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Abstract. Let C[0, t] denote a generalized Wiener space, the space of real-valued con-
tinuous functions on the interval [0, t], and define a random vector Zn : C[0, t] → R

n+1

by

Zn(x) =

(

x(0) + a(0),

∫ t1

0

h(s) dx(s) + x(0) + a(t1), . . . ,

∫ tn

0

h(s) dx(s) + x(0) + a(tn)

)

,

where a ∈ C[0, t], h ∈ L2[0, t], and 0 < t1 < . . . < tn 6 t is a partition of [0, t]. Using
simple formulas for generalized conditional Wiener integrals, given Zn we will evaluate
the generalized analytic conditional Wiener and Feynman integrals of the functions F in
a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra S . Finally,
we express the generalized analytic conditional Feynman integral of F as a limit of the
non-conditional generalized Wiener integral of a polygonal function using a change of scale
transformation for which a normal density is the kernel. This result extends the existing
change of scale formulas on the classical Wiener space, abstract Wiener space and the
analogue of the Wiener space C[0, t].
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1. Introduction

Let C0[0, t] denote the Wiener space, the space of continuous real-valued func-

tions x on [0, t] with x(0) = 0. It has been recognized since Feynman introduced

his integrals that there is a close formal analogy with Wiener integrals. One of ap-

proaches to define the Feynman integrals is using an analytic continuation in the

mass parameter (i.e., the scale parameter) rather than in the time, so that we can

treat not only attractive potentials but also repulsive ones. The conditional analytic

Feynman integrals by the analytic continuation of the scale parameter can describe

the Feynman integrals for Wiener paths which pass through a particular position at

each time. To evaluate the conditional analytic Feynman integrals for the Wiener

paths, it is essential to handle the scale parameter in conditional Wiener integrals.

Unfortunately, the Wiener measure and Wiener measurability behave badly under

change of scale and under translation (see [1], [2]) so that we need to change the

scale formulas for the conditional Wiener integrals. Various kinds of change of scale

formulas in [4], [14], [19], [20], [21] for ordinary Wiener integrals of bounded and

unbounded functions were developed on the classical and abstract Wiener spaces

in [15]. Furthermore, the second author of this paper and his coauthors in [6],

[11], [18] introduced various kinds of change of scale formulas for the conditional

Wiener integrals of functions defined on C0[0, t], the infinite dimensional Wiener

space (see [5]) and C[0, t], an analogue of the Wiener space (see [13], [17]) which is

the space of real-valued continuous paths on [0, t] and will be introduced in the next

section.

Let a ∈ C[0, t] and h ∈ L2[0, t] with h 6= 0 a.e. on [0, t]. Define the stochastic

processes X,Z : C[0, t]× [0, t] → R by

X(x, s) =

∫ s

0

h(u) dx(u) and Z(x, s) = X(x, s) + x(0) + a(s)

for x ∈ C[0, t] and s ∈ [0, t], where the integral denotes the Paley-Wiener-Zygmund

integral which will be introduced in the next section (see [13]). Define random vectors

Xn : C[0, t] → R
n, Xn+1 : C[0, t] → R

n+1, Zn : C[0, t] → R
n+1 and Zn+1 : C[0, t] →

R
n+2 by

Xn(x) = (X(x, t1), . . . , X(x, tn)),

Xn+1(x) = (X(x, t1), . . . , X(x, tn), X(x, tn+1)),

Zn(x) = (Z(x, t0), . . . , Z(x, tn))

and

Zn+1(x) = (Z(x, t0), . . . , Z(x, tn), Z(x, tn+1))
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for x ∈ C[0, t], where 0 = t0 < t1 < . . . < tn < tn+1 = t is a partition of [0, t]. On

the space C[0, t] the author in [7] derived a simple formula for a generalized condi-

tional Wiener integral given the vector-valued conditioning function Xn+1. Using

the formula with Xn+1, Yoo and the author in [12] evaluated a generalized analytic

conditional Wiener integral of the function Gr having the form

Gr(x) = F (x)Ψ

(
∫ t

0

v1(s) dx(s), . . . ,

∫ t

0

vr(s) dx(s)

)

for F in a Banach algebra which corresponds to the Cameron-Storvick’s Banach

algebra S in [3] and for Ψ = f + φ which need not be bounded or continuous, where

f ∈ Lp(R
r), 1 6 p 6 ∞, {v1, . . . , vr} is an orthonormal subset of L2[0, t] and φ is the

Fourier transform of a measure of bounded variation over Rr. They then established

various kinds of change of scale formulas for the generalized analytic conditional

Wiener integral of Gr with the conditioning function Xn+1. Further works were

developed by the second author of this paper. In fact he in [9] evaluated generalized

analytic conditional Wiener and Feynman integrals of the cylinder function G having

the form

G(x) = f((e, x))φ((e, x))

for x ∈ C[0, t], where f ∈ Lp(R), 1 6 p 6 ∞, e is a unit element in L2[0, t], that is, the

L2-norm of e is 1, and φ is the Fourier transform of a measure of bounded variation

over R. He then expressed the generalized analytic conditional Feynman integral ofG

as the limit of non-conditional generalized Wiener integrals using a change of scale

transformation. In [10] he introduced a simple formula for a generalized conditional

Wiener integral on C[0, t] with the conditioning function Xn and then evaluated the

generalized analytic conditional Wiener and Feynman integrals of G. He expressed

the generalized analytic conditional Feynman integral of G as two kinds of limits of

non-conditional generalized Wiener integrals of polygonal functions and of cylinder

functions using a change of scale transformation. In fact, as a function of ξn+1 ∈ R,

the normal density

[ λ

2π[b(t)− b(tn)]

]1/2

exp
{

−
λ(ξn+1 − ξn)

2

2[b(t)− b(tn)]

}

plays a role of the kernel for the transformation, where ξn is a real number, λ is

a complex number with positive real part and b is a variance function.

On the other hand, the author in [8] introduced simple formulas for a general-

ized conditional Wiener integral on C[0, t] with the conditioning functions Zn and

Zn+1, and then evaluated the generalized conditional Wiener integrals of functions

including the time integrals which are important in Feynman integration theories,
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in particular, the Feynman-Kac formula. Using these simple formulas with Zn and

Zn+1 we will evaluate the generalized analytic conditional Wiener and Feynman in-

tegrals of the functions F in a Banach algebra which corresponds to the Banach

algebra S. Finally we will express the generalized analytic conditional Feynman in-

tegral of F as limits of non-conditional generalized Wiener integrals of a polygonal

function using a change of scale transformation for which a normal density is the

kernel. These results extend the existing change of scale formulas in [9], [10], [11],

[12], [18] on the classical and the analogue of the Wiener space C[0, t]. While the

choice of a complete orthonormal subset of L2[0, t] used in the present transforma-

tion is independent of e in the definition of the cylinder function in [9], [10], [14],

the choices of orthonormal bases of L2[0, t] in the other change of scale formulas in

[9], [10], [12], [18], [21] depend on the orthonormal set {v1, . . . , vr} which is used in

the definition of the cylinder function. The conditioning functions Xn+1 and Zn+1

contain the present positions of the generalized Wiener paths, but Xn and Zn do not

contain them. Moreover, the conditioning functions Xn and Xn+1 do not contain

the initial positions of the generalized Wiener paths, but Zn and Zn+1 contain them

so that the results of this paper also extend those in [4].

2. An analogue of Wiener space

Let C and C+ denote the sets of complex numbers and complex numbers with

positive real parts, respectively.

For a positive real t let C[0, t] denote the space of real-valued continuous functions

on the time interval [0, t] with the supremum norm. For ~t = (t0, t1, . . . , tn) with

0 = t0 < t1 < . . . < tn 6 t let J~t : C[0, t] → R
n+1 be the function given by

J~t(x) = (x(t0), x(t1), . . . , x(tn)).

For Bj , j = 0, 1, . . . , n, in the Borel class B(R) of R, the subset J−1
~t

( n
∏

j=0

Bj

)

of

C[0, t] is called an interval; let I be the set of all such intervals. For a probability

measure ϕ on B(R), define a pre-measure mϕ on I by

mϕ

[

J−1
~t

( n
∏

j=0

Bj

)]

=

[ n
∏

j=1

1

2π(tj − tj−1)

]1/2

×

∫

B0

∫

∏
n
j=1

Bj

exp

{

−
1

2

n
∑

j=1

(uj − uj−1)
2

tj − tj−1

}

d(u1, . . . , un) dϕ(u0).

The Borel σ-algebra of C[0, t], B(C[0, t]), coincides with the smallest σ-algebra gen-

erated by I and there exists a unique probability measure wϕ on C[0, t] such that
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wϕ(I) = mϕ(I) for all I ∈ I. This measure wϕ is called an analogue of the

Wiener measure associated with the probability measure ϕ (see [13], [17]). Let

{ej : j = 1, 2, . . .} be a complete orthonormal subset of L2[0, t] such that each ej is

of bounded variation. For v ∈ L2[0, t] and x in C[0, t] let

(v, x) =

∫ t

0

v(u) dx(u) = lim
n→∞

n
∑

j=1

∫ t

0

〈v, ej〉ej(u) dx(u)

if the limit exists, where 〈·, ·〉 denotes the inner product over L2[0, t]. Then (v, x)

is called the Paley-Wiener-Zygmund integral of v according to x; note that (v, ·) is

a mean zero Gaussian random variable with variance ‖v‖2 if v 6= 0, where ‖·‖ denotes

the L2-norm on L2[0, t] (see [13]).

Let F : C[0, t] → C be integrable and let X be a random vector on C[0, t]. Then

we have the conditional expectation E[F |X ] given X from a well-known probability

theory. Furthermore, there exists a PX -integrable function ψ on the value space of X

such that E[F |X ](x) = (ψ◦X)(x) for wϕ a.e. x ∈ C[0, t], where PX is the probability

distribution of X . The function ψ is called the conditional Wiener wϕ-integral of F

given X and it is also denoted by E[F |X ].

Let 0 = t0 < t1 < . . . < tn < tn+1 = t be a partition of [0, t], where n is a fixed

nonnegative integer. Let h ∈ L2[0, t] be of bounded variation with h 6= 0 a.e. on [0, t].

For j = 1, . . . , n+ 1 let

αj =
1

‖χ(tj−1,tj ]h‖
χ(tj−1,tj ]h

and let V be the subspace of L2[0, t] generated by {α1, . . . , αn+1}. Let V
⊥ be the

orthogonal complement of V . Let P : L2[0, t] → V be the orthogonal projection

given by

Pv =

n+1
∑

j=1

〈v, αj〉αj

and let P⊥ : L2[0, t] → V ⊥ be the orthogonal projection. Let a ∈ C[0, t] and define

stochastic processes X,Z : C[0, t]× [0, t] → R by

X(x, s) =

∫ s

0

h(u) dx(u) + x(0) and Z(x, s) = X(x, s) + a(s)

for x ∈ C[0, t] and for s ∈ [0, t]. Define random vectors Xn, Zn : C[0, t] → R
n+1 and

Xn+1, Zn+1 : C[0, t] → R
n+2 by

Xn(x) = (X(x, t0), X(x, t1), . . . , X(x, tn)),(2.1)

Zn(x) = Xn(x) + (a(t0), a(t1), . . . , a(tn)),(2.2)

Xn+1(x) = (X(x, t0), X(x, t1), . . . , X(x, tn), X(x, tn+1)),(2.3)
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and

(2.4) Zn+1(x) = Xn+1(x) + (a(t0), a(t1), . . . , a(tn), a(tn+1))

for x ∈ C[0, t]. Let b(s) =
∫ s

0 (h(u))
2 du for s ∈ [0, t] and for any function f on [0, t]

define the polygonal function Pb,n+1(f) of f by

(2.5) Pb,n+1(f)(s) =

n+1
∑

j=1

χ(tj−1,tj ](s)
[ b(tj)− b(s)

b(tj)− b(tj−1)
f(tj−1) +

b(s)− b(tj−1)

b(tj)− b(tj−1)
f(tj)

]

+ χ{0}(s)f(0)

for s ∈ [0, t], where χ(tj−1,tj ] and χ{0} denote the indicator functions of the inter-

val [0, t]. For ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) ∈ R
n+2 define the polygonal function

Pb,n+1(~ξn+1) of ~ξn+1 by (2.5), where f(tj) is replaced by ξj for j = 0, 1, . . . , n, n+1.

If ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1, then Pb,n(~ξn) is interpreted as χ[0,tn]Pb,n+1(~ξn+1)

on [0, t]. For x ∈ C[0, t] and for s ∈ [0, t] let

A(s) = a(s)− Pb,n+1(a)(s),(2.6)

Xb,n+1(x, s) = X(x, s)− Pb,n+1(X(x, ·))(s)(2.7)

and

(2.8) Zb,n+1(x, s) = Z(x, s)− Pb,n+1(Z(x, ·))(s).

For α, β, u ∈ R and λ ∈ C let

(2.9) Ψ(λ, u, α, β) =
( λ

2πβ

)1/2

exp
{

−
λ

2β
(u− α)2

}

with β 6= 0.

For a function F : C[0, t] → C let FZ(x) = F (Z(x, ·)) for x ∈ C[0, t]. For nota-

tional convenience we restate Theorems 6 and 7 of [8] as the following two theorems.

Theorem 2.1. Let F be a complex valued function on C[0, t] and let FZ be

integrable over C[0, t]. Then for PZn+1
a.e. ~ξn+1 ∈ R

n+2

E[FZ |Zn+1](~ξn+1) = E[F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))],

where Zb,n+1 is given by (2.8), PZn+1
is the probability distribution of Zn+1 on

(Rn+2,B(Rn+2)) and the expectation is taken over the variable x.
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Theorem 2.2. Let F be a complex valued function on C[0, t] and let FZ be inte-

grable over C[0, t]. Let PZn
be the probability distribution of Zn on (R

n+1,B(Rn+1)).

Then for PZn
a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1

E[FZ |Zn](~ξn) =

∫

R

Ψ(1, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))

× E[F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))] dξn+1,

where ~ξn+1 = (ξ0, . . . , ξn, ξn+1) and Zb,n+1, Ψ are given by (2.8), (2.9), respectively.

Lemma 2.1. For λ > 0 let Fλ
Z (x) = FZ(λ

−1/2x) and Zλ
n+1(x) = Zn+1(λ

−1/2x)

for x ∈ C[0, t], where Zn+1 is given by (2.4). Suppose that E[Fλ
Z ] exists. Then

(2.10) E[Fλ
Z |Z

λ
n+1](

~ξn+1) = E[F (λ−1/2Xb,n+1(x, ·) +A+ Pb,n+1(~ξn+1))]

for PZλ
n+1
a.e. ~ξn+1 ∈ R

n+2, where A, Xb,n+1 are given by (2.6), (2.7), respectively,

and PZλ
n+1
is the probability distribution of Zλ

n+1 on (Rn+2,B(Rn+2)).

P r o o f. By (2.4), the definition of the conditional Wiener wϕ-integral and The-

orem 2.1 we have for PZλ
n+1
a.e. ~ξn+1 ∈ R

n+2

E[Fλ
Z |Z

λ
n+1](

~ξn+1)

= E[F (λ−1/2X(x, ·) + a)|λ−1/2Xn+1(x) + (a(t0), a(t1), . . . , a(tn), a(tn+1))](~ξn+1)

= E[F (λ−1/2(X(x, ·)− Pb,n+1(X(x, ·))) + Pb,n+1(~ξn+1) + a− Pb,n+1(a))]

= E[F (λ−1/2Xb,n+1(x, ·) +A+ Pb,n+1(~ξn+1))],

which completes the proof. �

Lemma 2.2. Under the assumptions given in Lemma 2.1 with replacing Zn+1

by Zn which is given by (2.2), we have for PZλ
n
a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1

(2.11) E[Fλ
Z |Z

λ
n ](
~ξn) =

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))

× E[F (λ−1/2Xb,n+1(x, ·) +A+ Pb,n+1(~ξn+1))] dξn+1,

where ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1), Ψ is given by (2.9) and PZλ
n
is the probability

distribution of Zλ
n on (Rn+1,B(Rn+1)).
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P r o o f. By (2.2) and Theorem 2.2

E[Fλ
Z |Z

λ
n ](
~ξn)

= E[F (λ−1/2X(x, ·) + a)|λ−1/2Xn(x) + (a(t0), a(t1), . . . , a(tn))](~ξn)

= E[F (λ−1/2X(x, ·) + a)|Xn(x)](λ
1/2(ξ0 − a(t0), ξ1 − a(t1), . . . , ξn − a(tn)))

=

∫

R

Ψ(1, ξn+1, λ
1/2(ξn − a(tn)), b(t)− b(tn))E[F (λ−1/2Xb,n+1(x, ·)

+ Pb,n+1(ξ0 − a(t0), ξ1 − a(t1), . . . , ξn − a(tn), λ
−1/2ξn+1) + a)] dξn+1.

Letting u = λ−1/2ξn+1 + a(t) we have by the change of variable theorem

E[Fλ
Z |Z

λ
n ](
~ξn)

=

∫

R

Ψ(λ, u − a(t), ξn − a(tn), b(t)− b(tn))E[F (λ−1/2Xb,n+1(x, ·)

+ Pb,n+1(ξ0 − a(t0), ξ1 − a(t1), . . . , ξn − a(tn), u− a(t)) + a)] du

=

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))E[F (λ−1/2Xb,n+1(x, ·) +A

+ Pb,n+1(~ξn+1))] dξn+1,

which is the desired result. �

Let IλFZ
(~ξn+1) and K

λ
FZ

(~ξn) be the right hand sides of (2.10) and (2.11), respec-

tively. If IλFZ
(~ξn+1) has an analytic extension J

∗
λ(FZ)(~ξn+1) on C+, then it is called

the conditional analytic Wiener wϕ-integral of FZ given Zn+1 with the parameter λ,

and denoted by

Eanwλ [FZ |Zn+1](~ξn+1) = J∗
λ(FZ)(~ξn+1)

for ~ξn+1 ∈ R
n+2. Moreover, if for a nonzero real q, Eanwλ [FZ |Zn+1](~ξn+1) has a limit

as λ approaches −iq through C+, then it is called the conditional analytic Feynman

wϕ-integral of FZ given Zn+1 with the parameter q and denoted by

Eanfq [FZ |Zn+1](~ξn+1) = lim
λ→−iq

Eanwλ [FZ |Zn+1](~ξn+1).

Replacing IλFZ
(~ξn+1) byK

λ
FZ

(~ξn), we define E
anwλ [FZ |Zn](~ξn) and E

anfq [FZ |Zn](~ξn).

If E[Fλ
Z ] exists for λ > 0 and has an analytic extension J∗

λ(FZ) on C+, then we call

J∗
λ(FZ) the analytic Wiener wϕ-integral of F over C[0, t] with parameter λ and

denote it by

Eanwλ [FZ ] = J∗
λ(FZ).

616



The integral Eanfq [FZ ] is also defined by

Eanfq [FZ ] = lim
λ→−iq

Eanwλ [FZ ]

if it exists, where the limit is taken through C+.

Applying Theorem 3.5 in [13], we have the following theorem.

Theorem 2.3. Let {h1, h2, . . . , hr} be an orthonormal system of L2[0, t]. Then

(h1, ·), . . . , (hr, ·) are independent and each (hi, ·) has the standard normal distribu-

tion. Moreover, if f : R
r → R is Borel measurable, then

∫

C[0,t]

f((h1, x), . . . , (hr, x)) dwϕ(x)

∗
=

( 1

2π

)r/2
∫

Rr

f(u1, u2, . . . , ur) exp

{

−
1

2

r
∑

j=1

u2j

}

d(u1, u2, . . . , ur),

where
∗
= means that if either side exists then both sides exist and they are equal.

P r o o f. Let {ej : j = 1, 2, . . .} be a complete orthonormal subset of L2[0, t] such

that each ej is of bounded variation. For l = 1, . . . , r, denote Xl(x) = (hl, x) for

x ∈ C[0, t] and let ϕXl
be the characteristic function of Xl. By Theorem 3.5 in [13]

and the dominated convergence theorem we have for ξ ∈ R

ϕXl
(ξ) =

∫

C[0,t]

exp{iξXl(x)} dwϕ(x)

= lim
n→∞

∫

C[0,t]

exp

{

iξ
n
∑

j=1

〈hl, ej〉

∫ t

0

ej(u) dx(u)

}

dwϕ(x)

= lim
n→∞

exp

{

−
ξ2

2

n
∑

j=1

〈hl, ej〉
2

}

= exp
{

−
ξ2

2

}

so that Xl has the standard normal distribution. Moreover, we have by Theorem 3.5

in [13] again
2 + 2〈hl, hj〉 = ‖hl + hj‖

2

=

∫

C[0,t]

(hl + hj , x)
2 dwϕ(x)

=

∫

C[0,t]

[(hl, x) + (hj , x)]
2 dwϕ(x)

= 2 + 2

∫

C[0,t]

(hl, x)(hj , x) dwϕ(x)
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so that Cov((hl, ·), (hj , ·)) =
∫

C[0,t]
(hl, x)(hj , x) dwϕ(x) = δlj , where δlj is the Kro-

necker delta function. Now (h1, ·), . . . , (hr, ·) are independent and ((h1, ·), . . . , (hr, ·))

has the multivariate normal distribution with mean zero and the covariance matrix

which is the r × r-identity matrix. By Theorem 4 of [16] we have the theorem. �

The following lemmas are useful for proving the results in the subsequent sections

(see [12]).

Lemma 2.3. Let v ∈ L2[0, t]. Then for wϕ a.e. x ∈ C[0, t]

(v, Pb,n+1(X(x, ·))) = (PMhv, x) + (v, x(0)) = (PMhv, x),

where Mh : L2[0, t] → L2[0, t] is the multiplication operator defined by

Mhu = hu for u ∈ L2[0, t].

Lemma 2.4. Let v ∈ L2[0, t], ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) ∈ R
n+2 and

(v, Pb,n(~ξn)) =

n
∑

j=1

〈vαj , αj〉(ξj − ξj−1),

where ~ξn = (ξ0, ξ1, . . . , ξn). Then

(v, Pb,n+1(~ξn+1)) =

n+1
∑

j=1

〈vαj , αj〉(ξj − ξj−1)

= (v, Pb,n(~ξn)) + 〈vαn+1, αn+1〉(ξn+1 − ξn).

Remark 2.1. (1) The multiplication operator Mh in Lemma 2.3 is well-defined

because h is of bounded variation, which implies the boundedness of h. Throughout

this paperMh will denote the operator given in the lemma unless otherwise specified.

(2) For ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1 it is possible that Pb,n(~ξn) /∈ C[0, t] if ξn 6= 0.

In this case the symbol (v, Pb,n(~ξn)) does not mean the Paley-Wiener-Zygmund in-

tegral of v ∈ L2[0, t]. It is only a formal expression for
n
∑

j=1

〈vαj , αj〉(ξj − ξj−1) which

is given in Lemma 2.4.
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3. Generalized analytic Feynman and conditional Feynman integrals

In this section we introduce the analytic Feynman, conditional Wiener and Feyn-

man integrals of functions in a Banach algebra.

Let M(L2[0, t]) be the class of all complex valued Borel measures of bounded

variation over L2[0, t] and let Swϕ
be the space of all functions F which for σ ∈

M(L2[0, t]) have the form

(3.1) F (x) =

∫

L2[0,t]

exp{i(v, x)} dσ(v)

for wϕ a.e. x ∈ C[0, t]. We note that Swϕ
is a Banach algebra (see [3], [13]).

Theorem 3.1. Let a be absolutely continuous on [0, t]. Let F ∈ Swϕ
and σ ∈

M(L2[0, t]) be related by (3.1). Then for λ ∈ C+

Eanwλ [FZ ] =

∫

L2[0,t]

exp
{

−
1

2λ
‖Mhv‖

2
}

dσa(v),

where dσa(v) = exp{i(v, a)} dσ(v) for v ∈ L2[0, t]. Moreover, for a nonzero real q,

Eanfq [FZ ] is given by the right hand side of the above equality after replacing λ

by −iq.

P r o o f. We note that (v, x(0)) = 0 for v ∈ L2[0, t] and x ∈ C[0, t]. Now we have

for λ > 0

E[Fλ
Z ] =

∫

L2[0,t]

∫

C[0,t]

exp{i(v, λ−1/2X(x, ·) + a)} dwϕ(x) dσ(v)

=

∫

L2[0,t]

∫

C[0,t]

exp{iλ−1/2[(Mhv, x) + (v, x(0))]} dwϕ(x) dσa(v)

=

∫

L2[0,t]

∫

C[0,t]

exp{iλ−1/2(Mhv, x)} dwϕ(x) dσa(v)

=

∫

L2[0,t]

exp
{

−
1

2λ
‖Mhv‖

2
}

dσa(v)

by Theorem 2.3, the change of variable theorem and the well known integration

formula

(3.2)

∫

R

exp{−au2 + ibu} du =
(

π

a

)1/2

exp
{

−
b2

4a

}

for a ∈ C+ and b ∈ R. By Morera’s theorem and the dominated convergence theorem

we have the theorem. �
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By Theorem 27 in [8] we have the following theorem.

Theorem 3.2. Let Zn+1 be given by (2.4). Under the assumptions given in

Theorem 3.1 we have for λ ∈ C+ and a.e. ~ξn+1 ∈ R
n+2

Eanwλ [FZ |Zn+1](~ξn+1)

=

∫

L2[0,t]

exp
{

−
1

2λ
‖P⊥Mhv‖

2 + i(v, Pb,n+1(~ξn+1))
}

dσA(v),

where dσA(v) = exp{i(v,A)} dσ(v) for v ∈ L2[0, t] and A is given by (2.6). Moreover,

for nonzero real q, Eanfq [FZ |Zn+1](~ξn+1) is given by the right hand side of the above

equality after replacing λ by −iq.

Lemma 3.1. Let Ψ be given by (2.9). Then for α, β, γ ∈ R and λ ∈ C+

∫

R

Ψ(λ, u, α, β) exp{iγu} du = exp
{

−
β

2λ
γ2 + iαγ

}

with β 6= 0.

P r o o f. By (3.2) and the change of variable theorem

∫

R

Ψ(λ, u, α, β) exp{iγu} du =
( λ

2πβ

)1/2
∫

R

exp
{

−
λ(u − α)2

2β
+ iγu

}

du

=
( λ

2πβ

)1/2
∫

R

exp

{

−
λu2

2β
+ iγu+ iαγ

}

du

= exp
{

−
β

2λ
γ2 + iαγ

}

,

which completes the proof. �

Theorem 3.3. Let Zn be given by (2.2). Under the assumptions given in Theo-

rem 3.2 we have for λ ∈ C+ and a.e. ~ξn ∈ R
n+1

Eanwλ [FZ |Zn](~ξn)

=

∫

L2[0,t]

exp
{

−
1

2λ
[‖P⊥Mhv‖

2 + [b(t)− b(tn)]〈vαn+1, αn+1〉
2]

+ i[(v, Pb,n(~ξn)) + [a(t)− a(tn)]〈vαn+1, αn+1〉]
}

dσA(v),

where (v, Pb,n(~ξn)) is given in Lemma 2.4. Moreover, Eanfq [FZ |Zn](~ξn) is given by

the right hand side of the above equality after replacing λ by −iq.
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P r o o f. For λ > 0 and ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1 we have by Lemma 2.4 and

Theorem 3.2

Kλ
FZ

(~ξn) =

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))E[F (λ−1/2Xb,n+1(x, ·)

+A+ Pb,n+1(~ξn+1))] dξn+1

=

∫

L2[0,t]

exp
{

−
1

2λ
‖P⊥Mhv‖

2
}

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)

− b(tn)) exp{i(v, Pb,n+1(~ξn+1))} dξn+1 dσA(v)

=

∫

L2[0,t]

exp
{

−
1

2λ
‖P⊥Mhv‖

2 + i(v, Pb,n(~ξn))
}

∫

R

Ψ(λ, ξn+1 − ξn, a(t)

− a(tn), b(t)− b(tn)) exp{i〈vαn+1, αn+1〉(ξn+1 − ξn)} dξn+1 dσA(v),

where Ψ is given by (2.9). Since the Lebesgue measure on R is translation invariant

we have by Lemma 3.1

Kλ
FZ

(~ξn) =

∫

L2[0,t]

exp
{

−
1

2λ
‖P⊥Mhv‖

2 + i(v, Pb,n(~ξn))
}

∫

R

Ψ(λ, ξn+1, a(t)

− a(tn), b(t)− b(tn)) exp{i〈vαn+1, αn+1〉ξn+1} dξn+1 dσA(v)

=

∫

L2[0,t]

exp
{

−
1

2λ
[‖P⊥Mhv‖

2 + [b(t)− b(tn)]〈vαn+1, αn+1〉
2]

+ i[(v, Pb,n(~ξn)) + [a(t)− a(tn)]〈vαn+1, αn+1〉]
}

dσA(v).

By Morera’s theorem and the dominated convergence theorem we have the theorem.

�

Since b(t0) = 0, (v, ξ0) = 0 for v ∈ L2[0, t] and for ξ0 ∈ R, we have the following

corollary.

Corollary 3.1. Under the assumptions given in Theorem 3.3 with one exception

n = 0 we have

Eanwλ [FZ |Z0](ξ0) =

∫

L2[0,t]

exp
{

−
1

2λ
[‖P⊥Mhv‖

2 + b(t)〈vα1, α1〉
2]

+ i[a(t)− a(0)]〈vα1, α1〉
}

dσA(v)

and Eanfq [FZ |Z0](ξ0) is given by the right hand side of the above equality after

replacing λ by −iq.
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4. Change of scale formulas using the polygonal function

In this section we derive change of scale formulas for the generalized conditional

Wiener integrals of functions in a Banach algebra on the analogue of Wiener space

using other functions in the same Banach algebra given in the previous section.

Throughout this paper let {e1, e2, . . .} be a complete orthonormal basis of L2[0, t].

For v ∈ L2[0, t] let

(4.1) cj(v) = 〈v, ej〉 for j = 1, 2, . . . .

For m ∈ N, λ ∈ C and x ∈ C[0, t] let

(4.2) Km(λ, x) = exp
{1− λ

2

m
∑

j=1

(ej , x)
2
}

.

Lemma 4.1. Let Km be given by (4.2). Then for m ∈ N, λ ∈ C+ and any

v ∈ L2[0, t]

E[Km(λ, x) exp{i(v, x)}] = λ−m/2 exp
{

−
1

2λ
B(m,λ, v)

}

,

where

(4.3) B(m,λ, v) =

m
∑

j=1

[cj(v)]
2 + λ

[

‖v‖2 −

m
∑

j=1

[cj(v)]
2

]

and the cjs are given by (4.1).

P r o o f. Suppose that {e1, . . . , em, v} is linearly independent. By the Gram-

Schmidt process and Theorem 2.3

E[Km(λ, x) exp{i(v, x)}]

=

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(v, x)

}

dwϕ(x)

=
( 1

2π

)(m+1)/2
∫

Rm+1

exp

{

1− λ

2

m
∑

j=1

u2j + i

m
∑

j=1

cj(v)uj

+ i

[

‖v‖2 −

m
∑

j=1

[cj(v)]
2

]1/2

um+1 −
1

2

m+1
∑

j=1

u2j

}

d(u1, . . . , um, um+1)
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=
( 1

2π

)(m+1)/2
∫

Rm+1

exp

{

−
λ

2

m
∑

j=1

u2j + i

m
∑

j=1

cj(v)uj

+ i

[

‖v‖2 −
m
∑

j=1

[cj(v)]
2

]1/2

um+1 −
1

2
u2m+1

}

d(u1, . . . , um, um+1)

= λ−m/2 exp

{

−
1

2λ

[ m
∑

j=1

[cj(v)]
2 + λ

[

‖v‖2 −

m
∑

j=1

[cj(v)]
2

]]}

= λ−m/2 exp

{

−
1

2λ
B(m,λ, v)

}

by (3.2). If {e1, . . . , em, v} is linearly dependent, then ‖v‖2 =
m
∑

j=1

[cj(v)]
2 so that it

is not difficult to show

E[Km(λ, x) exp{i(v, x)}] = λ−m/2 exp
{

−
1

2λ
B(m, 0, v)

}

= λ−m/2 exp
{

−
1

2λ
B(m,λ, v)

}

,

which completes the proof. �

Theorem 4.1. Let m be a fixed positive integer, let Km be given by (4.2) and

let F ∈ Swϕ
be given by (3.1). Then for λ ∈ C+

E[Km(λ, x)FZ (x)] = λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
B(m,λ,Mhv)

}

dσa(v),

where B is given by (4.3) and σa is given in Theorem 3.1.

P r o o f. By the change of variable theorem and Lemma 4.1

E[Km(λ, x)FZ (x)]

=

∫

L2[0,t]

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(v,X(x, ·) + a)

}

dwϕ(x) dσ(v)

=

∫

L2[0,t]

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(Mhv, x) + i(v, x(0))

}

dwϕ(x) dσa(v)

=

∫

L2[0,t]

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(Mhv, x)

}

dwϕ(x) dσa(v)

= λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
B(m,λ,Mhv)

}

dσa(v),

which proves the theorem. �
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Theorem 4.2. Let A and Zb,n+1 be given by (2.6) and (2.8), respectively, let m

be a fixed positive integer and Km be given by (4.2). Let F ∈ Swϕ
be given by (3.1).

Then for λ ∈ C+ and ~ξn+1 ∈ R
n+2

(4.4) E[Km(λ, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))]

= λ−m/2

∫

L2[0,t]

exp

{

i(v, Pb,n+1(~ξn+1))−
1

2λ
B(m,λ,P⊥Mhv)

}

dσA(v),

where B is given by (4.3) and σA is given in Theorem 3.2.

P r o o f. By Theorem 2.3, Lemma 2.3 and the change of variable theorem

E[Km(λ, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))]

= E[Km(λ, x)F (Xb,n+1(x, ·) +A+ Pb,n+1(~ξn+1))]

=

∫

L2[0,t]

exp{i(v,A+ Pb,n+1(~ξn+1))}

×

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(P⊥Mhv, x)

}

dwϕ(x) dσ(v)

=

∫

L2[0,t]

exp{i(v, Pb,n+1(~ξn+1))}

×

∫

C[0,t]

exp

{

1− λ

2

m
∑

j=1

(ej , x)
2 + i(P⊥Mhv, x)

}

dwϕ(x) dσA(v),

where Xb,n+1 is given by (2.7). Now the theorem follows from Lemma 4.1. �

Theorem 4.3. Let A and Zb,n+1 be given by (2.6) and (2.8), respectively, let m

be a fixed positive integer and Km be given by (4.2). Let F ∈ Swϕ
be given by (3.1).

For λ ∈ C+ and ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1 let

Γ(F,m, λ, ~ξn) =

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))E[Km(λ, x)

× F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))] dξn+1,

where ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) and Ψ is given by (2.9). Then

Γ(F,m, λ, ~ξn)

= λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
[B(m,λ,P⊥Mhv) + [b(t)− b(tn)]〈vαn+1, αn+1〉

2]

+ i[(v, Pb,n(~ξn)) + [a(t)− a(tn)]〈vαn+1, αn+1〉]
}

dσA(v),

where B is given by (4.3) and σA is given in Theorem 3.2.
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P r o o f. By (4.4) and Lemma 2.4

Γ(F,m, λ, ~ξn)

= λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
B(m,λ,P⊥Mhv)

}

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn),

b(t)− b(tn)) exp{i(v, Pb,n+1(~ξn+1))} dξn+1 dσA(v)

= λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
B(m,λ,P⊥Mhv) + i(v, Pb,n(~ξn))

}

×

∫

R

Ψ(λ, ξn+1, a(t)− a(tn), b(t)− b(tn)) exp{i〈vαn+1, αn+1〉ξn+1} dξn+1 dσA(v)

since the Lebesgue measure is translation invariant on R. By Lemma 3.1

Γ(F,m, λ, ~ξn)

= λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
[B(m,λ,P⊥Mhv) + [b(t)− b(tn)]〈vαn+1, αn+1〉

2]

+ i[(v, Pb,n(~ξn)) + [a(t)− a(tn)]〈vαn+1, αn+1〉]
}

dσA(v),

which is the desired result. �

Since b(t0) = 0, (v, ξ0) = 0 for v ∈ L2[0, t] and ξ0 ∈ R, we have the following

corollary.

Corollary 4.1. Under the assumptions given in Theorem 4.3 with one exception

n = 0 we have

Γ(F,m, λ, ξ0) = λ−m/2

∫

L2[0,t]

exp
{

−
1

2λ
[B(m,λ,P⊥Mhv) + b(t)〈vα1, α1〉

2]

+ i[a(t)− a(0)]〈vα1, α1〉
}

dσA(v).

By Parseval’s identity we have for v ∈ L2[0, t] and λ ∈ C+

lim
m→∞

B(m,λ, v) = lim
m→∞

[ m
∑

j=1

[cj(v)]
2 + λ

[

‖v‖2 −

m
∑

j=1

[cj(v)]
2

]]

= ‖v‖2,

where the cjs are given by (4.1). From the above equation we have the following

theorem by Theorems 3.1, 3.2, 3.3, 4.1, 4.2, 4.3 and the dominated convergence

theorem.

Theorem 4.4. Let λ ∈ C+, q be a nonzero real number, {λm}∞m=1 be a sequence

in C+ converging to −iq as m approaches ∞ and let a be absolutely continuous

on [0, t]. Let F ∈ Swϕ
be given by (3.1).
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(1) Under the assumptions given in Theorems 3.1 and 4.1

Eanwλ [FZ ] = lim
m→∞

λm/2E[Km(λ, x)FZ (x)].

Moreover, Eanfq [FZ ] is given by the right hand side of the above equality after

replacing λ by λm.

(2) Under the assumptions given in Theorems 3.2 and 4.2, we have for a.e. ~ξn+1 ∈

R
n+2

Eanwλ [FZ |Zn+1](~ξn+1) = lim
m→∞

λm/2E[Km(λ, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))].

Moreover, for a.e. ~ξn+1 ∈ R
n+2, Eanfq [FZ |Zn+1](~ξn+1) is given by the right

hand side of the above equality after replacing λ by λm.

(3) Under the assumptions given in Theorems 3.3 and 4.3, we have for a.e. ~ξn =

(ξ0, ξ1, . . . , ξn) ∈ R
n+1

Eanwλ [FZ |Zn](~ξn) = lim
m→∞

λm/2

∫

R

Ψ(λ, ξn+1 − ξn, a(t)− a(tn), b(t)− b(tn))

× E[Km(λ, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))] dξn+1,

where ~ξn+1 = (ξ0, . . . , ξn, ξn+1) for ξn+1 ∈ R. Moreover, for a.e. ~ξn ∈ R
n+1,

Eanfq [FZ |Zn](~ξn) is given by the right hand side of the above equality after

replacing λ by λm.

Letting λ = ̺−2 in Theorem 4.4 we have the following change of scale formula

for the generalized conditional Wiener integral on the analogue of the Wiener space

using the polygonal function.

Corollary 4.2. Let ̺ > 0 and let F ∈ Swϕ
be given by (3.1).

(1) Under the assumptions given in Theorems 3.1 and 4.1

E[F (Z(̺x, ·))] = lim
m→∞

̺−mE[Km(̺−2, x)F (Z(x, ·))].

(2) Under the assumptions given in Theorems 3.2 and 4.2, we have for a.e. ~ξn+1 ∈

R
n+2

E[F (Z(̺x, ·))|Zn+1(̺x)](~ξn+1)

= lim
m→∞

̺−mE[Km(̺−2, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))].
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(3) Under the assumptions given in Theorems 3.3 and 4.3, we have for a.e. ~ξn =

(ξ0, ξ1, . . . , ξn) ∈ R
n+1

E[F (Z(̺x, ·))|Zn(̺x)](~ξn)

= lim
m→∞

̺−m

∫

R

Ψ(1, ξn+1 − ξn, a(t)− a(tn), ̺
2[b(t)− b(tn)])

× E[Km(̺−2, x)F (Zb,n+1(x, ·) + Pb,n+1(~ξn+1))] dξn+1,

where ~ξn+1 = (ξ0, . . . , ξn, ξn+1) for ξn+1 ∈ R.

Remark 4.1. (1) When n = 0, that is, Z0(x) = x(0) + a(0), Corollaries 3.1

and 4.1 say that Eanwλ [FZ |Z0](ξ0), E
anfq [FZ |Z0](ξ0) and Γ(F,m, λ, ξ0) are constant

functions as functions of ξ0 on R. This means that all conditional integrals given

Z0(x) = ξ0 in the corollaries are equal even though of the initial distribution ϕ on

(R,B(R)) is arbitrary.

(2) The conditioning functions Xn+1 and Zn+1 contain the present positions of

the generalized Wiener paths, but Xn and Zn do not. Moreover, the conditioning

functions Xn and Xn+1 do not contain the initial positions of the generalized Wiener

paths, but Zn and Zn+1 contain them.

(3) If h = 1 and a = 0, then Zn+1(x) = (x(t0), x(t1), . . . , x(tn), x(tn+1)) and

Zn(x) = (x(t0), x(t1), . . . , x(tn)) so that the change of scale formulas for F ∈ Swϕ

in this paper are exactly those in [11]. If h = 1, a = 0 and ϕ = δ0 is the Dirac

measure concentrated at 0, the formulas for F in this paper are reduced to those

in [18]. Moreover, if a = 0 and ϕ = δ0, then the change of scale formulas in [9], [10],

[12] can be applied to F .

(4) All the results of this paper do not depend on a particular choice of the initial

distribution ϕ on (R,B(R)).
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