-dimensional complex ball there

are no nonzero Hilbert-Schmidt Hankel operators (with anti-holomorphic symbols)

on the Bergman space. The result was revisited in [11] with a more robust approach.

On more general domains in higher dimensions, the problem was explored in [6], The-

orem 1.1, where the authors extended the result [13], Theorem at page 2, to bounded

pseudoconvex domains of finite type in C
2 with smooth boundary. Moreover, the

authors of the current article studied the same problem on complex ellipsoids [3], in

C
2 with not necessarily smooth boundary.

The same question was investigated on Cartan domains of tube type in [1], Sec-

tion 2, and on strongly psuedoconvex domains in [8], [9]. Arazy studied the natural

generalization of Hankel operators on Cartan domains (circular, convex, irreducible

bounded symmetric domains in C
n) of tube type and rank r > 1 in C

n for which

n/r is an integer. He showed that there is no non-trivial Hilbert-Schmidt Hankel
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operator with anti-holomorphic symbols on those type of domains. Li and Peloso,

independently, obtained the same result on strongly pseudoconvex domains with

smooth boundary.

1.2. Results. Let

Ω = {(z1, z2) ∈ C
2 : z1 ∈ D and |z2| < e−ϕ(z1)}

(ϕ(z1) = ϕ(|z1|)) be a complete pseudoconvex Reinhardt domain where monomials

{zα} (or a subset of monomials) form a complete system for A2(Ω). In this paper,

we show that on complete pseudoconvex Reinhardt domains in C
2 there are no

nonzero Hilbert-Schmidt Hankel operator with anti-holomorphic symbols. Moreover,

we also present examples of unbounded non-pseudoconvex domains on which there

are nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.

Theorem 1. Let Ω be as above and f ∈ A2(Ω). If the Hankel operator Hf is

Hilbert-Schmidt on A2(Ω) then f is constant.

Remark 1. Theorem 1 generalizes Zhu’s result on the unit ball in C
n, see [13],

Schnider’s result on the unit ball in C
n and its variations, see [11]. Theorem 1 also

generalizes the result in [6], Theorem 1.1, by dropping the finite type condition on

complete pseudoconvex Reinhardt domains.

Remark 2. The new ingredient in the proof of Theorem 1 is the explicit use of

the pseudoconvexity property of the domain Ω, see the assumption made at (6) and

how it is used at (10). Additionally, we employ the key estimate (4) proven in [3].

Remark 3. After completing this note, the authors have learned that by using the

estimate (4), Le obtained the same result on bounded complete Reinhardt domains

without the pseudoconvexity assumption, see [7]. Although our statement requires

pseudoconvexity, it also works on unbounded domains. The complex function theory

on unbounded domains (and its relation to pseudoconvexity) has been investigated

recently in [4], [5] and new phenomenas have been observed.

Wiegerinck in [12] constructed Reinhardt domains (unbounded but with finite

volume) in C
2 for which the Bergman spaces are k-dimensional. In fact, for these

domains the Bergman spaces are spanned by monomials of the form {(z1z2)
j}k−1

j=1 .

Therefore, Hankel operators with nontrivial anti-holomorphic symbols are Hilbert-

Schmidt. We revisit these and similar domains in the last section to present ex-

amples of domains that admit nonzero Hilbert-Schmidt Hankel operators with anti-

holomorphic symbols.

209



2. An identity and an estimate on Reinhardt domains

The set {zγ/cγ}γ∈Nn is an orthonormal basis for A2(Ω). In order to prove Theo-

rem 1, we will look at the sum

(2)
∑

γ

∥

∥

∥
Hf

(zγ

cγ

)∥

∥

∥

2

=
∑

α

|fα|
2
∑

γ

(c2α+γ

c2γ
−

c2γ
c2γ−α

)

for f ∈ A2(Ω). For detailed computation of (2) and of the later estimate (4) we refer

to [3].

The term
∑

γ
(c2γ+α/c

2
γ − c2γ/c

2
γ−α) in the identity (2) plays an essential role in the

rest of the proof, and we label it as,

(3) Sα :=
∑

γ

(c2γ+α

c2γ
−

c2γ
c2γ−α

)

.

Note that the Cauchy-Schwarz inequality guarantees that c2γ+α/c
2
γ −c2γ/c

2
γ−α > 0 for

all α and γ.

The computations above hold on any domains where the monomials (or a subset

of monomials) form an orthonormal basis for the Bergman space.

Now, we estimate the term Sα on complete pseudoconvex Reinhardt domains.

Our goal is to show that Sα diverges for all nonzero α on these domains. By (2),

this will be sufficient to conclude Theorem 1.

In earlier results, Sα’s were computed explicitly to obtain the divergence. Here we

obtain the divergence by using the estimate (4):

For any sufficiently large N , we have

(4) Sα >
∑

|γ|=N

c2γ+α

c2γ

for any nonzero α, see [3].

3. Computations on complete pseudoconvex Reinhardt domains,

proof of Theorem 1

Let ϕ(r) ∈ C2([0, 1)), define the complete Reinhardt domain

Ω = {(z1, z2) ∈ C
2 : z1 ∈ D and |z2| < e−ϕ(z1)}.

Note that ϕ(z1) = ϕ(|z1|).
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If lim sup
r→1−

ϕ(r) is finite then there exists c > 0 such that for any z1 ∈ D the fiber

in the z2 direction contains a disc of radius c. Hence, Ω contains a polydisc D× cD.

This indicates that there are no nonzero Hilbert-Schmidt Hankel operators with anti-

holomorphic symbols on Ω. This also indicates that there are no compact Hankel

operators with anti-holomorphic symbols.

Therefore, from this point we assume

lim sup
r→1−

ϕ(r) = ∞.

In fact, the later assumption (6) made on the domain forces ϕ(r) not to oscillate, so

we can assume

(5) lim
r→1−

ϕ(r) = ∞.

On the other hand, Ω is pseudoconvex if and only if z1 → ϕ(|z1|) is a subharmonic

function on D. A simple calculation gives ∆ϕ(z1) = ϕ′′(r) + ϕ′(r)/r. We assume Ω

is pseudoconvex hence we have

(6) ϕ′′(r) +
1

r
ϕ′(r) > 0 on (0, 1).

Our goal is to show that the sum
∑

|γ|=N

c2γ+α/c
2
γ diverges for any nonzero α on

a complete pseudoconvex Reinhardt domain Ω. We start with computing cγ ’s.

We have

c2γ =

∫

Ω

|zγ |
2
dV (z) =

∫

D

|z1|
2γ1

∫

|z2|<e−ϕ(|z1|)

|z2|
2γ2 dA(z2) dA(z1)

=

∫

D

{

|z1|
2γ1

2π

2γ2 + 2
e−(2γ2+2)ϕ(|z1|)

}

dA(z1) =
2π

2

γ2 + 1

∫ 1

0

r2γ1+1e−(2γ2+2)ϕ(r) dr.

For sufficiently large x and y, consider the ratio

(7) Rx,y :=

∫ 1

0
rx+2α1e−(y+2α2)ϕ(r) dr
∫ 1

0
rxe−yϕ(r) dr

,

and define

Φx,y(r) :=
rxe−yϕ(r)

∫ 1

0
rxe−yϕ(r) dr

.

Note that Φx,y(0) = 0, Φx,y(1) = 0, and
∫ 1

0
Φx,y(r) dr = 1.
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Also, define

(8) gα(r) = r2α1e−2α2ϕ(r).

Note that gα(r) does not vanish inside the interval (0, 1), but may vanish at r = 0

and r = 1 depending on α. Now, we can rewrite the ratio Rx,y as

(9) Rx,y =

∫ 1

0

Φx,y(r)r
2α1e−2α2ϕ(r) dr =

∫ 1

0

Φx,y(r)gα(r) dr.

Our goal is to find a sub-interval (a, b) ⊂⊂ (0, 1) such that for sufficiently large x

and y
∫ b

a

Φx,y(r) dr >
1

2
.

For this purpose, we analyse Φx,y(r) further on (0, 1) and locate the local maximum

of Φx,y(r). We have

d

dr
Φx,y(r) = (x− yϕ′(r)r)(rx−1e−yϕ(r))

(
∫ 1

0

rxe−yϕ(r) dr

)−1

.

Therefore,
d

dr
Φx,y(r) = 0 on (0, 1) when x− yϕ′(r)r = 0.

We label fx,y(r) := x − yϕ′(r)r. Note that fx,y(r) controls the sign of
d
drΦx,y(r),

since the rest of the terms in d
drΦx,y(r) is positive. Furthermore,

fx,y(0) = x > 0

and

(10)
d

dr
fx,y(r) = −y(ϕ′(r) + rϕ′′(r)) < 0 ( by the assumption (6)).

Hence, fx,y(r) decreases on (0, 1) and can vanish at a point. We will show that by

choosing x, y appropriately we can guarantee that fx,y(r) vanishes on (0, 1). All we

need is a point s ∈ (0, 1) such that

sϕ′(s) > 0.

However, this is possible by the assumption (5). If there were no such point s ∈ (0, 1),

then ϕ(r) would not grow up to infinity. Moreover, if there exists s ∈ (0, 1) such

that sϕ′(s) > 0 then since rϕ′(r) > 0 is an increasing function we have

rϕ′(r) > 0, r ∈ [s, 1).
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Therefore, there exists a relatively compact subinterval (a, b) of (0, 1) such that

aϕ′(a) > 0

and hence rϕ′(r) > 0 on (a, b). Moreover, by choosing x and y appropriately we can

make

fx,y(a) > 0 and fx,y(b) < 0.

That is,

x− yaϕ′(a) > 0 and x− ybϕ′(b) < 0.

Equivalently,

aϕ′(a) <
x

y
and

x

y
< bϕ′(b).

Therefore, as long as we keep

(11) aϕ′(a) <
x

y
< bϕ′(b)

there exist a solution to x − yrϕ′(r) = 0 on the interval (a, b) ⊂⊂ (0, 1), and so we

guarantee that the function Φx,y(r) assumes its maximum somewhere inside (a, b).

Let us take the point ̺xy ∈ (a, b) where Φx,y(r) takes its maximum value . We have

∫ a/2

0

Φx,y(r) dr 6

∫ ̺xy

a/2

Φx,y(r) dr and

∫ 1

(1+b)/2

Φx,y(r) dr 6

∫ (1+b)/2

̺xy

Φx,y(r) dr.

Hence, we deduce that

(12)

∫ (1+b)/2

a/2

Φx,y(r) dr >

∫ 1

0

Φx,y(r) dr >
1

2

as long as aϕ′(a) < x/y < bϕ′(b). The inequality at (12) is the crucial step for the

rest of the proof. It guarantees that the integral of Φx,y(r) is located somewhere in

the middle, i.e. does not lean towards any of the end points.

For a multi-index γ = (γ1, γ2), let us write Φγ(r) = Φγ1,γ2(r). Then

c2γ+α

c2γ
=

γ2 + 1

γ2 + α2 + 1

∫ 1

0 r2γ1+2α1+1e−(2γ2+2+2α2)ϕ(r) dr
∫ 1

0
r2γ1+1e−(2γ2+2)ϕ(r) dr

(13)

=
γ2 + 1

γ2 + α2 + 1

∫ 1

0

Φ2γ1+1,2γ2+2(r)gα(r) dr.
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Then

Sα >
∑

|γ|=N

c2γ+α

c2γ
=

N
∑

k=0

c2α+(k,N−k)

c2(k,N−k)

=

N
∑

k=0

c2(k+α1,N−k+α2)

c2(k,N−k)

(14)

=

N
∑

k=0

N − k + 1

N − k + α2 + 1

∫ 1

0

Φ2k+1,2(N−k)+2(r)gα(r) dr.

We want to keep
2k + 1

2N − 2k + 2
∈ (aϕ′(a), bϕ′(b)),

see (11). This is equivalent to asking k to be in the interval

2aϕ′(a)

2aϕ′(a) + 2
N +

2aϕ′(a)− 1

2aϕ′(a) + 2
< k <

2bϕ′(b)

2bϕ′(b) + 2
N +

2bϕ′(b)− 1

2bϕ′(b) + 2
.

We further restrict k to the interval

IN :=
( 2aϕ′(a)

2aϕ′(a) + 2
N +

2aϕ′(a)− 1

2aϕ′(a) + 2
,

2bϕ′(b)

2bϕ′(b) + 2
N +

2bϕ′(b)− 1

2bϕ′(b) + 2

)

∩ (0, N).

Therefore, the estimate (14) can be rewritten as

(15) Sα >
∑

k∈IN

N − k + 1

N − k + α2 + 1

∫ 1

0

Φ2k+1,2(N−k)+2(r)gα(r) dr.

When k ∈ IN we have

N − k + 1

N − k + α2 + 1

∫ 1

0

Φ2k+1,2(N−k)+2(r)gα(r) dr

>
1

1 + α2

∫ (1+b)/2

a/2

Φ2k+1,2(N−k)+2(r)gα(r) dr

>
1

1 + α2

(

min
a/26r6(1+b)/2

{gα(r)}
)

∫ (1+b)/2

a/2

Φ2k+1,2(N−k)+2(r) dr

by (12) >
1

1 + α2

(

min
a/26r6(1+b)/2

{gα(r)}
)1

2
.

Let λα :=
(

min
a/26r6(1+b)/2

{gα(r)}
)

/(2(1 + α2)). Note that λα > 0 since gα(r) is

strictly positive on (a/2, (1 + b)/2), see (8). This gives us

Sα >
∑

k∈IN

c2γ+α

c2γ
>

∑

k∈IN

N − k + 1

N − k + α2 + 1

∫ 1

0

Φ2k+1,2(N−k)+2(r)gα(r) dr

>
∑

k∈IN

λα = |IN |λα.
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Note that the number of integers in IN is comparable to N . Therefore, Sα & N and

this suffices to conclude Sα diverges for nonzero α.

4. Examples of unbounded non-pseudoconvexs domain with nonzero

Hilbert-Schmidt Hankel operators

In this section, we present two examples of domains that admit nonzero Hilbert-

Schmidt Hankel operators with anti-holomorphic symbols. In the first example, the

Bergman space is finite dimensional and the claim holds for trivial reasons. In the

second example, the Bergman space is infinite dimensional; however, some of the

terms Sα’s are bounded.

We start with defining the following domains from [12]:

X1 =
{

(z1, z2) ∈ C
2 : |z1| > e, |z2| <

1

|z1| log |z1|

}

,

X2 =
{

(z1, z2) ∈ C
2 : |z2| > e, |z1| <

1

|z2| log |z2|

}

,

X3 = {(z1, z2) ∈ C
2 : |z1| 6 e, |z2| 6 e},

Ω0 = X1 ∪X2 ∪X3,

Bm =
{

(z1, z2) ∈ C
2 : |z1|, |z2| > 1,

∣

∣|z1| − |z2|
∣

∣ <
1

(|z1|+ |z2|)m

}

,

Ωk = Ω0 ∪B4k.

Note that Ω0 and Ωk are unbounded non-pseudoconvex complete Reinhardt domains

with finite volume. The following proposition is also from [12].

Proposition 1. Let k be a positive integer.

(i) The Bergman space A2(Ωk) is spanned by the monomials {(z1z2)
j}kj=0.

(ii) The Bergman space A2(Ω0) is spanned by the monomials {(z1z2)
j}∞j=0.

Next, we look at the Hankel operators on the Bergman spaces of Ω0 and Ωk.

Example 1. We start with Ωk. Since A2(Ωk) is finite dimensional, for any

multi-index of the form (j, j) for j = 1, . . . , k, the term S(j,j) is a finite sum and

consequently finite when restricted to the subspace of A2(Ωk) where the multiplica-

tion operator with the symbol f is bounded. Hence, for any f ∈ A2(Ωk), the Hankel

operator with the symbol f is Hilbert-Schmidt on the subspace of A2(Ωk) where the

operator is bounded.
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Example 2. Next, we look at Ω0 and observe that the terms Sα take a simpler

form. Namely, for a multi-index (j, j),

S(j,j) =

∞
∑

k=0

(c2(k+j,k+j)

c2(k,k)
−

c2(k,k)

c2(k−j,k−j)

)

,

where

c2(k,k) =

∫

Ω0

|z1z2|
2k dV (z1, z2).

We will particularly compute S(1,1). A simple integration indicates

c2(k,k) = 4π
2
( 2

2k + 1
+

e4k+4

(2k + 2)2

)

and by simple algebra we obtain

c2(k+1,k+1)

c2(k,k)
−

c2(k,k)

c2(k−1,k−1)

=
e8k+8 (2k+2)4−(2k+4)2(2k)2

(2k+4)2(2k)2(2k+2)4 + e4k p1(k)
p2(k)

+ p3(k)
p4(k)

e8k+8 1
(2k)2(2k+2)2 + e4k p5(k)

p6(k)
+ p7(k)

p8(k)

where p1(k), . . . , p8(k) are polynomials in k. For large values of k, the first terms at

the numerator and the denominator dominate and we obtain

c2(k+1,k+1)

c2(k,k)
−

c2(k,k)

c2(k−1,k−1)

≈

(2k+2)4−(2k+4)2(2k)2

(2k+4)2(2k)2(2k+2)4

1
(2k)2(2k+2)2

≈
1

k2
.

Therefore, S(1,1) is finite and the Hankel operator Hz1z2 is Hilbert-Schmidt on

A2(Ω0).

5. Remarks

5.1. Canonical solution operator for ∂-problem:. The canonical solution

operator for ∂-problem restricted to (0, 1)-forms with holomorphic coefficients is not

a Hilbert-Schmidt operator on complete pseudoconvex Reinhardt domains because

the canonical solution operator for ∂-problem restricted to (0, 1)-forms with holomor-

phic coefficients is a sum of Hankel operators with {zj}
n
j=1 as symbols (by Theorem 1

such Hankel operators are not Hilbert-Schmidt):

∂
∗
N1(g) = ∂

∗
N1

( n
∑

j=1

gjdzj

)

=

n
∑

j=1

Hzj
(gj)

for any (0, 1)-form g with holomorphic coefficients.
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