Czechoslovak Mathematical Journal

Hongfen Yuan

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Czechoslovak Mathematical Journal, Vol. 67 (2017), No. 3, 795-808

Persistent URL: http://dml.cz/dmlcz/146860

Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A CAUCHY-POMPEIU FORMULA IN SUPER DUNKL-CLIFFORD ANALYSIS

Hongfen Yuan, Handan

Received April 16, 2016. First published March 29, 2017.

Abstract. Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunklmonogenic functions. These results are nice generalizations of well-known facts in complex analysis.

Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem

MSC 2010: 30G35, 26B20, 58C50

1. Introduction

Dunkl operators (also called differential-difference operators), introduced by Dunkl (see [7]), are invariant under a finite reflection group and are also pairwise commuting. These operators not only provide a useful tool in the study of special functions with root systems (see [8]), but also they are closely related to some particular representations of degenerated affine Hecke algebras (see [16]) and integrable systems of Calogero-Moser-Sutherland type (see [12]). In 2006, Cerejeiras, Kähler and Ren defined the Dunkl-Dirac operator (see [2]) and constructed the Stokes formula in Clifford analysis by Dunkl transforms (see [15]). The theory of Dunkl-Clifford analysis is further developed in [1], [10], [11], [14], [4] and [17]. In 2013, Fei investigated the fundamental solutions to the Dunkl-Dirac equation, and also obtained the Cauchy integral formula with a Dunkl-Cauchy kernel (see [9]).

[^0]Recently, Sommen, De Bie and others have studied a superspace of dimension $(m, 2 n)$ in the frame of Clifford analysis (see [5], [6], [3]). Superspaces are spaces equipped with both a set of commuting variables and a set of anti-commuting variables in order to describe the properties of bosons and fermions in quantum mechanics. In [5], they defined the super Dirac operator (i.e., the Dirac operator in superspace) by the Dirac operator in \mathbb{R}^{m}. In [3], using a distributional approach to integration in superspace, they investigated some properties of the super Dirac operator, such as Stokes formula, Cauchy integral formula and Morera's theorem. Then, we investigated Cauchy-Pompeiu formulas for iterates of Dirac operators and polynomial Dirac operators in superspace (see [18], [19]). Inspired by the abovementioned results, we want to develop further these ideas for the super Dunkl-Dirac operator.

The paper is organized as follows. In Section 2 we recall the necessary results on the super Dunkl-Clifford analysis (i.e., Dunkl-Clifford analysis in superspace). In Section 3, inspired by De Bie et al., we construct fundamental solutions for the super Dunkl-Laplace and super Dunkl-Dirac operators by the fundamental solutions of the natural powers of the Laplace operator in Dunkl-Clifford analysis. In Section 4, using a distributional approach to integration in superspace, combined with the Stokes formula in Dunkl-Clifford analysis, we consider the Stokes formula in super DunklClifford analysis. Applying this formula, we get the Cauchy-Pompeiu formula for the super Dunkl-Dirac operator and Morera's theorem for super Dunkl-monogenic functions. Furthermore, using Morera's theorem, we obtain the Painlevé theorem for super Dunkl-monogenic functions.

2. Preliminaries

2.1. Dunkl-Clifford analysis in \mathbb{R}^{m}. Denote by $\langle\cdot, \cdot\rangle$ the standard Euclidean scalar product in \mathbb{R}^{m} and by $|x|=\langle x, x\rangle^{1 / 2}$ the associated norm. For $\alpha \in \mathbb{R}^{m} \backslash\{0\}$, the reflection σ_{α} in the hyperplane orthogonal to α is given by

$$
\sigma_{\alpha} x=x-2 \frac{\langle\alpha, x\rangle}{|\alpha|^{2}} \alpha, \quad x \in \mathbb{R}^{m} .
$$

A finite set $\mathrm{R} \subset \mathbb{R}^{m} \backslash\{0\}$ is called a root system if $\alpha \mathbb{R} \cap \mathrm{R}=\{\alpha,-\alpha\}$ and $\sigma_{\alpha} \mathrm{R}=\mathrm{R}$ for all $\alpha \in \mathbf{R}$. Each root system can be written as a disjoint union $\mathbf{R}=\mathbf{R}_{+} \cup\left(-\mathbf{R}_{+}\right)$, where R_{+}and $-\mathrm{R}_{+}$are separated by a hyperplane through the origin. The subgroup $G \subset O(m)$ generated by the reflections $\left\{\sigma_{\alpha}: \alpha \in \mathrm{R}\right\}$ is called the finite reflection group associated with R. For more information on finite reflection groups we refer the reader to [13].

A multiplicity function κ on the root system R is a G-invariant function $\kappa: \mathrm{R} \rightarrow \mathbb{C}$, i.e., $\kappa(\alpha)=\kappa(g \alpha)$ for all $g \in G$. We will denote $\kappa(\alpha)$ by κ_{α}. For abbreviation, we introduce the index

$$
\gamma=\gamma_{\kappa}=\sum_{\alpha \in R_{+}} \kappa_{\alpha} .
$$

Moreover, let $h_{\kappa}(\underline{x})$ denote the weight function

$$
h_{\kappa}(\underline{x})=\prod_{\alpha \in \mathrm{R}_{+}}|\langle\alpha, \underline{x}\rangle|^{\kappa_{\alpha}} .
$$

In this paper, we will assume that $\kappa_{\alpha} \geqslant 0$ and $\gamma_{\kappa}>0$.
For each subsystem R_{+}and multiplicity function κ_{α} we have the Dunkl operators

$$
T_{i} f(x)=\frac{\partial f(x)}{\partial x_{i}}+\sum_{\alpha \in \mathrm{R}_{+}} \kappa_{\alpha} \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle x, \alpha\rangle} \alpha_{i}, \quad i=1, \ldots, m
$$

for $f \in C^{1}\left(\mathbb{R}^{m}\right)$. An important consequence is that the operators T_{i} are mutually commutating, that is, $T_{i} T_{j}=T_{j} T_{i}$.

We consider a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}_{0, m}$. Hereby $\mathbb{R}_{0, m}$ denotes the Clifford algebra over \mathbb{R}^{m} generated by $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ satisfying the anti-commutation relationship $e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}$, where $\delta_{i j}$ is the Kronecker symbol. By $\underline{x}=\sum_{i=1}^{m} x_{i} e_{i}$ we denote the so-called vector variable. A Dunkl-Dirac operator in \mathbb{R}^{m} for the corresponding reflection group G is defined as $D_{h}=\sum_{i=1}^{m} e_{i} T_{i}$, where T_{i} are Dunkl operators. Functions belonging to the kernel of the Dunkl-Dirac operator D_{h} are called Dunkl-monogenic functions.

The classical Dunkl Laplacian is defined as

$$
\Delta_{h}=-D_{h}^{2}=\sum_{i=1}^{m} T_{i}^{2}
$$

When $\kappa=0$, the Dunkl Laplacian Δ_{h} is just the ordinary Laplacian. Functions belonging to the kernel of the Dunkl Laplacian Δ_{h} are called Dunkl-harmonic functions.
2.2. Dunkl-Clifford analysis in $\mathbb{R}^{m \mid 2 n}$. On a superspace of dimension $(m, 2 n)$, we have m commuting (or bosonic) variables x_{1}, \ldots, x_{m} and $2 n$ anti-commuting (or fermionic) variables $\grave{x}_{1}, \ldots, \grave{x}_{2 n}$ subject to

$$
\left\{\begin{array}{l}
x_{i} x_{j}=x_{j} x_{i} \\
\grave{x}_{i} \grave{x}_{j}=-\grave{x}_{j} \grave{x}_{i} \\
x_{i} \grave{x}_{j}=\grave{x}_{j} x_{i}
\end{array}\right.
$$

Furthermore, we have the Clifford algebra generators e_{1}, \ldots, e_{m} and the symplectic Clifford algebra generators $\grave{e}_{1}, \ldots, \grave{e}_{2 n}$. They obey the following rules:

$$
\left\{\begin{array}{l}
e_{j} e_{k}+e_{k} e_{j}=-2 \delta_{j k}, \\
\grave{e}_{2 j} \grave{e}_{2 k}-\grave{e}_{2 k} \grave{e}_{2 j}=0, \\
\grave{e}_{2 j-1} \grave{e}_{2 k-1}-\grave{e}_{2 k-1} \grave{e}_{2 j-1}=0, \\
\grave{e}_{2 j-1} \grave{e}_{2 k}-\grave{e}_{2 k} \grave{e}_{2 j-1}=\delta_{j k}, \\
e_{j} \grave{e}_{k}+\grave{e}_{k} e_{j}=0 .
\end{array}\right.
$$

Taking the above relations into account, we study the superspace by the real algebra

$$
\operatorname{Alg}\left(x_{i}, e_{i} ; \grave{x}_{j}, \grave{e}_{j}\right)=\operatorname{Alg}\left(x_{i}, \grave{x}_{j}\right) \otimes \operatorname{Alg}\left(e_{i}, \grave{e}_{j}\right), \quad i=1, \ldots, m, j=1, \ldots, 2 n
$$

which is the tensor product of $\operatorname{Alg}\left(x_{i}, \grave{x}_{j}\right)$ and $\operatorname{Alg}\left(e_{i}, \grave{e}_{j}\right)$. The algebra $\operatorname{Alg}\left(x_{i}, \grave{x}_{j}\right)$ is called a scalar algebra, denoted by \mathcal{P}, and the algebra $\operatorname{Alg}\left(e_{i}, \grave{e}_{j}\right)$ is a Clifford algebra, denoted by $\mathcal{C}_{m \mid 2 n}$. Moreover, the elements of both these algebras can commute with each other. When $n=0$, we have that $\mathcal{P} \otimes \mathcal{C}_{m \mid 0}=\mathbb{R}\left[x_{1}, \ldots, x_{m}\right] \otimes \mathbb{R}_{0, m}$, where $\mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is generated by the commuting variables x_{i}. In the case $\mathcal{C}_{m \mid 0} \cong \mathbb{R}_{0, m}$, $\mathbb{R}_{0, m}$ is the standard orthogonal Clifford algebra. When $m=0$, we have that $\mathcal{P} \otimes$ $\mathcal{C}_{0 \mid 2 n}=\Lambda_{2 n} \otimes \mathcal{W}_{2 n}$, with $\Lambda_{2 n}$ being the Grassmann algebra generated by $\grave{x_{j}}$. In the case $\mathcal{C}_{0 \mid 2 n} \cong \mathcal{W}_{2 n}, \mathcal{W}_{2 n}$ is the Weyl algebra generated by \grave{e}_{j}.

We define the super vector variable x as follows:

$$
x=\underline{x}+\underline{\grave{x}},
$$

where $\underline{x}=\sum_{i=1}^{m} x_{i} e_{i}$ and $\underline{\grave{x}}=\sum_{j=1}^{2 n} \grave{x}_{j} \grave{e}_{j}$. By direct calculation, we obtain the square of x :

$$
x^{2}=\underline{\grave{x}}^{2}+\underline{x}^{2}, \quad \text { where } \underline{\grave{x}}^{2}=\sum_{j=1}^{n} \grave{x}_{2 j-1} \grave{x}_{2 j} \text { and } \underline{x}^{2}=-\sum_{i=1}^{m} x_{i}^{2} .
$$

Note that $\underline{x}^{2}=-\sum_{i=1}^{m} x_{i}^{2}$ is the norm squared of a vector in Euclidean space.
Thus, we define a more general function space as

$$
C^{k}(\Omega) \otimes \Lambda_{2 n} \otimes \mathcal{C}_{m \mid 2 n}
$$

where $C^{k}(\Omega)$ denotes space of k-times continuously differentiable real-valued functions defined in some domain $\Omega \subset \mathbb{R}^{m}$. We use the notation

$$
C^{k}(\Omega)_{m \mid 2 n}=C^{k}(\Omega) \otimes \Lambda_{2 n}
$$

The super Dunkl-Dirac operator is defined to be

$$
D=-D_{h}+D_{f}=-\sum_{i=1}^{m} e_{i} T_{i}+2 \sum_{j=1}^{n}\left(\grave{e}_{2 j} \partial_{\grave{x}_{2 j-1}}-\grave{e}_{2 j-1} \partial_{\grave{x}_{2 j}}\right)
$$

where D_{h} is the bosonic Dunkl-Dirac operator and D_{f} is the fermionic Dunkl-Dirac operator.

If we let D act on x, we see that

$$
M:=\frac{1}{2} D x=-n+\frac{m}{2}+\gamma_{\kappa},
$$

where M is the Dunkl version of the super-dimension in contrast to the non-Dunkl case of the super-dimension in [6]. The numerical parameter M is regarded as the ground level energy in physics.

As usual, functions belonging to the kernel of the super Dunkl-Dirac operator are called super Dunkl-monogenic functions.

The square of the left super Dunkl-Dirac operator is the super Dunkl-Laplace operator

$$
\Delta=D^{2}=-\Delta_{h}+\Delta_{f}=-\sum_{i=1}^{m} T_{i}^{2}+4 \sum_{j=1}^{n} \partial_{\grave{x}_{2 j-1}} \partial_{\grave{x}_{2 j}}
$$

where Δ_{h} is the Dunkl-Laplace operator and Δ_{f} is the fermionic Dunkl-Laplace operator.

Functions belonging to the kernel of the super Dunkl-Laplace operator are called super Dunkl-harmonic functions.
2.3. Integration in Dunkl superspace. The integration in Dunkl superspace is defined by

$$
\int_{\mathbb{R}^{m \mid 2 n}} \cdot=\int_{\mathbb{R}^{m}} h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) \int_{B} \cdot=\int_{B} \int_{\mathbb{R}^{m}} h_{\kappa}^{2}(\underline{x}) \cdot \mathrm{d} V(\underline{x}),
$$

where $\mathrm{d} V(\underline{x})=\mathrm{d} x_{1} \ldots \mathrm{~d} x_{m}$ is the usual Lebesgue measure in \mathbb{R}^{m}, and the integration

$$
\int_{B} \cdot=\pi^{-n} \partial_{\grave{x}_{2 n}} \ldots \partial_{\grave{x}_{1}} .
$$

used on $\Lambda^{2 n}$ is the so-called Berezin integration.

3. Fundamental solutions for the Dunkl-Laplace and Dunkl-Dirac operators in superspace

We introduce the Mehta-type constant

$$
c_{h}=\left(\int_{\mathbb{R}^{m}} \exp \left(-\|\underline{x}\|^{2}\right) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})\right)^{-1}
$$

which is known for all Coxeter groups W (see [8]).
Lemma 3.1 ([9]). If $0<s<\gamma+d / 2$, then the functions $K_{s}^{m \mid 0}(\underline{x})$ given by

$$
K_{s}^{m \mid 0}(\underline{x})=\frac{(-1)^{s} c_{h} \Gamma(\gamma+d / 2-s)}{4^{s} \Gamma(s)} \frac{1}{\|\underline{x}\|^{2 \gamma+d-2 s}}
$$

are fundamental solutions for the natural powers of the Dunkl-Laplace operator Δ_{h}.
Concerning the refinement to Clifford analysis, we clearly have that $D_{h} K_{s}^{m \mid 0}(\underline{x})$ are fundamental solutions for the natural powers of the Dunkl-Dirac operator D_{h}.

Lemma 3.2 ([9]). For $l \in \mathbb{N}$, we denote by $K_{l}^{m \mid 0}(\underline{x})$ the fundamental solutions for the natural powers of the Dunkl-Dirac operator D_{h}.

For $2 \gamma+m$ odd,

$$
K_{l}^{m \mid 0}(\underline{x})= \begin{cases}c_{\kappa, m, l} \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l+1}}, & l \text { odd } \\ c_{\kappa, m, l} \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l}}, & l \text { even. }\end{cases}
$$

For $2 \gamma+m$ even,

$$
K_{l}^{m \mid 0}(\underline{x})= \begin{cases}c_{\kappa, m, l} \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l+1}}, & l \text { odd and } l<2 \gamma+m-1, \\ c_{\kappa, m, l} \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l}}, & l \text { even and } l<2 \gamma+m \\ \left(c_{\kappa, m, l} \log \|\underline{x}\|+c_{\kappa, m, l}^{\prime}\right) \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l+1}}, & l \text { odd and } l \geqslant 2 \gamma+m-1 \\ \left(c_{\kappa, m, l} \log \|\underline{x}\|+c_{\kappa, m, l}^{\prime}\right) \frac{\underline{x}}{\|\underline{x}\|^{2 \gamma+m-l}}, & l \text { even and } l \geqslant 2 \gamma+m\end{cases}
$$

From the above lemmas, we have the fundamental solution for the super DunklLaplace operator as follows.

Theorem 3.3. The function $K_{2}^{m \mid 2 n}(x)$ given by

$$
K_{2}^{m \mid 2 n}(x)=\pi^{n} \sum_{k=0}^{n} \frac{4^{k} k!}{(n-k)!} K_{2 k+2}^{m \mid 0} \underline{\grave{x}}^{2 n-2 k},
$$

with $K_{2 k+2}^{m \mid 0}$ as in Lemma 3.1, is a fundamental solution for the operator Δ.
Proof. From the definition of the super Dunkl-Laplace operator, we have

$$
\begin{aligned}
& \Delta \pi^{n} \sum_{k=0}^{n} \frac{4^{k} k!}{(n-k)!} K_{2 k+2}^{m \mid 0} \grave{x}^{2 n-2 k}=\left(-\Delta_{h}+\Delta_{f}\right) \pi^{n} \sum_{k=0}^{n} \frac{4^{k} k!}{(n-k)!} K_{2 k+2}^{m \mid 0} \grave{x}^{2 n-2 k} \\
& = \\
& \pi^{n} \sum_{k=0}^{n} \frac{4^{k} k!}{(n-k)!}\left(-\Delta_{h}\right) K_{2 k+2}^{m \mid 0} \grave{x}^{2 n-2 k} \\
& \quad+\pi^{n} \sum_{k=0}^{n-1} \frac{4^{k} k!}{(n-k)!} K_{2 k+2}^{m \mid 0}(2 n-2 k)(-2 k-2) \underline{x}^{2 n-2 k-2} \\
& =\delta(\underline{x}) \frac{\pi^{n}}{n!}(\grave{x})^{2 n}+\pi^{n} \sum_{k=1}^{n} \frac{4^{k} k!}{(n-k)!} K_{2 k}^{m \mid 0} \underline{\underline{x}}^{2 n-2 k} \\
& \quad+\pi^{n} \sum_{k=1}^{n} \frac{4^{k-1}(k-1)!}{(n-k+1)!} K_{2 k}^{m \mid 0}(2 n-2 k+2)(-2 k) \underline{\grave{x}}^{2 n-2 k} \\
& =\delta(\underline{x}) \frac{\pi^{n}}{n!}(\grave{x})^{2 n}+\pi^{n} \sum_{k=1}^{n}\left(\frac{4^{k} k!}{(n-k)!}+\frac{4^{k-1}(k-1)!}{(n-k+1)!}(2 n-2 k+2)(-2 k)\right) K_{2 k}^{m \mid 0} \grave{x}^{2 n-2 k} \\
& =\delta(x),
\end{aligned}
$$

where $\delta(x)=\delta(\underline{x}) \pi^{n} n!^{-1} \underline{\grave{x}}^{2 n}$ is the super distribution in $\mathbb{R}^{m \mid 2 n}$. Thus, we completed the proof.

Note that $\Delta K_{2}^{m \mid 2 n}(x)=\delta(x)$. It follows that a fundamental solution for the super Dunkl-Dirac operator D is given by $D K_{2}^{m \mid 2 n}(x)$. This leads to the following statement.

Theorem 3.4. The function $K_{1}^{m \mid 2 n}(x)$ given by

$$
K_{1}^{m \mid 2 n}(x)=\pi^{n} \sum_{k=0}^{n-1} \frac{2 \cdot 4^{k} k!}{(n-k-1)!} K_{2 k+2}^{m \mid 0} \underline{\grave{x}}^{2 n-2 k-1}-\pi^{n} \sum_{k=0}^{n-1} \frac{4^{k} k!}{(n-k-1)!} K_{2 k+1}^{m \mid 0} \underline{\grave{x}}^{2 n-2 k},
$$

with $K_{2 k+2}^{m \mid 0}$ as in Lemma 3.1 and $K_{2 k+1}^{m \mid 0}=D_{h} K_{2 k+2}^{m \mid 0}$ as in Lemma 3.2, is a fundamental solution for the super Dunkl-Dirac operator D.

4. Fundamental theorems in super Dunkl-Clifford analysis

4.1. Stokes formula in super Dunkl-Clifford analysis. In [2], we see that the Stokes formula in Dunkl-Clifford analysis reads as follows.

Lemma $4.1([2])$. For $\varphi(\underline{x}), \psi(\underline{x}) \in C^{\infty}(\Omega) \otimes \mathbb{R}_{0, m}$,

$$
\begin{equation*}
\int_{\Omega}\left[\left(\varphi(\underline{x}) D_{h}\right) \psi(\underline{x})+\varphi(\underline{x})\left(D_{h} \psi(\underline{x})\right)\right] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=\int_{\partial \Omega} \varphi(\underline{x}) h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma(\underline{x}) \psi(\underline{x}), \tag{4.1}
\end{equation*}
$$

with the vector-valued surface element $\mathrm{d} \sigma_{\underline{x}}=\sum_{i=1}^{m}(-1)^{i} e_{i} \mathrm{~d} x_{1} \ldots \widehat{\mathrm{~d} x_{i}} \ldots \mathrm{~d} x_{m}$ and the volume element $\mathrm{d} V(\underline{x})=\mathrm{d} x_{1} \ldots \mathrm{~d} x_{m}$.

If we consider a distribution α with compact support and if $f(\underline{x}), g(\underline{x}) \in$ $C^{\infty}\left(\mathbb{R}^{m}\right) \otimes \mathbb{R}_{0, m}$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{m}}\left[\left(f D_{h}\right) \alpha g+f D_{h}(\alpha) g+f \alpha\left(D_{h} g\right)\right] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 \tag{4.2}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{m}}\left[\left(f D_{h}\right) \alpha g+f \alpha\left(D_{h} g\right)\right] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=-\int_{\mathbb{R}^{m}} f D_{h}(\alpha) g h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}), \tag{4.3}
\end{equation*}
$$

which is the most general form of the Stokes formula in Dunkl-Clifford analysis.
Lemma 4.2 (Fermionic Stokes formula, [3]). For $f, g \in \Lambda_{2 n} \otimes \mathcal{W}_{2 n}$ and $\alpha \in \Lambda_{2 n}$, the following holds:

$$
\begin{equation*}
-\int_{B}\left(f \widehat{\alpha} \partial_{\underline{\grave{x}}}\right) g+\int_{B} f \alpha\left(\partial_{\underline{\grave{x}}} g\right)=\int_{B} f\left(\alpha \partial_{\underline{\grave{x}}}\right) g . \tag{4.4}
\end{equation*}
$$

Using Lemmas 4.1 and 4.2, we obtain the Stokes formula in super Dunkl-Clifford analysis as follows.

Theorem 4.3. Let $\Omega \subset \mathbb{R}^{m}$. If $f, g \in C^{\infty}(\Omega)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{m \mid 2 n}}[(f \widehat{\alpha} D) g+f \alpha(D g)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=-\int_{\mathbb{R}^{m \mid 2 n}} f(\alpha D) g h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) \tag{4.5}
\end{equation*}
$$

for $\alpha \in R\left[x_{1}, \ldots, x_{m}\right] \otimes \Lambda_{2 n}$ a distribution with compact support $\Sigma \subset \Omega$.
Proof. For $\alpha=\beta \gamma$ with $\beta \in R\left[x_{1}, \ldots, x_{m}\right]$ and $\gamma \in \Lambda_{2 n}$, we have (4.5) from (4.3) and Lemma 4.2.

Corollary 4.4. Let Σ be a compact oriented differentiable m-dimensional manifold with smooth boundary $\partial \Sigma$. If $f, g \in C^{1}(\Sigma)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$, then

$$
\begin{align*}
\int_{\Sigma} \int_{B} & {[(f \widehat{\beta} D) g+f \beta(D g)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) } \tag{4.6}\\
& =-\int_{\partial \Sigma} \int_{B} f \beta h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} g+\int_{\Sigma} \int_{B} f\left(\beta D_{f}\right) g h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}),
\end{align*}
$$

where $\beta \in \Lambda_{2 n}$.
Proof. This is a special case of Theorem 4.3 for $\alpha=H(\nu) \beta$, with $\nu(\underline{x})>0$ if $x \in \Sigma, \nu(\underline{x})<0$ if $\underline{x} \in \mathbb{R}^{m} \backslash \Sigma$. It is easy to see that (4.6) holds by Lemmas 4.1 and 4.2.
4.2. A Cauchy-Pompeiu formula for the super Dunkl-Dirac operator. First we introduce the translation operator (see [15])

$$
\begin{equation*}
\tau_{y} f(x)=\left(V_{h}\right)_{y}\left(V_{h}\right)_{x}\left[\left(V_{h}\right)^{-1}(f)(x+y)\right], \quad x, y \in \mathbb{R}^{m} \tag{4.7}
\end{equation*}
$$

where V_{h} denotes the Dunkl-intertwining operator, i.e.,

$$
D_{j} V_{h}=V_{h} \frac{\partial}{\partial x_{j}}
$$

and $V_{h}(1)=1$. Then, using this translation operator we have the Dunkl-convolution defined by

$$
\begin{equation*}
f *_{D} g(y)=\int_{\mathbb{R}^{m}} \tau_{y} f(-x) g(x) h_{\kappa}^{2}(x) \mathrm{d} x \tag{4.8}
\end{equation*}
$$

Theorem 4.5. Let $\Omega \subset \mathbb{R}^{m}$ and let $\bar{\Omega}$ be a compact oriented differentiable m-dimensional manifold with smooth boundary $\partial \Omega$. Let $f(x) \in C^{\infty}(\Omega)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$ and let the function $K_{1}^{m \mid 2 n}(x)$ be the fundamental solution for the super Dunkl-Dirac operator D. Then

$$
\begin{align*}
& \int_{\partial \Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x) h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f(x) \tag{4.9}\\
& +\int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x})= \begin{cases}0, & \underline{y} \in \mathbb{R}^{m} \backslash \bar{\Omega} \\
-f(y), & \underline{y} \in \Omega\end{cases}
\end{align*}
$$

Proof. For $\underline{y} \in \mathbb{R}^{m} \backslash \bar{\Omega}$, it follows by Corollary 4.4 for $\beta=1$ that

$$
\begin{aligned}
& \int_{\partial \Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x) h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f(x) \\
&=- {\left[\int_{\Omega} \int_{B}\left[\tau_{y} K_{1}^{m \mid 2 n}(-x) D\right] f(x) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})\right.} \\
&\left.\quad+\int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})\right] \\
&=- \int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) .
\end{aligned}
$$

Thus, we have (4.9) for $\underline{y} \in \mathbb{R}^{m} \backslash \bar{\Omega}$. For $\underline{y} \in \Omega$,

$$
\begin{aligned}
& \int_{\partial \Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x) h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f(x) \\
& =-\left[\int_{\Omega} \int_{B}\left[\tau_{y} K_{1}^{m \mid 2 n}(-x) D\right] f(x) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})\right. \\
& \left.\quad+\int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})\right] \\
& =-\int_{\Omega} \int_{B}\left[\tau_{y} \delta(-x)\right] f(x) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})-\int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) \\
& =-f(y)-\int_{\Omega} \int_{B} \tau_{y} K_{1}^{m \mid 2 n}(-x)[D f(x)] h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) .
\end{aligned}
$$

This implies that (4.9) holds for $\underline{y} \in \Omega$.
4.3. Morera's theorem for super Dunkl-monogenic functions. Applying the Stokes formula in Dunkl-Clifford analysis, we obtain Morera's theorem for Dunklmonogenic functions as follows.

Lemma 4.6. A function f is left Dunkl-monogenic in the open set $\Omega \subset \mathbb{R}^{m}$ if and only if f is continuous in Ω and

$$
\begin{equation*}
\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=0 \tag{4.10}
\end{equation*}
$$

for all intervals $I \subset \Omega$.
Furthermore, we have the following lemma, which is an extension of Lemma 4.6.

Lemma 4.7. Let $I \subset \Omega \subset \mathbb{R}^{m}$. If $f, g \in C^{1}(\Omega) \otimes \mathbb{R}_{0, m}$ and

$$
\begin{equation*}
\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=\int_{I} g h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}), \tag{4.11}
\end{equation*}
$$

then $D_{h} f=g$ in Ω.
Proof. As $g \in C^{1}(\Omega) \otimes \mathbb{R}_{0, m}$, there exists $\varphi \in C^{1}(\Omega) \otimes \mathbb{R}_{0, m}$ such that $g=D_{h} \varphi$. Applying Lemma 4.1 and (4.11), we obtain

$$
\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}}[f-\varphi]=\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f-\int_{I} D_{h} \varphi h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 .
$$

It follows by Lemma 4.6 that $f-\varphi$ is left Dunkl-monogenic. Thus we have $D_{h} f=D_{h} \varphi$.

In order to obtain our main result in this section, we need the following lemma.
Lemma 4.8 ([3]). Let $p \in \Lambda_{2 n}$. If

$$
\begin{equation*}
\int_{B} p q=0 \tag{4.12}
\end{equation*}
$$

for any $q \in \Lambda_{2 n}$, then $p=0$.
Theorem 4.9. Let $\Omega \subset \mathbb{R}^{m}$. A function $f \in C^{0}(\Omega)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$ is super Dunklmonogenic in Ω if and only if

$$
\begin{equation*}
\int_{\partial I} \int_{B} \alpha h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f-\int_{I} \int_{B}\left(\alpha D_{f}\right) f h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 \tag{4.13}
\end{equation*}
$$

for all intervals $I \subset \Omega$ and $\alpha \in \Lambda_{2 n}$.
Proof. Suppose that f is super Dunkl-monogenic in Ω. Then (4.13) holds by Corollary 4.4. To the contrary, we suppose that $f \in C^{0}(\Omega)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$. Then

$$
\int_{\partial I} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=\int_{I} \int_{B}\left(\alpha D_{f}\right) f h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})
$$

for all intervals $I \subset \Omega$ and $\alpha \in \Lambda_{2 n}$. Using Lemma 4.2, we get

$$
\int_{I} \int_{B}\left(\alpha D_{f}\right) f h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=\int_{I} \int_{B} \alpha\left(D_{f} f\right) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) .
$$

Thus, we have

$$
\begin{equation*}
\int_{\partial I} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=\int_{I} \int_{B} \alpha\left(D_{f} f\right) h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) \tag{4.14}
\end{equation*}
$$

If (4.14) holds for every α, then it follows by Lemma 4.8 that

$$
\begin{equation*}
\int_{\partial I} h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=\int_{I} D_{f} f h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) . \tag{4.15}
\end{equation*}
$$

Inspired by De Bie ([6]), we have the full decomposition

$$
f=\sum_{k=0}^{n} \sum_{j=0}^{2 n-2 k} \sum_{l} f_{j, k, l} \grave{\grave{x}} M_{k}^{l, j},
$$

where $M_{k}^{l, j}$ is the space of spherical monogenics of degree k depending on the constants l, j. Thus, (4.15) can be rewritten as

$$
\begin{equation*}
\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f_{j-1, k, l}=\int_{I} f_{j, k, l} h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}), \quad j=1, \ldots, 2 n-2 k, \forall I, \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\partial I} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f_{2 n-2 k, k, l}=0, \quad \forall I \tag{4.17}
\end{equation*}
$$

Formula (4.17) implies that $f_{2 n-2 k, k, l}$ is Dunkl-monogenic in Ω, and also implies that $f_{2 n-2 k, k, l} \in C^{\infty}(\Omega) \otimes \mathbb{R}_{0, m}$. Now we proceed by induction (from $j=2 n-2 k-1$ to $j=0$). Suppose that $D_{h} f_{j, k, l}=f_{j+1, k, l}$ and $f_{j, k, l}$ is Dunkl-polyharmonic in Ω. Thus, using Lemma 4.7 and (4.16), we have $D_{h} f_{j-1, k, l}=f_{j, k, l}$. It follows that $f_{j-1, k, l}$ is Dunkl-polyharmonic in Ω. Therefore, we obtain that f is differentiable and that

$$
D f=-\sum_{k=0}^{n} \sum_{j=0}^{2 n-2 k-1} \underline{\underline{x}}^{j} \sum_{l} M_{k}^{l, j} D_{h} f_{j, k, l}+\sum_{k=0}^{n} \sum_{j=1}^{2 n-2 k} \sum_{l} \underline{\underline{x}}^{j-1} M_{k}^{l, j-1} f_{j, k, l}=0
$$

which implies that f is super Dunkl-monogenic in Ω.

4.4. Painlevé theorem for super Dunkl-monogenic functions.

Theorem 4.10. Let Ω be open in \mathbb{R}^{m} and Ω^{\prime} be open in \mathbb{R}^{m-1} such that $\Omega \cap \mathbb{R}^{m}=\Omega^{\prime}$. Let $f \in C^{0}(\Omega)_{m \mid 2 n} \otimes \mathcal{C}_{m \mid 2 n}$. If $f(x)$ is super Dunkl-monogenic in $\Omega \backslash \Omega^{\prime}$ and moreover continuous in Ω, then $f(x)$ is super Dunkl-monogenic in Ω.

Proof. Since $f(x)$ is super Dunkl-monogenic in $\Omega \backslash \Omega^{\prime}$, it follows by Theorem 4.9 that

$$
\begin{equation*}
\int_{\partial I} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f-\int_{I} \int_{B}\left(\alpha D_{f}\right) f h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 \tag{4.18}
\end{equation*}
$$

for any closed interval $I \subset \Omega \backslash \Omega^{\prime}$. Suppose that a closed interval I has the following form: $I=I^{\prime} \times\left[0, a_{0}\right]$, where I^{\prime} is a closed interval contained in Ω^{\prime}.

For $\varepsilon \in\left[0, a_{0}\right]$, we put $I_{\varepsilon}=I^{\prime} \times[0, \varepsilon]$. Then we have

$$
\begin{equation*}
\int_{\partial I_{\varepsilon}} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f-\int_{I_{\varepsilon}} \int_{B}\left(\alpha D_{f}\right) f h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 . \tag{4.19}
\end{equation*}
$$

Due to linearity it suffices to prove this theorem for $f(x)=f_{1}(\underline{x}) f_{2}(\underline{x})$, where f_{1} contains only commuting variables and f_{2} contains only anti-commuting variables.

Then by the continuity of f, we have

$$
\begin{aligned}
\int_{\partial I_{\varepsilon}} \int_{B} \alpha h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f= & \int_{B} \alpha \int_{\partial I_{\varepsilon}} h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f_{1}(\underline{x}) f_{2}(\underline{\grave{x}}) \\
= & \int_{B} \alpha \int_{I^{\prime}}\left[f_{1}\left(\varepsilon+\underline{x}^{\prime}\right)-f_{1}\left(0+\underline{x}^{\prime}\right)\right] h_{\kappa}^{2}(\underline{x}) \mathrm{d} s f_{2}(\underline{\grave{x}}) \\
& +\int_{\partial I^{\prime} \times[0, \varepsilon]} \int_{B}\left(\alpha D_{f}\right) f h_{\kappa}^{2}(\underline{x}) \mathrm{d} V(\underline{x}),
\end{aligned}
$$

where $\mathrm{d} s=(-1)^{i-1} e_{i} \mathrm{~d} x_{1} \wedge \ldots \wedge \mathrm{~d} \hat{x}_{i} \ldots \wedge \mathrm{~d} x_{m}, i=1,2, \ldots, m$. It follows that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial I_{\varepsilon}} \int_{B} \alpha h_{\kappa}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f=\int_{\partial I^{\prime}} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f
$$

and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{I_{\varepsilon}} \int_{B}\left(\alpha D_{f}\right) f h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=\int_{I^{\prime}} \int_{B}\left(\alpha D_{f}\right) f h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x}) .
$$

Thus, we have

$$
\begin{equation*}
\int_{\partial I^{\prime}} \int_{B} \alpha h_{k}^{2}(\underline{x}) \mathrm{d} \sigma_{\underline{x}} f-\int_{I^{\prime}} \int_{B}\left(\alpha D_{f}\right) f h_{k}^{2}(\underline{x}) \mathrm{d} V(\underline{x})=0 . \tag{4.20}
\end{equation*}
$$

It is easy to see that (4.20) holds for all $I^{\prime} \subset \Omega^{\prime}$. Therefore, we have the result from Theorem 4.9.

Acknowledgement. The author would like to thank Minggang Fei for helpful discussions on Dunkl-Clifford analysis.

References

[1] G. Bernardes, P. Cerejeiras, U. Kähler: Fischer decomposition and Cauchy kernel for Dunkl-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 163-171.
zbl MR doi
[2] P. Cerejeiras, U. Kähler, G. Ren: Clifford analysis for finite reflection groups. Complex Var. Elliptic Equ. 51 (2006), 487-495.
zbl MR doi
[3] K. Coulembier, H. De Bie, F. Sommen: Integration in superspace using distribution theory. J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages.
zbl MR doi
[4] H. De Bie, N. De Schepper: Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214.
zbl MR
[5] H. De Bie, F. Sommen: Correct rules for Clifford calculus on superspace. Adv. Appl. Clifford Algebr. 17 (2007), 357-382.
zbl MR doi
[6] H. De Bie, F. Sommen: Spherical harmonics and integration in superspace. J. Phys. A, Math. Theor. 40 (2007), 7193-7212.
zbl MR doi
[7] C. F. Dunkl: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311 (1989), 167-183.
zbl MR doi
[8] C. F. Dunkl, Y. Xu: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge, 2001.
zbl MR doi
[9] M. G. Fei: Fundamental solutions of iterated Dunkl-Dirac operators and their applications. Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061. (In Chinese.)
zbl MR
[10] M. Fei, P. Cerejeiras, U. Kähler: Fueter's theorem and its generalizations in DunklClifford analysis. J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages.
zbl MR doi
[11] M. Fei, P. Cerejeiras, U. Kähler: Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian. J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages.
[12] G. J. Heckman: Dunkl operators. Séminaire Bourbaki, Volume 1996/97. Exposés
820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246.
13] J. E. Humphreys: Reflection Groups and Coxeter Groups. Cambridge Studies in Ad-
zbl MR doi vanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
zbl MR
[14] G. Ren: Howe duality in Dunkl superspace. Sci. China, Math. 53 (2010), 3153-3162.
zbl MR doi
[15] K. Trimèche: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13 (2002), 17-38.
zbl MR doi
zbl MR doi
[16] J. F. Van Diejen, L. Vinet (eds.): Calogero-Moser-Sutherland Models. Workshop, Centre
de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York, 2000.
zbl MR doi
[17] H. F. Yuan, V. V. Karachik: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781.
[18] H. Yuan, Y. Qiao, H. Yang: Properties of k-monogenic functions and their relative functions in superspace. Adv. Math., Beijing 42 (2013), 233-242. (In Chinese.)
[19] H. Yuan, Z. Zhang, Y. Qiao: Polynomial Dirac operators in superspace. Adv. Appl. Clifford Algebr. 25 (2015), 755-769.

Author's address: Hongfen Yuan, School of Mathematics and Physics, Hebei University of Engineering, Guangming South Street 199, Handan, Hebei, 056038, P. R. China, e-mail: yhf0609@163.com.

[^0]: This work was supported by the NNSF of China (No. 11426082), the Natural Science Foundation of Hebei Province (No. A2016402034), and Project of Handan Municipal Science and Technology Bureau (No. 1534201097-10).

