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Abstract. The concept of a Goldie extending module is generalized to a Goldie extending
element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending
element if and only if for every b 6 a there exists a direct summand c of a such that
b ∧ c is essential in both b and c. Some properties of such elements are obtained in the
context of modular lattices. We give a necessary condition for the direct sum of Goldie
extending elements to be Goldie extending. Some characterizations of a decomposition of
a Goldie extending element in such a lattice are given. The concepts of an a-injective and
an a-ejective element are introduced in a lattice and their properties related to extending
elements are discussed.
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1. Introduction

The notion of a ring in which every complement right ideal is a direct summand

was introduced by Chatters and Hajarnavis [3]. They called such a ring a CS-ring

(complements are summands). This notion has been studied by several researchers

in the context of modules under the names an extending module or a module with

C1-property or a CS-module. These modules and their generalizations have been

studied by several authors such as Harmanci and Smith [9], Akalan, Birkenmeier

and Tercan [1], Dung et al. [5]. A module M is called extending if every submodule

of M is a direct summand of M . In [6], Noyan Er studied the ring whose modules

are direct sums of extending modules.

Călugăreanu [2] used lattice theory in module theory and studied several con-

cepts from module theory in lattice theory. Keskin [11] obtained some properties of

extending modules using modular lattices.
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In [10], Kamal and Sayed generalized the concept of an extending module by using

the concept of an I-jective ideal. In [1], Akalan, Birkenmeier and Tercan defined

a Goldie extending module over an associative ring. They defined two relations α

and β on modules over associative rings and by using the relation β, formulated the

concept of a Goldie extending module. They posed the following open problem.

Open problem. Determine necessary and/or sufficient conditions for a direct sum

of Goldie extending modules to be Goldie extending.

In the present paper, we obtain a lattice theoretic analogue of the results of Akalan,

Birkenmeier and Tercan [1] and answer this open problem in the context of certain

modular lattices. We define a Goldie extending element in a lattice with 0 and obtain

some properties of such elements in certain modular lattices by using the concept

of ejectivity. The second section deals with preliminaries required in the subsequent

sections. In the third section, we define an a-injective element in a lattice and prove

some of its properties. In the last section we introduce the concept of a Goldie

extending element and an ejective element in a lattice and give a characterization

of a Goldie extending element by using the ejectivity of direct summands in certain

modular lattices.

2. Preliminaries

The concepts from the lattice theory used in this paper are from Grätzer [7] and

Crawley and Dilworth [4].

Throughout this paper L denotes a lattice with the least element 0.

The following remark can be proved by using modularity of L.

R e m a r k 2.1. Let L be a modular lattice and a, b, c ∈ L. If a ∧ b = 0 and

(a ∨ b) ∧ c = 0 then a ∧ (b ∨ c) = 0.

Grzeszczuk and Puczy lowski, [8] developed the concept of Goldie dimension from

the module theory, to modular lattices. In this context they defined the concept of

an essential element in a lattice with the least element 0, see also Călugăreanu [2].

Definition 2.1 ([2], page 39). An element a ∈ L is called essential in b ∈ L

(or b is an essential extension of a), if there is no nonzero c 6 b with a ∧ c = 0. We

then write a 6e b. If a 6e b and there is no c > b such that a 6e c, then b is called

a maximal essential extension of a. If a ∈ L and there is no nonzero c ∈ L such that

a ∧ c = 0, then we say that a is essential in L.

Definition 2.2 ([2], page 39). An element a is closed (or essentially closed) in b,

if a has no proper essential extension in b. We denote this by a 6cl b. If a does not

have a proper essential extension in L, then we say that a is closed in L.
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The concepts of a semicomplement and a maximal semicomplement are known

in lattices with 0, see Szász [13], page 47. Let a, b ∈ L. We say that a, b are

semicomplements of each other, if a ∧ b = 0.

Definition 2.3. If a, b ∈ L and b is a maximal element in the set {x : x ∈ L,

a ∧ x = 0}, then we say that b is a maximal semicomplement of a. In short we say

that b is a max-semicomplement of a in L.

A max-semicomplement is called as a pseudo-complement by Călugăreanu [2],

page 39, and Keskin [11]. However, in order to distinguish it from the concept of the

pseudocomplement of an element in a lattice (a is called a pseudocomplement of b,

if a is the largest element with the property b ∧ a = 0, see Grätzer [7], page 63), we

use the term max-semicomplement.

In the lattice L shown in Figure 1, g, h are max-semicomplements of f but f does

not have a pseudocomplement in L.

0

a b c d e

f g h

i

1

Figure 1.

In the theory of modules, (e.g. Lam [12], Proposition 6.24, page 215, Chatters and

Hajarnavis [3], Proposition 2.2, and others), it is known that if A, B, C are modules

of a ring R with A ⊆ B ⊆ C and if A is closed in B, B is closed in C, then A is

closed in C. The following proposition is an analog of this result for the elements of

a modular lattice with 0, the proof of which is due to F. Wehrung.1

Proposition 2.1. Let L be a modular lattice with 0. For a, b, c ∈ L, if a 6cl b

and b 6cl c, then a 6cl c.

P r o o f. Necessarily, a < b < c. Suppose that a 
cl c. By the definition of 6cl,

there exists x with a < x 6cl c and a 6e x. Since a 6e x ∧ b 6 b and a 6cl b, we get

(2.1) a = x ∧ b.

1 Friedrich Wehrung: A note on a partial ordering in modular lattices. Unpublished work
(June, 2014), private communication. The authors are thankful to Professor Friedrich
Wehrung for granting permission to include the proof.
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In particular, if x 6 b, then a = x, a contradiction; so x 
 b, and so b < b ∨ x 6 c.

Since b 6cl c, it follows that b 
e b ∨ x, thus there exists u such that 0 < u 6 b ∨ x

and u ∧ b = 0.

In particular, u ∧ x 6 x and a ∧ u ∧ x 6 b ∧ u = 0, thus, since a 6e x, we get

(2.2) u ∧ x = 0.

Suppose that a = (u ∨ x) ∧ b. We compute

u = u ∧ (b ∨ x) = u ∧ (u ∨ x) ∧ (b ∨ x) = u ∧ (((u ∨ x) ∧ b) ∨ x) (by modularity)

= u ∧ (a ∨ x) (by assumption) = 0 (because a 6 x and by (2.2));

a contradiction. Hence, a < (u ∨ x) ∧ b 6 b. Since a 6cl b, we get a 
e (u ∨ x) ∧ b,

thus there exists v such that

(2.3) 0 < v 6 (u ∨ x) ∧ b and a ∧ v = 0.

Then it follows from (2.1) that x∧ v = x∧ b∧ v = a∧ v = 0. Thus, if u∧ (x∨ v) = 0,

then the triple (u, v, x) is independent, thus v ∧ (x ∨ u) = 0, a contradiction since

0 < v 6 x ∨ u. This shows that the element u′ = u ∧ (x ∨ v) is nonzero. Moreover,

it follows from (2.3) together with modularity that

x ∨ u′ = (x ∨ u) ∧ (x ∨ v) > v,

so we may replace u by u′ without changing the validity of (2.3). Therefore, we may

assume that

(2.4) 0 < u 6 x ∨ v and u ∧ b = 0.

One immediate consequence of (2.3) and (2.4) is that x ∨ u = x ∨ v.

From a ∨ v 6 b and u ∧ b = 0 it follows that u ∧ (a ∨ v) = 0, thus, since a ∧ v = 0

and by modularity, the triple (a, u, v) is independent.

Moreover, since a 6 x and by (2.2) together with modularity,

x ∧ (a ∨ u) = a ∨ (x ∧ u) = a.

A similar argument, now using the equality x ∧ v = 0, yields x ∧ (a ∨ v) = a.

Set x1 = x ∧ (a ∨ u ∨ v).

We claim that the elements a ∨ u, a ∨ v, and x1 are the atoms of an M3, with

bottom a and top a∨u∨v. The equality (a∨u)∧(a∨v) = a follows from the fact that
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the triple (a, u, v) is independent, while the equalities x1 ∧ (a∨ u) = x1 ∧ (a∨ v) = a

follow from the corresponding equalities with x1 replaced by x, established above

(note that a 6 x1 6 x). It is trivial that x1 6 (a ∨ u) ∨ (a ∨ v) = a ∨ u ∨ v. Finally,

by modularity and since x ∨ u = x ∨ v > a ∨ u ∨ v, we get

x1 ∨ (a ∨ u) = (x ∨ a ∨ u) ∧ (a ∨ u ∨ v) = a ∨ u ∨ v.

Similarly, x1∨(a∨v) = a∨u∨v. This completes the proof of our claim. In particular,

from a ∧ v = 0 and v > 0 it follows that a < a ∨ v, thus a < x1.

Now let x0 = x ∧ (u ∨ v). Since a 6 x and by modularity,

x0 ∨ a = x ∧ (a ∨ u ∨ v) = x1,

thus x0 ∨a > a, and thus x0 > 0. However, x0 ∧a = a∧ (u∨v) = 0 by using the fact

that the triple (a, u, v), is independent and x0 6 x. This contradicts our assumption

that a 6e x. �

The following example shows that Proposition 2.1 need not hold in a nonmodular

lattice.

E x a m p l e 2.1. We note that in the lattice L shown in Figure 1, c 6cl f and

f 6cl i. But c is not closed in i, as c 6e g 6 i.

Definition 2.4. If a, b, c ∈ L are such that a∨ b = c and a∧ b = 0, then a and b

are called direct summands of c and we write c = a ⊕ b. We say that c is a direct

sum of a and b.

Lemma 2.1. In a modular lattice L, if a, b, c ∈ L are such that c = a⊕ b then a

is a max-semicomplement of b in c.

P r o o f. Let a, b, c ∈ L be such that c = a⊕ b. Let d ∈ L be such that a 6 d 6 c

and d ∧ b = 0. Now, by modularity we get

d = c ∧ d = (a ∨ b) ∧ d = a ∨ (b ∧ d) = a.

Hence a is a max-semicomplement of b in c. �

From this we also conclude that the direct summands of c are closed in c.

However, Lemma 2.1 does not hold if L is a nonmodular lattice. Considering the

lattice shown in Figure 1, we note that i = a⊕e, but e is not a max-semicomplement

of a in i.
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R e m a r k 2.2. Let L be a modular lattice and let a, b, c ∈ L be such that a 6

b 6 c. If a is a direct summand of c then a is also a direct summand of b. For, if

c = a⊕ d, then by modularity b = (a ∨ d) ∧ b = a ∨ (d ∧ b) = a⊕ (d ∧ b).

Now, we establish some properties of essential extensions and closed extensions,

the proofs of which are similar to the module case.

Lemma 2.2. In a lattice L the following statements hold.

(1) If a, b, c ∈ L, then a 6e b implies a ∧ c 6e b ∧ c.

(2) If a 6 b 6 c, then a 6e b, b 6e c if and only if a 6e c ([8], Lemma 2).

Lemma 2.3 ([8], Lemma 3). Let L be a modular lattice. Suppose that a, b, c, d ∈ L

are such that a 6 b, c 6 d and b ∧ d = 0. Then a 6e b, c 6e d if and only if

a⊕ c 6e b⊕ d.

Lemma 2.4. Let L be a modular lattice and a, b, c ∈ L, a 6 b 6 c. If d is

a max-semicomplement of a in c then d ∧ b is a max-semicomplement of a in b.

Throughout this paper, wherever necessary, we assume that L satisfies one or more

of the following conditions:

Condition (i): For any a 6 b there exists a maximal essential extension of a in b.

Condition (ii): For any a 6 b and for any c 6 b with c ∧ a = 0, there exists

a max-semicomplement d > c of a in b.

Condition (iii): If the socle is involved Soc(a) exists for any a ∈ L.

A familiar and important class of lattices with these properties is that of upper

continuous modular lattices, in particular, the lattice of ideals of a modular lattice

with 0.

The following lemma is proved for upper continuous modular lattices by Călugăre-

anu [2], Corollary 4.3, page 42.

Lemma 2.5. Let L be a modular lattice satisfying the Condition (ii). Let a, b ∈ L

and a 6 b. Then a is closed in b if and only if a is a max-semicomplement of some

c 6 b.

P r o o f. Suppose that a is a max-semicomplement of some c 6 b and a 6e d 6 b.

Then a ∧ c ∧ d = 0 implies that c ∧ d = 0. Since a is a max-semicomplement of c,

this implies that a = d. Thus a is closed in b.

Conversely, suppose that a is closed in b. Then there exists c 6 b such that

a ∧ c = 0. Since L satisfies the Condition (ii), there exists a max-semicomplement

d > c of a in b. Let f be such that a 6 f 6 b and f ∧ d = 0. Let g 6 f be such that
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a ∧ g = 0. Clearly, (a ∨ g) ∧ d = 0. Hence by Remark 2.1, a ∧ (g ∨ d) = 0. Since d is

a max-semicomplement of a, this implies that g ∨ d = d. Since g 6 f and f ∧ d = 0,

we conclude that g = 0. Thus a 6e f 6 b. This implies that a = f . Thus a is

a max-semicomplement of d in b. �

The following example shows that Lemma 2.5 does not hold for a general modular

lattice.

E x a m p l e 2.2. Let L = {A ⊆ N : A is finite}∪{N}. Then L is a modular lattice.

Any nonempty A ∈ L is closed in N but A does not have a max-semicomplement

in N.

The following proposition is from Călugăreanu [2], Proposition 4.4, page 43.

Proposition 2.2. Let L be a modular lattice satisfying the Condition (ii) and

let a, b ∈ L be such that a ∧ b = 0. Then a is a max-semicomplement of b in L if

and only if a is closed in L and a ∨ b is essential in L.

3. J-injective elements

The following properties are well known in the module theory, see Akalan et al. [1].

(1) C3 property: If M1, M2 are direct summands of a module M , such that M1 ∩

M2 = {0}, then M1 ⊕M2 is a direct summand of M .

(2) The summand intersection property: If M1, M2 are direct summands of a mod-

ule M , then M1 ∩M2 is a direct summand of M .

We introduce these concepts in a lattice L. We denote the set of all direct sum-

mands of an element a ∈ L by D(a). That is, for every b ∈ D(a) there exists c ∈ D(a)

such that a = b⊕ c.

Definition 3.1. Let a ∈ L. If for any two direct summands b, c of a, b ∨ c is

a direct summand of a, then we say that a satisfies the summand sum property.

E x a m p l e 3.1. Consider the lattice shown in Figure 2. We note that a and b are

direct summands of i and a∨ b = f is also a direct summand of i. Similarly, we can

check for other direct summands of i. Hence i satisfies the summand sum property.

Proposition 3.1. Let L be a modular lattice. If a ∈ L satisfies the summand

sum property, then every direct summand of a satisfies the summand sum property.

P r o o f. Let b ∈ D(a) and c, d ∈ D(b). Since b is a direct summand of a, by

Remark 2.2, c and d are also direct summands of a. As a satisfies the summand sum

property, c ∨ d is a direct summand of a. Hence by Remark 2.2, c ∨ d is a direct

summand of b. �
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Definition 3.2. Let a ∈ L and b, c ∈ D(a). If b ∧ c ∈ D(a) whenever b ∧ c 6= 0,

then we say that a satisfies the summand intersection property.

0

a b c d e

f g h

i

1

Figure 2.

0

a b c

d e f

g

1

Figure 3.

E x a m p l e 3.2. Consider the lattice shown in Figure 3. We note that d and f

are direct summands of g. Also, d ∧ f = b is a direct summand of i. Similarly, we

can check for other direct summands of i. Hence i satisfies the summand intersection

property.

E x a m p l e 3.3. Consider the elements i, f , h in the lattice shown in Figure 2.

Then f and h are direct summands of i. But f ∧h = c is not a direct summand of i.

Hence i does not satisfy the summand intersection property.

Proposition 3.2. Let L be a modular lattice. If a ∈ L satisfies the summand

intersection property, then every direct summand of a satisfies the summand inter-

section property.

P r o o f. Let a, b ∈ L and b ∈ D(a). Let c, d ∈ D(b) be such that c∧d 6= 0. Since b

is a direct summand of a, by Remark 2.2, c and d are also direct summands of a.

As a satisfies the summand intersection property, c ∧ d is a direct summand of a.

Then c ∧ d is a direct summand of b. �

Harmanci and Smith [9], Lemma 5, have proved the following lemma.

Lemma 3.1. Let a module M = M1 ⊕ M2 be the direct sum of submod-

ules M1, M2. Then the following statements are equivalent.

(1) M2 is M1-injective.

(2) For each submodule N of M with N ∩M2 = 0, there exists a submodule M ′

of M such that M = M ′ ⊕M2 and N ⊆ M ′.

We use this characterization to define a lattice formulation of the concept of c

being b injective in a = b⊕ c.
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Definition 3.3. Let a, b, c ∈ L be such that a = b ⊕ c. Then c is said to be

b-injective in a if for every d 6 a with d∧c = 0, there exists e 6 a such that a = e⊕c

and d 6 e.

If c is b-injective and b is c-injective in a, then we say that b and c are relatively

injective.

E x a m p l e 3.4. In the lattice shown in Figure 2, i = a ⊕ e. For b 6 i we have

b 6 f and i = f ⊕ e. Similarly, we can verify that for every x 6 i there exists y 6 i

such that x 6 y and i = y ⊕ e. Thus e is a-injective.

Lemma 3.2. Let L be a modular lattice and a, b, c ∈ L. Let a = b ⊕ c. If c is

b-injective, then c is d-injective in d⊕ c for any d 6 b.

P r o o f. Let d 6 b. To show c is d-injective in d ⊕ c, let f 6 d ∨ c be such that

f ∧c = 0. Since c is b-injective in a, there exists g 6 a such that a = g⊕ c and f 6 g.

Put h = g∧(d∨c). Then c∨h = c∨(g∧(d∨c)) = (c∨g)∧(d∨c) = (b∨c)∧(d∨c) = d∨c.

Thus c is d-injective in d⊕ c. �

Now we define an analogue of the concept of an extending (or CS) module in the

context of lattices.

Definition 3.4. An element a of a lattice L is called extending if every nonzero

b 6 a is essential in a direct summand of a.

E x a m p l e 3.5. In the lattice shown in Figure 3, consider the element g. Every

nonzero x 6 g is a direct summand of g. Hence g is extending.

Consider the element i in the lattice L shown in Figure 4. We note that b 6 i

but b is neither a direct summand of i nor is it essential in a direct summand of i.

Hence i is not extending.

0

a b c

d e f

g h

i

1

Figure 4.
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We note that in a modular lattice L satisfying the Condition (i) stated in Section 2,

every nonzero a 6 b has a maximal essential extension in b and the maximal essential

extension is closed. Hence a nonzero a ∈ L is extending if every b 6 a which is closed

in a is a direct summand of a.

Let L be a modular lattice satisfying the Conditions (i) and (ii) and a 6 b. By

Lemma 2.5, a is closed in b if and only if a is a max-semicomplement in b. Hence b

is extending if every max-semicomplement in b is a direct summand of b.

The following result is an analogue of Corollary 2 from Harmanci and Smith [9]

in the context of lattices.

Lemma 3.3. Let L be a modular lattice satisfying the Conditions (i) and (ii).

Suppose that a ∈ L is extending. Then every direct summand of a is extending.

The following result, from Keskin [11], Proposition 3.2, is a lattice theoretic ana-

logue of Lemma 7.9, page 59, from Dung et al. [5].

Lemma 3.4. Let L be a modular lattice satisfying the Conditions (i) and (ii). Let

a, b, c ∈ L be such that a = b⊕ c and let b and c be extending. Then a is extending

if and only if every closed element d 6 a with either d∧ b = 0 or d∧ c = 0 is a direct

summand of a.

Lemma 3.5. Let L be a modular lattice satisfying the Conditions (i) and (ii) and

a ∈ L. Suppose that any two direct summands of a whose join is a are relatively

injective. If a = a1 ⊕ a2, then a is extending if and only if a1, a2 are extending.

P r o o f. If a is extending, then by Lemma 3.3, a1, a2 are extending.

To prove the converse, let c 6cl a. Suppose that c ∧ a1 = 0. Since a1, a2 are rela-

tively injective, there is d > c such that d⊕a1 = a. Thus by modularity, the interval

sublattices [0, d] and [0, a2] are isomorphic and it follows that d is extending as a2 is

extending. Therefore, c 6e x for some x ∈ D(d) ⊆ D(a). As c is closed, we get c = x.

The case c∧a2 = 0 follows by symmetry. Hence by Lemma 3.4, a is extending. �

Lemma 3.6. Let L be a modular lattice satisfying the Conditions (i) and (ii) and

let a, b, c ∈ L be such that a = b ⊕ c. Suppose that a is extending and satisfies the

summand sum property. Then b and c are relatively injective.

P r o o f. Let a = b⊕ c and let d be a max-semicomplement of b in a. By Propo-

sition 2.2, d ⊕ b 6e a and d is closed in a. Now, since a is extending, d is a direct

summand of a. Thus we have obtained two direct summands b and d of a such that

b∧ d = 0. By the summand sum property, b⊕ d is a direct summand of a. But then

d⊕ b 6e a implies a = d⊕ b. Hence b is c-injective.

Similarly, we can show that c is b-injective. �
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4. Goldie extending elements

In this section, as a generalization of an extending element, we define a Goldie

extending element in a lattice. We also define an a-ejective element in a lattice and

discuss some of its properties.

Akalan et al. [1] defined two relations α and β on the set of submodules of a mod-

ule M and also the concept of a Goldie extending module. We define these relations

and the concept of a Goldie extending element in a lattice.

Definition 4.1. Let a, b ∈ L. Then

(1) a α b if and only if there exists c ∈ L such that a 6e c and b 6e c,

(2) a β b if and only if a ∧ b 6e a and a ∧ b 6e b.

E x a m p l e 4.1. In the lattice shown in Figure 4, consider the elements g, h and i.

We note that g 6e i and h 6e i. Hence g α h holds. Also, the elements g and h

satisfy g ∧ h 6e g and g ∧ h 6e h. Hence g β h holds.

R e m a r k 4.1. a α b implies a β b. But the converse need not hold.

P r o o f. Let c ∈ L be such that a 6e c and b 6e c. By Lemma 2.2, it follows that

a ∧ b 6e a and a ∧ b 6e b. Thus a α b implies a β b.

For the converse, consider the elements d, f in the lattice shown in Figure 5. Then

d ∧ f = b 6e d and d ∧ f = b 6e f . Thus d β f holds. But there is no x such that

x >e d and x >e f . Hence d α f does not hold. �

0

a b

c d e f

g

1

Figure 5.
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R e m a r k 4.2. a β b is an equivalence relation on L.

We give a characterization of an extending element.

Proposition 4.1. Let L be a modular lattice satisfying the Conditions (i) and (ii).

An element a ∈ L is extending if and only if for every b 6 a there exists a direct

summand c ∈ D(a) such that b α c.

P r o o f. Let a be an extending element in L. Let b 6 a. Since a is extending,

there exists a direct summand c ∈ D(a) such that b 6e c. Now using c 6e c we get

b α c.

Conversely, suppose that for every b 6 a there exists a direct summand c ∈ D(a)

such that b α c. Then there exists d ∈ L such that b 6e d and c 6e d. It follows that

b 6e a∧ d and c 6e a∧ d. Being a direct summand, c is closed in a. Hence c = a∧ d

and b 6e c. Thus, a is extending. �

By using the condition β we give the definition of a Goldie extending element in

a lattice L with 0. We also give some of its characterizations.

Definition 4.2. Let a ∈ L. If for every b 6 a there exists a direct summand

c ∈ D(a) such that b β c then a is said to be a Goldie extending element. In short,

we say that a is a G-extending element.

We note that whenever b 6e a, then a is the only direct summand of a such that

b β a. In a modular lattice L, we can equivalently define a G-extending element as

follows.

An element a ∈ L is called a Goldie extending element, if for every closed element

b 6 a there exists a direct summand c ∈ D(a) such that b β c holds.

E x a m p l e 4.2. In the lattice shown in Figure 5, the element g is G-extending.

Here the direct summands of g are a, d, e and f . Also a β a, b β d, c β f , d β f

e β d hold.

In the following result we give a necessary and sufficient condition for an element

to be Goldie extending.

Lemma 4.1. Let a ∈ L. Then the following statements are equivalent.

(1) a is a G-extending element.

(2) For every b 6 a there exists c 6 a and d ∈ D(a) such that c 6e b and c 6e d.

P r o o f. (1) ⇒ (2): Let a be G-extending. Then for every b 6 a there exists

a direct summand c ∈ D(a) such that b β c. Then b∧ c 6e b and b∧ c 6e c. Putting

d = b ∧ c, it follows that d 6e b and d 6e c.
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(2) ⇒ (1): Let a, b ∈ L be such that b 6 a. Then by (2) there exist c 6 a and

a direct summand d of a such that c 6e b and c 6e d.

Put f = b∧ d. Let g 6 b be such that f ∧ g = 0. This implies 0 = b∧ d∧ g = d∧ g

and so c ∧ g = 0. Now c 6e b implies g = 0. Thus b ∧ d 6e b. Similarly, b ∧ d 6e d

Thus, b β d holds and a is G-extending. �

The concept of the socle of a module is well known. It was generalized for lattices,

see Călugăreanu [2], page 47.

Definition 4.3. For x ∈ L, we denote the socle of x by Soc(x) and define it as

Soc(x) =
∨

{a : a 6 x where a is an atom in L}.

If a 6 b, then it is clear that Soc(a) 6 Soc(b).

E x a m p l e 4.3. In the lattice shown in Figure 4, for g ∈ L, Soc(g) = e and for

the element e, Soc(e) = e.

Lemma 4.2. Let x, y ∈ L. Suppose that for any x ∈ L, Soc(x) exists, then

x 6e y implies Soc(x) = Soc(y).

P r o o f. Let x 6e y. It is clear that Soc(x) 6 Soc(y). Since x 6e y, for no atom

a 6 y, x∧a = 0 holds. Hence each atom a 6 y satisfies a 6 x. Thus Soc(y) 6 Soc(x).

�

We define a weak extending element in a lattice L with 0 and give its relationship

with a G-extending element.

Definition 4.4. An element a of a lattice L with 0 is called weak extending, if

for every b 6 a, Soc(b) 6e d for some d ∈ D(a).

Definition 4.5. An element a of a lattice L is said to satisfy the condition

(∗) if for every b 6 a there exists a decomposition a = a1 ⊕ a2 of a such that

b ∧ a2 = 0 and b⊕ a2 6e a.

E x a m p l e 4.4. Consider the element i in the lattice shown in Figure 4. Then

a 6 i and b and f are max-semicomplements of a. Also, a ∨ b = e 6e i and a ∨ f =

h 6e i. Similarly, we can check for all x 6 i. Hence i satisfies the condition (∗).

Also, we note that the element b is neither a direct summand of i, nor is it essential

in a direct summand of i. This shows that an element satisfying the condition (∗),

need not be extending.

Now, consider the elements g and c in the lattice shown in Figure 6. We note that

c 6 g and there exists no direct summand k of g such that c ∨ k 6e g. Hence g does

not satisfy the condition (∗).
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It is clear that if a is extending then a satisfies the condition (∗).

Proposition 4.2. Let L be a modular lattice satisfying the Conditions (i) and (ii)

in which Soc(x) exists for every x ∈ L. Consider the following statements for a ∈ L.

(1) a is extending.

(2) a is G-extending.

(3) a satisfies the condition (∗).

(4) a is weak extending.

Then (1) ⇒ (2) ⇒ (3) and (2) ⇒ (4).

P r o o f. (1) ⇒ (2): Let a be extending and b 6 a. By Proposition 4.1 there exists

a direct summand c ∈ D(a) such that b α c and so by Remark 4.1, b β c. Hence a is

G-extending.

(2) ⇒ (3): Let b 6 a. Then by (2) there exists a direct summand c ∈ D(a) such

that b β c. Then b ∧ c 6e b, b ∧ c 6e c. Let a = c⊕ d for some d ∈ D(a).

By Lemma 2.3, (b ∧ c)⊕ d 6e c⊕ d = a. Hence by (2) of Lemma 2.2, b ⊕ d 6e a.

Since L is modular, the direct summand d of a is closed in a. It follows from

Proposition 2.2 that the direct summand d is a max-semicomplement of b in a.

Thus, a satisfies the condition (∗).

(2) ⇒ (4): Let a be G-extending. Let b 6 a. Clearly, Soc(b) 6 a. By (2), there

exists c ∈ D(a) such that Soc(b) β c. That is, Soc(b)∧c 6e c and Soc(b)∧c 6e Soc(b).

Let x be an atom such that x 6 b. Then x 6 Soc(b). As Soc(b) ∧ c 6e Soc(b), we

have x ∧ (Soc(b) ∧ c) 6= 0. Thus x 6 Soc(b) ∧ c. This implies Soc(b) 6 Soc(b) ∧ c.

Thus Soc(b) ∧ c = Soc(b). Hence Soc(b) 6e c. Thus, a is weak extending. �

Now, we give a characterization of a G-extending element.
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Theorem 4.1. Let L be a modular lattice satisfying the Conditions (i) and (ii)

and a ∈ L.

(1) Suppose that every b 6 a has a unique maximal essential extension in a. Then a

is G-extending if and only if a is extending.

(2) If Soc(a) 6e a, then a is G-extending. If L is atomic and if a is weak extending,

then a is G-extending.

P r o o f. (1) Let a be G-extending. Let c ∈ L be such that c is closed in a. By

Lemma 4.1, there exist a d 6 a and a direct summand f ∈ D(a) such that d 6e f

and d 6e c. Since the direct summand f is closed in a and c is also closed in a,

the elements c and f are two maximal essential extensions of b in a. By (1), c = f .

Hence every closed element x 6 a is a direct summand of a. Thus a is extending.

The converse follows from Proposition 4.2.

(2) Let Soc(a) 6e a. The if part follows from Proposition 4.2.

Conversely, let a be weak extending. Let b 6 a. Then Soc(b) 6e c for some

c ∈ D(a).

Let t 6 b be nonzero. Since L is atomic, there exists an atom x 6 t. Then

Soc(b) ∧ x = x implies Soc(b) ∧ t 6= 0. Hence Soc(b) 6e b. Thus by Lemma 4.1, a is

G-extending. �

The notion of a module N being M -injective is generalized to M -ejective by Akalan

et al. [1], Definition 2.1. The concept of ejectivity is a generalization of injectivity.

We use the characterization of ejectivity given in Theorem 2.7 from Akalan et al. [1]

to define an a-ejective element in a lattice L. We also prove a relation between an ex-

tending element and a G-extending element by using ejectivity of direct summands.

Definition 4.6. Let a, b, c ∈ L be such that a = b ⊕ c. Then b is said to be

c-ejective in a, if for every d 6 a such that d ∧ b = 0 there exists an f 6 a such that

a = b⊕ f and d ∧ f 6e d.

If b is c-ejective and c is b-ejective then we say that b and c are relatively ejective.

E x a m p l e 4.5. In the lattice shown in Figure 5, g = a ⊕ e. Also, for b 6 g,

b ∧ a = 0 there exists f 6 g such that g = a ⊕ f and b ∧ f 6e b. Similarly, we can

show that for all x 6 g satisfying x ∧ a = 0 there exists y 6 g such that g = a ⊕ y

and x ∧ y 6e x. Hence a is e-ejective.

Lemma 4.3. Let L be a modular lattice satisfying the Conditions (i) and (ii) and

let a, b, c ∈ L be such that a = b⊕ c. If b is c-injective then b is c-ejective. Also, the

converse holds if every d 6 a is closed in a.
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P r o o f. Let a = b⊕ c and let b be c-injective. Let d 6 a be such that d ∧ b = 0.

Since b in c-injective, there exists f 6 a such that a = b ⊕ f and d 6 f . Clearly

d ∧ f = d 6e d. Hence b is c-ejective.

For the converse, let b be c-ejective and let every x 6 a be closed in a. Let d 6 a

be such that d∧b = 0. Since b in c-ejective, there exists an f ∈ L such that a = b⊕f

and d ∧ f 6e d. As every x 6 a is closed in a, d ∧ f = d, that is d 6 f . Hence b is

c-injective. �

Proposition 4.3. Let L be a modular lattice satisfying the Conditions (i) and (ii)

and let a ∈ L be such that a is G-extending. If a has the summand intersection

property, then every direct summand of a is G-extending.

P r o o f. Let b ∈ D(a) be a direct summand of a and let c 6 b. Since a is

G-extending, by Lemma 4.1 there exist a d 6 a and a direct summand f ∈ D(a)

such that d 6e c and d 6e f . By Lemma 2.2, d∧ b 6e c∧ b and d∧ b 6e f ∧ b. That

is, d∧ b 6e c and d∧ b 6e f ∧ b. Since a has the summand intersection property, f ∧ b

is a direct summand of a. As f ∧ b 6 b we conclude that f ∧ b is a direct summand

of b. Hence c β (f ∧ b) where (f ∧ b) ∈ D(b). Thus, b is G-extending. �

Now we formulate and answer the open problem posed by Akalan, Birkenmeier

and Tercan [1], mentioned in the introduction in the context of certain modular

lattice.

Open problem. Give necessary and/or sufficient condition for the direct sum of

G-extending elements in a modular lattice with 0, to be G-extending.

In the following we give a sufficient condition for the direct sum of G-extending

elements to be G-extending.

Theorem 4.2. Let L be a modular lattice satisfying the Conditions (i) and (ii).

Suppose that a, b, c ∈ L are such that a = b ⊕ c. Also suppose that b and every x

such that x⊕ b = a are G-extending. If b is c-ejective then a is G-extending.

P r o o f. Let b be c-ejective. Let d 6 a.

If d∧ b = 0 then there exists f ∈ L such that a = b⊕ f and d∧ f 6e d. Since f is

G-extending, there exist g 6 f and a direct summand h ∈ D(f) such that g 6e d∧ f

and g 6e h. As f ∈ D(a), it follows that h ∈ D(a). Then g 6e d∧f 6e d and g 6e h

imply that d β h.

If d∧ b 6= 0, then d∧ b has a max-semicomplement i 6 d such that (d∧f)⊕ i 6e d.

Now, (d∧f)∧ i = 0 implies f ∧ i = 0 and since b is c-ejective, there exists j ∈ L such

that a = b⊕ j and i∧ j 6e i. Again, j is G-extending and i∧ j 6 j imply that there

exist k ∈ L such that k 6 j and a direct summand l ∈ D(j) such that k 6e i∧ j and

k 6e l.
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Also, as b is G-extending and d ∧ b 6 b there exist m ∈ L such that m 6 b and

a direct summand n ∈ D(b) such that m 6e d ∧ b and m 6e n.

Now, k 6e i ∧ j, m 6e d ∧ b and (i ∧ j) ∧ (d ∧ b) = 0 imply that

k ⊕m 6e (i ∧ j)⊕ (d ∧ b).

Using i ∧ j 6e i we get k ⊕m 6e i⊕ (d ∧ b). That is, k ⊕m 6e d.

Also, k⊕m 6e l⊕n. Since l is a direct summand of j, n is a direct summand of b

and a = b ⊕ j, we have that l ⊕ n is a direct summand of a. Hence k ⊕m 6e d and

k ⊕m 6e p = l ⊕ n. Thus d β p holds. It follows that a is G-extending. �

Lemma 4.4. Let L be a modular lattice satisfying the Conditions (i) and (ii) and

a ∈ L. Suppose that every b 6 a has a unique maximal essential extension in a. If a

is G-extending then a has the summand intersection property.

P r o o f. Let x, y ∈ D(a) be such that x∧y 6= 0. Let p and q be maximal essential

extensions of x∧ y in x and y, respectively. But, our assumption implies that p = q.

Thus x ∧ y 6e p 6 x and x ∧ y 6e p 6 y. This implies x ∧ y = p. Thus x ∧ y is

closed in x. As x, being a direct summand of a, is closed in a, by Proposition 2.1 we

conclude that x ∧ y is closed in a. Now, by Theorem 4.1 (1), a is extending, hence

x ∧ y a direct summand of a. Thus a has the summand intersection property. �

Lemma 4.5. Let L be a modular lattice satisfying the Conditions (i) and (ii)

and let a, b, c ∈ L be such that a = b ⊕ c and Soc(a) 6e c. Suppose that a has

the summand intersection property and a is weak extending. Then every direct

summand of c is G-extending.

P r o o f. It is clear that c has the summand intersection property. So, Soc(a) 6e c

implies Soc(a) ∧ c 6e c, that is Soc(c) 6e c.

Now, we show that c is weak extending. Let d 6 c. Since a is weak extending,

there exists f ∈ D(a) such that Soc(d) 6e f .

It follows that Soc(d) ∧ c 6e f ∧ c, that is Soc(d) 6e f ∧ c. By the summand

intersection property, f ∧ c is a direct summand of a. Then f ∧ c 6 c implies f ∧ c

is a direct summand of c. Hence c is weak extending. By (2) of Theorem 4.1, c is

G-extending.

Now, c is G-extending and satisfies the summand intersection property. Hence by

Proposition 4.3 every direct summand of c is G-extending. �
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