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Generic extensions of models of ZFC

Lev Bukovský

Dedicated to the memory of Petr Vopěnka.

Abstract. The paper contains a self-contained alternative proof of my Theorem
in Characterization of generic extensions of models of set theory , Fund. Math.
83 (1973), 35–46, saying that for models M ⊆ N of ZFC with same ordinals,
the condition AprM,N (κ) implies that N is a κ-C.C. generic extension of M .

Keywords: inner model; extension of an inner model; κ-generic extension; κ-C.C.
generic extension; κ-boundedness condition; κ approximation condition; Boolean
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Classification: Primary 03E45; Secondary 03E40

I present an alternative proof of the main results of my paper [4]. I hope that
the proof is interesting in itself. I would like to emphasize that the proof follows
the style of reasoning that I have learned in Vopěnka’s Seminary in Prague in the
sixties of the last century, see e.g. [11] or [13].

Petr Vopěnka died on March 20, 2015.

1. Preliminaries

All our considerations are related to the Fraenkel–Zermelo set theory ZFC

with the axiom of choice. We follow the terminology and notation of T. Jech [7].
A lower case letter always denotes a set.
If ϕ(x, p) is a formula, then

(1) C = {x : ϕ(x, p)}

is a class definable from parameter p. We can consider classes definable in an ex-
tension of ZFC.

We make only one change of Jech’s terminology. An inner model is a tran-
sitive class that is a model of ZFC and OnM = On. T. Jech does not ask the
axiom of choice. It is known that a transitive class M is an inner model if and
only if M is almost universal1, closed under Gödel operations, and AC holds true
in (M,∈). An inner model N is an extension of an inner model M if M ⊆ N .
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Novi Sad.

1i.e., for any x ⊆ M there exists a set y ∈ M such that x ⊆ y.
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If we work in the Gödel–Bernays set theory then we can omit that a class is
defined by a formula and corresponding parameters, compare [7, p. 5].

Let us recall a result of B. Balcar and P. Vopěnka [12].

If inner models N1, N2 are extensions of an inner model M

and P(On) ∩N1 = P(On) ∩N2, then N1 = N2.(2)

Thus, investigating the relationship of two extensions of a model, we can restrict
our consideration to the sets of ordinals.

Assume that M is an inner model and a ⊆M . Then M [a] is the smallest inner
model such that M ⊆ M [a] and a ∈ M [a]. This property cannot be a definition
of M, since it contains a metamathematical quantifier “for every inner model”.
The existence of such an inner model must be proved in a different way, see, e.g.,
[7, p. 199] or [5, p. 6]. Since M is definable, M [a] is definable as well. Note that
for a, b ⊆M we have M [a][b] = M [b][a].

Let M ⊆ N be inner models, κ being an uncountable regular cardinal of M .
The inner model N is a κ-generic extension of M if there exists a partially
ordered set P ∈ M , |P |M < κ and an ultrafilter G on P generic over M such
that N = M [G]. N is a κ-C.C. generic extension of M if there exists a κ-C.C.
(every antichain has cardinality < κ) M -complete Boolean algebra B ∈ M and
an ultrafilter G ⊆ B generic over M such that N = M [G].

Let N ⊇ M be an extension of the inner model M . The κ-boundedness

condition BdM,N (κ) says that

(∀x ⊆ On, x ∈ N)(∃a ∈M)(∃y ∈ N) (y ⊆ a ∧ |a|M < κ ∧ x =
⋃

y).

The κ-approximation condition AprM,N (κ) says2

(∀f ∈ N, f a function, dom(f) ∈ On, rng(f) ⊆ On)

(∃g : dom(f) −→M, g ∈M)(∀x ∈ dom(f)) (f(x) ∈ g(x) ∧ |g(x)|M < κ).

BdM,N (κ) implies AprM,N (κ). Indeed, let f : α −→ On, f ∈ N , α ∈ On.
Then there exists a set F ∈ M , |F |M < κ, and a set Y ⊆ F such that f =

⋃

Y .
We may assume that every element of F is a partial function from ordinals into
ordinals. For ξ ∈ α we set

h(ξ) = {η : (∃g ∈ F ) g(ξ) = η}.

Evidently f(ξ) ∈ h(ξ) and |h(ξ)|M < κ for each ξ ∈ α.

2. Main results

Let M ⊆ N be inner models. Our main results read as follows:

2In [5] the authors say that M κ-globally covers N .
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Theorem 1 (essentially P. Vopěnka). N is a κ-generic extension of M if and only

if BdM,N (κ) holds true.

Theorem 2 (L. Bukovský). N is a κ-C.C. generic extension of M if and only if

AprM,N (κ) holds true.

A weaker form of Theorem 1 was proved in [13], p. 207. Both Theorems 1 and
2 were proved by the author in [4].

The implications from left to right in both theorems are trivial.
Indeed, if N = M [G], where G is a generic ultrafilter on a partially ordered

set P ∈M , |P |M < κ, then for every x ⊆M , x ∈ N , there exists a relation r ∈M
such that3 x = r′′G. We may assume that r ⊆ P ×M . Set

a = {{s : 〈t, s〉 ∈ r} : t ∈ P}, y = {{s : 〈t, s〉 ∈ r} : t ∈ G}.

Then a ∈M , |a|M < κ, y ⊆ a and x =
⋃

y.
Similarly, if N = M [G], where G is a filter on an M -complete κ-C.C. Boolean

algebra B ∈ M generic over M , then for every function f : α −→ M , α ∈ On,
f ∈ N , there exists a function h : α×rng(f) −→ B, h ∈M such that f = h−1(G).
We can assume that h(ξ, y1) ∧ h(ξ, y2) = 0 for y1 6= y2. We set

g(ξ) = {y : h(ξ, y) 6= 0}.

Since B is κ-C.C. we obtain that |g(ξ)|M < κ for each ξ ∈ α. Evidently f(ξ) ∈ g(ξ)
for every ξ ∈ α.

Later we show that Theorem 1 follows from Theorem 2.
Recently, S.D. Friedman, S. Fuchino and H. Sakai [5] have found a proof of

Theorem 2 different than that of [4]. We present a proof that is different than
those of [4] and [5]. Independently J.L. Krivine has found similar proof of a weaker
result using essentially the results of [3].

3. Support

A set σ ⊆ M is a support over M if for any relations r1, r2 ∈ M there exists
a relation r ∈M such that

r′′σ = r′′1σ \ r′′2σ.

If x = r′′σ, r ∈M then x ∈M [σ].
If N = M [G], where G is an ultrafilter on a partially ordered set generic

over M , then G is a support over M . Actually, for every x ⊆M , x ∈M [G], there
exists a relation r ∈ M , such that x = r′′G. If G is an ultrafilter on a complete
Boolean algebra, then for any such x even x = f−1(G) for some function f ∈M .

A first form of the next theorem presented in the language of the theory of
semisets was proved in [13] as Theorem 4233.

3Recall that r′′a = {y ∈ rng(r) : (∃x ∈ a) 〈x, y〉 ∈ r}.
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Theorem 3 (P. Vopěnka and B. Balcar). If σ ⊆ M is a support, then M [σ] is

a generic extension of M . Moreover, if σ ⊆ P for some P ∈ M , |P |M < κ, then

M [σ] is a κ-generic extension.

B. Balcar [1] gave a nice simple proof of the result as stated above. The proof
was presented in the language of semiset theory. A proof in the language of set
theory is presented in B. Balcar and P. Štěpánek [2] in Czech. Since I do not
know about any published proof of the theorem in the language of set theory in
English, for the convenience of the reader, I sketch the idea of Balcar’s proof.
Actually I follow [2].

We begin with a motivation for Balcar’s proof.
If P is a partially ordered set in M and G ⊆ P is an ultrafilter generic over M ,

we let

r = {〈x, y〉 : x, y ∈ P and x ∧ y = 0}.

Then r ∈M and we have:

(i) r is a symmetric antireflexive relation;
(ii) r′′{x} ⊆ P \G for any x ∈ G;
(iii) for any u ⊆ P \G, u ∈M , there exists an x ∈ G such that u ⊆ r′′{x};
(iv) x ≤ y ≡ r′′{x} ⊇ r′′{y} for any x, y ∈ P .

Let us set

R = {〈x, a〉 : x ∈ P ∧ a ⊆ P ∧ a ∈M ∧ (∀y ∈ a)x ∧ y = 0}.

Then

(3) R′′G = P(P \G) ∩M.

Note that

(4) r = {〈x, y〉 : (∃a) (y ∈ a ∧ 〈x, a〉 ∈ R)}.

Proof of Theorem 3: Assume that σ ⊆ P ∈M is a support. If we set

R1 = {x} × (P(P ) ∩M) for fixed x ∈ σ,

R2 = {〈y, u〉 : y ∈ u ∧ u ⊆ P} ∩M,

then R′′
1σ = P(P ) ∩M and R′′

2σ = (P(P ) \ P(P \ σ)) ∩M . Since σ is a support,
there exists a relation R ∈M such that

(5) R′′σ = R′′
1σ \R′′

2σ = P(P \ σ) ∩M.

Following (4) we set

r0 = {〈x, y〉 : (∃u) (y ∈ u ∧ 〈x, u〉 ∈ R)},

r = (r0 ∪ r
−1
0 ) \ {〈x, x〉 : x ∈ P}.

Then r ∈M and we show that (i) – (iii) hold true with G = σ.
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(i) is evident.
Assume that x ∈ σ and y ∈ r′′{x}. Then either there exists u ∈ M such that

〈x, u〉 ∈ R and y ∈ u or there exists u ∈ M such that 〈y, u〉 ∈ R and x ∈ u. In
the former case by (5) we obtain u ⊆ P \ σ, therefore y /∈ σ. In the latter case
u * P \ σ, so by (5) we obtain y /∈ σ. Thus (ii) holds true.

Now assume that u ⊆ P \ σ, u ∈ M . Then by (5) there exists an x ∈ σ such
that 〈x, u〉 ∈ R. Thus we have u ⊆ r′′0{x} ⊆ r′′{x} and we obtain (iii).

Considering r as the relation of incompability on P , we define a preorder ≤ on
P by (iv):

x ≤ y ≡ r′′{x} ⊇ r′′{y}.

We show that σ is basis of a generic filter over M . More precisely, we let

σ∗ = {p ∈ P : (∃q ∈ σ) q ≤ p}.

By (ii) and (iii), σ∗ is a filter on P . We show that σ∗ is generic over M .
So, let D ⊂ P , D ∈M be a dense set. We want to show that D ∩ σ∗ 6= ∅. Let

us suppose, to get a contradiction, that D ⊂ P \ σ∗ ⊂ P \ σ. Then by (iii) there
exists x ∈ σ such that D ⊆ r′′{x}. We show that x∧ y = 0 for each y ∈ D, i.e. D
is not dense. Indeed, suppose that there exist y ∈ D and z such that z ≤ x and
z ≤ y. Since r′′{x} ⊆ r′′{z}, r′′{y} ⊆ r′′{z} and the relation r is symmetric we
obtain

y ∈ D → y ∈ r′′{x} → x ∈ r′′{y} → x ∈ r′′{z} → z ∈ r′′{x} → z ∈ r′′{z},

i.e. 〈z, z〉 ∈ r, what is a contradiction. Hence D ∩ σ 6= ∅.
Let ∼ be the equivalence relation on P defined as

x ∼ y ≡ r′′{x} = r′′{y}.

Note that if x ∈ σ∗ and x ∼ y, then y ∈ σ∗. Thus σ∗/ ∼ is a filter on the
partially ordered set P/ ∼ generic over M . If x ⊆M , x = r′′σ, r ∈M , then also
x = s′′(σ∗/ ∼) for suitable s ∈ M . Therefore, by Balcar–Vopěnka Theorem 2 we
obtain M [σ∗/ ∼] = M [σ].

Thus M [σ] = M [σ∗/ ∼] is a generic extension of M . �

Note that we have actually showed that

(6) σ ⊆ P is a support ≡ (∃R ∈M)R′′σ = P(P \ σ) ∩M.

4. Set of integers and AprM,N (ℵ1)

For our proof of the Basic Lemma 5 we shall need the following

Theorem 4. Let N ⊇ M be an extension of an inner model. If a ⊆ ω0, a ∈ N
and AprM,N (ℵ1) holds true, then M [a] is a generic extension of M .

The proof follows that of the main result of [3].
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Proof: Let B denote the family of Borel subsets of the Cantor space ω02. There
exist a mapping # : BM −→ B preserving complement and unions of countable
families belonging to M – for a proof see R.M. Solovay [10] or Lemma 25.46 of [7].
We can consider the set a as an element of ω02 and we set

j = {A ∈ BM : a ∈ #(A)}.

j is an ultrafilter on BM closed under intersections of countable families from M
and M [a] = M [j]. We show that j is a support.

We begin with showing that for any relation r ∈ M there exists a function
h ∈M such that r′′j = h−1(j).

Since r′′j ⊆ M and M is an almost universal class, there exists a set A ∈ M
such that r′′j ⊆ A. We can assume that r ⊆ BM ×A.

Let S = P(BM ) ∩M . For u ∈ S we set

Au = {x ∈ A : {B ∈ BM : 〈B, x〉 ∈ r} = u}.

Then {Au;u ∈ S} ∈ M is a family of pairwise disjoint sets. Some elements Au

may be empty. For every x ∈ A there exists unique u ∈ S such that x ∈ Au.
We set U(x) = u. The function U : A −→ S is defined in M , hence U ∈ M .
Evidently

r =
⋃

u∈S

u×Au.

By the axiom of choice, there exists a function f : A −→ BM , f ∈ M [a] such
that f(x) ∈ j ∩ U(x) if j ∩ U(x) 6= ∅ and f(x) = ∅ otherwise. By AprM,N (ℵ1)
there exists a function g : A −→ [BM ]≤ℵ0 , g ∈M , such that f(x) ∈ g(x) for each
x ∈ A. We set

h(x) =
⋃

(g(x) ∩ U(x)) ∈ BM .

Then h ∈ M . Since g(x) ∩ U(x) ∈ M is countable, by the completeness of j we
obtain

j ∩ U(x) = ∅ → h(x) =
⋃

(g(x) ∩ U(x)) /∈ j.

Vice versa, if j∩U(x) 6= ∅, then f(x) ∈ j∩U(x)∩g(x). Thus h(x) ∈ j. Therefore

h(x) ∈ j ≡ j ∩ U(x) 6= ∅.

Consequently we have h−1(j) = r′′j.
Now, if yi = h−1

i (j), hi ∈ M are functions with values in BM for i = 1, 2, we
set

h(x) =

{

h1(x) \ h2(x) if x ∈ dom(h1) ∩ dom(h2),
h1(x) if x ∈ dom(h1) \ dom(h2).

Then h ∈M and y1 \ y2 = h−1(j).
The theorem follows by Theorem 3. �
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Note the following. For the proof we needed actually only that there exists
a relation r ∈ M such that r′′j = P(BM \ j) ∩ M . Thus we have dealt with
a relation r ⊆ BM × S only. Therefore, instead of AprM,N (ℵ1) we can use the
seemingly weaker condition

for every f : (2κ)M −→ κ, f ∈ N, there exists a function h : (2κ)M −→ [κ]≤ℵ0 ,

h ∈M , such that f(ξ) ∈ h(ξ) for each ξ ∈ (2κ)M , where κ = |P(ω) ∩M |M .

5. Basic lemma

Lemma 5 (Basic lemma). If AprM,N (λ) and a ⊆ λ, a ∈ N , then the inner

model M [a] is a generic extension of M .

The proof of Lemma 5 in [4] is based on an embedding of the free λ-complete
Boolean algebra with λ generators constructed in M into the similar Boolean
algebra constructed in the universe V that preserves unions of sets from M of
cardinality <λ. The presented proof reduced this problem to the ℵ1-free Boolean
algebra B with ℵ0 generators and Theorem 4.

We begin with a weaker result. We recall that (<ωλ,⊇) is a partially ordered set
“making” the regular cardinal λ countable in the corresponding Boolean valued
model. Let us consider a theory T that is stronger than

ZFC +M,N are inner models +AprM,N (λ) +

λ is regular cardinal in M + a ⊆ λ+ a ∈ N.

The main result is contained in

Lemma 6 (Reduction). In the theory T + ”there exists a filter G ⊆ <ωλ generic

over M [a]“ it is provable that the model M [a] is a generic extension of M.

Proof: Let a ⊆ λ, λ being a regular cardinal, a ∈ N and AprM,N (λ) hold true.
Let G ⊆ <ω0λ be an ultrafilter generic over M [a]. Note that G is generic over

M as well. Since λ is countable in M [a][G], one can find a set b ⊆ ω0 such that
M [a][G] = M [b]. We show that AprM [G],M [b](ℵ1) holds true.

The partially ordered set (<ωλ,⊇) is λ+-C.C., therefore AprM [a],M [b](λ
+) holds

true. Let f : α −→ β, f ∈ M [b]. Then there exists a function g ∈ M [a],
g : α −→ ([β]≤λ)M [a], such that f(ξ) ∈ g(ξ) for each ξ ∈ α. Since AprM,M [a](λ),

every set from ([β]≤λ) ∩M [a] is a subset of a set from ([β]≤λ) ∩M . So, we may
assume that all values of g are in ([β]≤λ)∩M . Now, by AprM,M [a](λ) there exists

a function h : α −→ [([β]≤λ)]<λ ∩M such that g(ξ) ∈ h(ξ) for each ξ ∈ α. Set
d(ξ) =

⋃

h(ξ). Then d ∈ M and f(ξ) ∈ d(ξ) for each ξ ∈ α. Since |d(ξ)|M ≤ λ
we have |d(ξ)|M [G] ≤ ℵ0.

Thus, by Theorem 4, M [b] is a generic extension of M [G], hence a generic
extension of M as well. Since M [a] ⊆ M [b], we obtain that M [a] is a generic
extension of M as well (folklore, see e.g. T. Jech [7, Lemma 15.43]). �
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6. Proof of the basic lemma

Actually, the Basic lemma follows from Lemma 6 by standard argument as
presented e.g. by K. Kunen [8, p. 280]. I present a proof by the methods I have
learned in Vopěnka’s Seminary.

We follow the terminology and notations of T. Jech [7], Sections 12–15. As-
sume that the language {∈} of the set theory is enlarged by some other predicates
to the language L. If M is a class, E is a binary relation on M , and for every
predicate of L we have corresponding relation on M , then (M,E, . . . ) is an inter-
pretation of the language L. Let ϕ(x1, . . . , xk) be a formula in the language L.
The relativization of ϕ to (M,E, . . . ) is the formula

(7) ϕ(M,E,... )(x1, . . . , xk)

defined similarly as ϕM,E in [7, p. 161], i.e., replacing each predicate of L, including
∈, by its interpretation in (M,E, . . . ) and relativizing all quantifier to M . Instead
of (7) we shall write

(M,E, . . . ) |= ϕ(x1, . . . , xk).

If B is a complete Boolean algebra, M is an inner model, then BM is the class
of all functions f : P −→ M defined on a partition P of B. We shall assume
that each f is an injection. For sake of simplicity, if b ∈ B, b ≤ a ∈ P , we set
f̄(b) = f(a).

Assume that S is a theory stronger than ZFC in the language {∈, R. . . . },
where R is a k-ary predicate. If M is an inner model of S, j ⊆ B is an ultrafilter,
we define =j , ∈j and Rj on BM as

f =j g ≡
∨

{a ∈ B : f̄(a) = ḡ(a)} ∈ j,

f ∈j g ≡
∨

{a ∈ B : f̄(a) ∈ ḡ(a)} ∈ j,

Rj(f1, . . . , fk) ≡
∨

{a ∈ B : R(f̄1(a), . . . , f̄k(a)} ∈ j.

The quotient of BM by the equivalence relation =j will be denoted by BM/j.
The interpretation

(BM/j) = (BM/j,=j,∈j , RJ , ...)

is the Boolean ultrapower of M .
One can easily extend the classical result as

Theorem 7 (J.  Loś). If ϕ is a formula in the language of S, M is an inner model

and f1, . . . , fn ∈ BM , then

(BM/j) |= ϕ(f1, . . . , fn) ≡
∨

{a ∈ B : (M,∈, R, . . . ) |= ϕ(f̄1(a), . . . , f̄n(a))} ∈ j.

Therefore, the Boolean ultrapower (BM/j) is also a model of S.
We set Ξ(x) = x̃, where x̃(1) = x for any x ∈ M . Then Ξ : M −→ BM/j is

an elementary embedding.
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If B is a complete Boolean algebra then the Boolean valued model V B is defined
in [7, pp. 209–214]. We define =j and ∈j similarly as above:

f =j g ≡ ‖f = g‖ ∈ j, f ∈j g ≡ ‖f ∈ g‖ ∈ j,

and we denote by V B/j the quotient of V B by the equivalence relation =j. Then
(V B/j,∈j), denoted as (V B/j), is a model of ZFC. We have similar equivalence
to the  Loś Theorem

(V B/j) |= ϕ(f1, . . . , fn) ≡ ‖ϕ(f1, . . . , fn)‖ ∈ j.

Let Φ : BV −→ V B be defined as Φ(f) = g, where g ∈ V B is such that
‖g = x̌‖ ≥ a for every a ∈ dom(f) and x = f(a). Then Φ induces an embedding
of BV/j into V B/j such that (V B/j) is a generic extension of Φ(BV/j) by the

ultrafilter G on Φ(B̃) with the canonical name Ġ generic over Φ(BV/j).
In the next we shall identify f ∈ BV with Φ(f).
If the inner models M , N are definable in V by formulas ϕ, ψ and parameters

p, q, respectively, then (BM/j), (BN/j) are definable in (BV/j) by same formulas
and parameters p̃, q̃, respectively. Since by R. Laver [9], the inner model Φ(BV/j)
is definable in (V B/j), both inner models (BM/j) and (BN/j) are definable
in (V B/j).

Assume that M is an inner model. Let ψ(Z, x) denote the formula

(∃P ∈M) (P is a partially ordered set,

Z ⊆ P is a filter generic over M and (∃r ∈M)x = r′′Z).

We have

(8) (∀x ⊆M)((∃Z)ψ(Z, x) ≡M [x] is a generic extension of M).

Moreover, we have the following implications

(9) (∃Z)ψ(Z, x) → (∃Z ∈M [x])ψ(Z, x) →M [x] |= (∃Z)ψ(Z, x).

Proof of Lemma 5: Let B = B(<ωλ), j being an ultrafilter on B. Then V B/j
is a model of the theory T+“there exists a filter G ⊆ <ωλ generic over (BM/j)[ã]”
of Lemma 6. Hence, by Lemma 6, (BM/j)[ã] is a generic extension of BM/j. Since
BM/j[ã] ⊆ BV/j, by (8) and (9) we obtain

(BV/j) |= (∃Z)Ψ(Z, ã).

Since the models (BV/j) and V are elementary equivalent, we obtain

V |= (∃Z)Ψ(Z, a).

By (8), M [a] is a generic extension of the inner model M . �
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7. Auxiliary results

Lemma 8. If N is a generic extension of M and AprM,N (κ) holds true, then N
is a κ-C.C. generic extension of M .

Proof: The proof is the same as the argumentation in [4] on p. 42, lines 14–28.
Assume that N = M [G], where G is an ultrafilter on an M -complete Boolean

algebra B generic over M . Let P = {P ⊆ B : P is a partition of B ∧ P ∈ M}.
We set f(P ) = a ∈ G∩P for P ∈ P . By AprM,N (κ) there exists g : P −→ [B]<κ,
such that g ∈ M and f(P ) ∈ g(P ) for each P ∈ P . Then a =

∧

P∈P

∨

g(P ) ∈ G
and the Boolean algebra B|a is κ-C.C. �

For the sake of completeness we repeat Theorem 2.1 of [4] as

Lemma 9. If B is a complete atomless κ-C.C. Boolean algebra, then the first

cardinal λ such that B is not (λ, 2)-distributive is λ ≤ κ. Thus if M ⊆ N are

inner models, AprM,N (κ) holds true, then N = M [A], where λ = |P(κ) ∩ N |N

and A ⊂ λ× κ is such that

P(κ) ∩N = {{ξ ∈ κ : (η, ξ) ∈ A} : η ∈ λ}.

Note that 2<κ may be greater than κ, therefore Lemma 8 is stronger than
Lemma 2.2 of [5].

We know that a complete ℵ1-C.C., (ℵ0, 2)-distributive and (ℵ1, 2)-non-distri-
butive Boolean algebra produces a Suslin tree (that was essentially proved by
H. Gaifman [6]). Thus, we obtain

Corollary 10. If V is a generic extension of an inner model M , P(ω0) ⊆ M ,

P(ω1) * M and AprM,N (ℵ1) holds true, then in M there exists a Suslin tree.

Proof of Lemma 9: Assume that B is a complete atomless κ-C.C., (κ, 2)-dis-
tributive Boolean algebra. Then B is (κ, κ)-distributive as well.

If P and R are partitions of the unit element, we say that R strongly refines P ,
if for any a ∈ R there exists a b ∈ P such that a < b. Since B is atomless,
for every partition P there exists a partition strongly refining P . We construct
a sequence of partitions {Pξ : ξ < κ} as follows. If Pξ is constructed we take for
Pξ+1 any partition strongly refining Pξ. Since the algebra B is (κ, κ)-distributive,
for a limit ordinal ξ < κ, there exists a common refinement Pξ of all partitions Pη,
η < ξ. Again, since the algebra B is (κ, κ)-distributive, there exists a common
refinement P of all partitions Pξ, ξ < κ. Let a ∈ P , a 6= 0. Then for each ξ < κ
there exists an aξ ∈ Pξ such that a < aξ. One can easily see that {aξ : ξ ∈ κ} is
a strictly decreasing sequence, what contradicts κ-C.C. condition.

Let M ⊆ N and A be as in the Lemma and M [A] 6= N . Thus for some
µ > κ there exists a set of ordinals a ⊆ µ, a ∈ N such that a /∈ M [A]. Since
AprM [A],N (κ) holds true, by Lemma 5, M [A][a] is a generic extension of M [A].
Therefore there exists a κ-C.C. Boolean algebra B and an ultrafilter G ⊆ B
generic over M [A] such that M [A][a] = M [A][G]. Since P(κ) ∩N ⊆M [A][a], we
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can assume that the Boolean algebra B is (κ, κ)-distributive. Since a /∈ M [A],
the Boolean algebra B is not (µ, 2)-distributive – a contradiction. �

8. Proofs of the main results

Proof of Theorem 2: The implication from left to right was already proved.
Assume that AprM,N (κ) holds true and A is as in Lemma 9. By Lemma 5, M [A]
is a generic extension of M . Then by Lemma 8, M [A] is a κ-C.C. generic extension
of M . By Lemma 9 we obtain N = M [A]. �

Proof of Theorem 1: The implication from left to right was already proved.
Let BdM,N (κ) hold true. Since BdM,N (κ) implies AprM,N (κ), N is a generic

extension of M . Let B be an M -complete Boolean algebra, G ⊆ B being an ul-
trafilter generic over M such that N = M [G]. By BdM,N (κ) there exists a set
A ∈M , |A|M < κ, and a set Y ⊆ A, Y ∈ N , such that G =

⋃

Y . We set

r = {〈x, y〉 : x ∈ A ∧ y ∈ x}.

Then G = r′′Y . For every set x ⊆ M , x ∈ M [G], there exists a function f ∈ M
such that x = f−1(G). Then x = f−1(r′′Y ). Hence Y is a support over M . Since
|A|M < κ, by Theorem 3, M [Y ] is a κ-generic extension of M . Since G = r′′Y ,
we obtain N = M [Y ]. �

Remarks. If M , N are sets and models of ZFC such that OnM = OnN , then
Theorems 1 and 2 are true as well and the proofs work equally as above.

If M , N are countable models of ZFC with OnM = OnN , then there exists
an ultrafilter G ⊂ <ωλ generic over M . Hence the proof of Lemma 6 is actually
a proof of the Basic Lemma 5. Thus, the considerations of Section 6 may be
omitted.
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