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On the structure of universal differentiability sets

Michael Dymond

Abstract. A subset of R
d is called a universal differentiability set if it contains

a point of differentiability of every Lipschitz function f : R
d
→ R. We show

that any universal differentiability set contains a ‘kernel’ in which the points
of differentiability of each Lipschitz function are dense. We further prove that
no universal differentiability set may be decomposed as a countable union of
relatively closed, non-universal differentiability sets.

Keywords: differentiability; Lipschitz functions; universal differentiability set; σ-
porous set

Classification: Primary 46G05; Secondary 46T20

1. Introduction

Subsets of Rd containing a point of differentiability of every Lipschitz function
f : Rd → R form a complex and still somewhat mysterious class of sets, despite
significant modern progress. Such sets are called universal differentiability sets

(or UDSs), a term introduced in [6]. The classical Rademacher’s Theorem states
that Lipschitz functions on Euclidean spaces are differentiable almost everywhere
with respect to the Lebesgue measure. Thus, every set of positive measure is a uni-
versal differentiability set. Whilst one may characterise universal differentiability
sets in R as sets of positive (outer) Lebesgue measure (see [17] or [9, Theorem 1]),
this description fails in all Euclidean spaces of higher dimension. Preiss proves,
in [14], that R2 contains a dense, Gδ universal differentiability set of Lebesgue
measure zero. In [4], Doré and Maleva verify the existence of compact universal
differentiability sets of Lebesgue measure zero in all Euclidean spaces Rd with
d ≥ 2. This result is strengthened in [6] and [8]: [6] establishes the existence of a
compact universal differentiability set in Rd for d ≥ 2 with Hausdorff dimension
one, whilst [8] further proves that such a set can be found with upper Minkowski
dimension one. Moreover, it is shown that for both the Hausdorff and Minkowski
dimensions, dimension one is the smallest possible for a universal differentiability
set in Rd.
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In this paper we examine the structural properties of universal differentiability
sets in Euclidean spaces. Our approach is motivated by the work [19], of Zelený
and Pelant on the structure of non-σ-porous sets; we refer the reader to [18] for
a survey on the notions of porosity and σ-porosity. In particular, we prove that,
like non-σ-porous sets, universal differentiability sets contain a ‘kernel’, which in
some sense captures the core or essence of the set. In the papers [4], [6] and [5],
Doré and Maleva observe that the universal differentiability sets constructed pos-
sess the property that the differentiability points of each Lipschitz function form a
dense subset. We verify that every universal differentiability set contains a univer-
sal differentiability set with this property. We go on to establish that no universal
differentiability set can be expressed as a countable union of relatively closed,
non-universal differentiability sets. Our main results are stated in Section 2 and
proved in Section 3. Finally, in Section 4 we give an application to a question of
Godefroy relating to the existence of exceptional universal differentiability sets.

2. Main results

In this section we present our main results and discuss their connections to the
existing theory. Our two main theorems are based on the following lemma:

Lemma 2.1. Let F ⊆ Rd be a universal differentiability set and suppose that

A is a relatively closed subset of F . Then either A or F \ A is a universal

differentiability set.

In general, a universal differentiability set in Rd may be decomposed as a union
of two non-universal differentiability sets. In [14, Corollary 6.5], Preiss proves that
any Gδ subset of R2 containing all lines passing through two different points of
Q2 is a universal differentiability set. Csörnyei, Preiss and Tǐser construct, in [3],
a universal differentiability set S ⊆ R2 of this form and a pair of Lipschitz map-
pings f, g : R2 → R such that f and g have no common points of differentiability
inside S; see [3, Theorem 1.2(i)]. Writing Df for the set of points of differentia-
bility of f , we get that

S = (S \ Df ) ∪ (S ∩ Df )

is a decomposition of S as a union of two non-universal differentiability sets.
Gδ sets arise naturally in the theory of universal differentiability sets because

they admit an equivalent metric with respect to which they are complete, see
[14] and [15]. We therefore considered the question of whether it is possible to
weaken the assumption on A in Lemma 2.1 to be Gδ rather than closed. It turns
out that, based on announcements in [3] and [1], it is not possible to improve
Lemma 2.1 in this manner: Csörnyei, Preiss and Tǐser construct, in [3], a universal
differentiability set S ⊆ R2 which admits a Lipschitz function f : R2 → R whose
points of differentiability Df intersect S in a uniformly purely unrectifiable set;
see [3, Theorem 1.2(ii)]. For a definition of uniformly purely unrectifiable sets we
refer to [3, p. 363].
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The paragraph that follows is based on the claim, appearing in [3, p. 363] and
[1, Theorem 1.15], that any uniformly purely unrectifiable set is a non-universal
differentiability set. In fact [3] and [1] claim something stronger, namely that any
uniformly purely unrectifiable set U ⊆ Rd admits a Lipschitz function f : Rd → R

such that f has no directional derivatives at any point in U . This statement does
not have a published proof; a proof will appear in the paper [13].

Let us return to the set S given by [3] discussed above. Using that any uni-
formly purely unrectifiable set in Rd is both a non-universal differentiability set
and contained in a Gδ uniformly purely unrectifiable set (see [3, p. 364]), we may
find a Gδ non-universal differentiability set U such that S ∩ Df ⊆ U . Then,

S = (S ∩ U) ∪ (S \ U)

is a decomposition of S as a union of two non-universal differentiability sets, the
first of which is a relatively Gδ subset of S.

We define the kernel, ker(S), of a set S ⊆ Rd with respect to universal dif-
ferentiability similarly to the kernel of S with respect to non-σ-porosity, see [19,
Definition 3.2].

Definition 2.2. Given a set S ⊆ Rd, we let

ker(S) = S \ {x ∈ S : ∃ε > 0 such that B(x, ε) ∩ S is a non-UDS} .

Note that ker(S) is closed as a subset of S. Through an application of Lem-
ma 2.1 we obtain the following theorem, which shows that the kernel of a universal
differentiability set can be thought of as the core of the set. We remark that
universal differentiability sets behave similarly to non-σ-porous sets in this respect
— see [19, Lemma 3.4].

Theorem 2.3. Suppose F ⊆ Rd is a universal differentiability set. Then,

(i) ker(F ) ⊆ F is a universal differentiability set;

(ii) ker(ker(F )) = ker(F ) and F \ ker(F ) is a non-universal differentiability set.

In particular, for each Lipschitz function f : Rd → R, the differentiability

points of f in ker(F ) form a dense subset of ker(F ).

An iterative construction based on the proof of Lemma 2.1 leads to our second
main theorem:

Theorem 2.4. Suppose that E ⊆ Rd is a universal differentiability set and that

(Ai)
∞

i=1 is a collection of relatively closed subsets of E satisfying E =
⋃

∞

i=1 Ai.

Then at least one of the sets Ai is a universal differentiability set.

3. Construction

In this section we will prove the main results stated in Section 2. We begin
with a summary of the notation that we will use: we fix an integer d ≥ 2 and let
e1, e2, . . . , ed denote the standard basis of Rd. For a point x ∈ Rd and ε > 0, we
let B(x, ε) (respectively B(x, ε)) denote the open (respectively closed) ball with
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centre x and radius ε. Given a set S ⊆ Rd, we let Int(S) denote the interior, Cl(S)
denote the closure and ∂S denote the boundary of S. For non-empty subsets A
and B of Rd we let

diam(A) = sup {‖a′ − a‖ : a, a′ ∈ A} and

dist(A, B) = inf {‖b − a‖ : a ∈ A, b ∈ B} .

When A = {a} is a singleton, we will just write dist(a, B) rather than dist({a}, B).
We also adopt the convention dist(A, ∅) = 1 for all A ⊆ Rd. We write Lip(f) for
the Lipschitz constant of a Lipschitz function f . Moreover, given e ∈ Sd−1 and

function f : Rd → R we let f ′(x, e) := limt→0+
f(x+te)−f(x)

t
denote the one-sided

directional derivative of f , provided that the limit exists. The restriction of f to
a set S is denoted by f |S and the support of f by supp(f).

A subset U of Rd is called a box if U = I1 × I2 × . . .× Id for some sequence of
closed, bounded intervals I1, . . . , Id ⊆ R. Note that this definition allows a box
to be empty. Writing Ik = [ak, bk] for each k, we call a set Y ⊆ ∂U a face of U
if there exist m ∈ {1, . . . , d} and y ∈ {am, bm} such that Y = I1 × . . . × Im−1 ×
{y} × Im+1 × . . . × Id.

Lemma 3.1. Let A be a relatively closed subset of F ⊆ Rd.

(i) There exists a collection {Ui}∞i=1 of boxes with pairwise disjoint interiors

such that

F ∩
∞⋃

i=1

Ui = F \ A, dist(Ui, A) > 0, i ∈ N and
diam(Ui)

dist(Ui, A)
→ 0 as i → ∞.

(ii) Furthermore, if {Vi}∞i=1 is a collection of boxes with pairwise disjoint inte-

riors satisfying F \ A ⊆ F ∩
⋃

∞

i=1 Vi, then a collection {Ui}∞i=1 satisfying

the conclusion of (i) can be additionally chosen so that for each i ∈ N there

exists j ∈ N such that Ui ⊆ Vj .

Proof: We prove (i) and (ii) simultaneously. Let Ω ⊆ Rd be an open set satisfy-
ing F \Ω = A. By applying the Whitney Covering Lemma [10, Proposition 3.3.4,
p. 175] to Ω, we may find a collection {Si}∞i=1 of boxes with pairwise disjoint in-
teriors such that F ∩

⋃
∞

i=1 Si = F \ A and dist(Si, A) > 0 for all i ∈ N. For the
proof of (i) we set Wi = Si for all i ∈ N. For the proof of (ii) we let {Wi}∞i=1

be an enumeration of the collection {Si ∩ Vk : i, k ∈ N}. In both cases the boxes
{Wi}∞i=1 have pairwise disjoint interiors and satisfy F ∩

⋃
∞

i=1 Wi = F \ A and
dist(Wi, A) > 0.

Set p0 = 0. For each i ≥ 1, partition the box Wi into a finite number of boxes
Upi−1+1, . . . , Upi

with pairwise disjoint interiors such that

diam(Uj)

dist(Uj , A)
≤ 2−i for pi−1 + 1 ≤ j ≤ pi.

The assertions of the lemma are now readily verified. �
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Using the next lemma, we will later be able to ignore points lying in the
boundaries of boxes.

Lemma 3.2. Suppose E is a subset of Rd and {Ui}∞i=1 is a collection of boxes

in Rd such that E \
⋃

∞

i=1 ∂Ui is a non-universal differentiability set. Then E is

a non-universal differentiability set.

Proof: For j = 1, . . . , d, let Hj denote the union of all faces of the boxes Ui

which are orthogonal to ej . Then
⋃

∞

i=1 ∂Ui =
⋃d

j=1 Hj . Moreover, writing pj for

the j-th co-ordinate projection map on Rd, we have that pj(Hj) is a subset of
R with one-dimensional Lebesgue measure zero, (in fact it is a countable set) for
each j = 1, . . . , d. The result now follows from [8, Lemma 2.1]. �

Lemma 3.3. Let E ⊆ Rd, η > 0 and {Ui}∞i=1 be a collection of boxes with

pairwise disjoint interiors such that E ∩ Int(Ui) is a non-universal differentiability

set for each i. Then there exists a Lipschitz function g : Rd → R such that

‖g‖∞ ≤ η and Lip(g) ≤ η,(3.1)

g is nowhere differentiable in

∞⋃

i=1

E ∩ Int(Ui), and(3.2)

g(x) = 0 whenever x ∈ Rd \

(
∞⋃

i=1

Int(Ui)

)
.(3.3)

Proof: For x ∈ Rd \
(⋃

∞

i=1 Int(Ui)
)

we define g(x) according to (3.3). Given

i ∈ N we define g on Int(Ui) as follows: let ϕ = ϕi ∈ C∞(Rd) be a smooth function
satisfying ϕ(x) > 0 for all x ∈ Int(Ui), ‖ϕ‖∞ ≤ 1, Lip(ϕ) ≤ 1 and ϕ(x) = 0 for
all x ∈ Rd \ Int(Ui). To verify that such a function exists, we may assume that

Ui = [−1, 1]d and then define ϕ(x) = δ
∏d

k=1 αk(x), where αk : Rd → R is defined
by

(3.4) αk(x) =

{
exp

(
−1

1−x2
k

)
if xk := 〈x, ek〉 ∈ (−1, 1),

0 otherwise,

and δ > 0 is sufficiently small. Choose a Lipschitz function h = hi : Rd → R

such that h is nowhere differentiable in E ∩ Int(Ui). By rescaling h if necessary,
we may ensure that ‖h‖∞ ≤ η/2 and Lip(h) ≤ η/2. We define g on Int(Ui) by
g(x) = ϕ(x)h(x). The smoothness of ϕ and the fact that ϕ > 0 on Int(Ui) ensure
that g inherits all non-differentiability points of h in Int(Ui). The assertions of
the lemma are now readily verified. �

The previous two lemmas admit the following corollary:

Corollary 3.4. A set E ⊆ Rd is a non-universal differentiability set if and only

if for every x ∈ E, there exists ε = εx > 0 such that B(x, ε)∩E is a non-universal

differentiability set.
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Proof: We prove only the non-trivial implication. Let E ⊆ Rd be a set for
which every point x ∈ E admits εx > 0 as in the statement of Corollary 3.4. Let
W = {Wi}∞i=1 denote the collection of all boxes Wi ⊆ Rd with rational vertices
and the property that E∩Wi is a non-universal differentiability set. By hypothesis
W is a cover of E. We now define a collection {Ui}∞i=1 of boxes as follows: set
U1 = W1 and p1 = 1. If n ≥ 1 and the boxes U1, . . . , Upn

are already defined,
we choose pn+1 ≥ pn so that the set Wn+1 \ Int(

⋃pn

i=1 Ui) may be expressed as
a finite union of boxes Upn+1, . . . , Upn+1

with pairwise disjoint interiors. To see
that such a choice of pn+1 is possible, consider the minimal (finite) collection H of
hyperplanes such that

⋃pn

i=1 ∂Ui ⊆
⋃
H. Then H determines a ‘partition’ of Wn+1

(in the natural sense) into boxes with pairwise disjoint interiors. More precisely,
the set {

Cl(K): K is a connected component of Wn+1 \
⋃

H
}

consists of a finite number of boxes with pairwise disjoint interiors whose union
is the box Wn+1. We may now define Upn+1, . . . , Upn+1

as the elements of this set
which do not intersect Int(

⋃pn

i=1 Ui). The construction ensures that E ⊆
⋃

∞

i=1 Ui,
the boxes {Ui}∞i=1 have pairwise disjoint interiors and that E∩Ui is a non-universal
differentiability set for each i. Finally, we apply Lemma 3.3 and Lemma 3.2 to
complete the proof. �

Lemma 3.5. Let {Ui}∞i=1 be a collection of boxes in Rd with pairwise disjoint

interiors, h : Rd → R be a Lipschitz function and σ > 0. Then, there exists

a Lipschitz function ĥ : Rd → R such that
∥∥∥ĥ − h

∥∥∥
∞

≤ σ and Lip(ĥ) ≤ Lip(h) + σ,(3.5)

ĥ is everywhere differentiable inside

∞⋃

i=1

Int(Ui), and(3.6)

ĥ(x) = h(x) for all x ∈ Rd \
∞⋃

i=1

Int(Ui).(3.7)

Proof: We may assume that Lip(h) > 0. Outside of
⋃

∞

i=1 Int(Ui), we define the

function ĥ according to (3.7). Given i ∈ N, we use the following proposition to

define ĥ on Int(Ui):

Proposition (Corollary 88 [11, p. 448]). Let X be a Hilbert space and Ω ⊆ X
be an open set. Then for any L-Lipschitz function f : Ω → R, any continuous

function ζ : Ω → (0,∞), and any η > 1 there exists an ηL-Lipschitz function

g ∈ C1(Ω) such that |f(x) − g(x)| < ζ(x) for all x ∈ Ω.

We define ĥ on Int(Ui) as the function g given by the conclusion of the above
proposition applied to X = Rd, Ω = Int(Ui), L = Lip(h), f = h, η = 1 + σ

Lip(h)

and ζ, where ζ : Int(Ui) → (0,∞) is any continuous function with the properties
‖ζ‖∞ ≤ σ and limx→z ζ(x) = 0 for all z ∈ ∂Ui.
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This completes the construction of the function ĥ : Rd → R, whose properties
(3.5), (3.6) and (3.7) are readily verified; the second inequality of (3.5) can be
quickly proved using [12, Lemma 2]. �

Lemma 3.6. Let F ⊆ Rd, A be a relatively closed subset of F , h : Rd → R be

a Lipschitz function and {Ui}∞i=1 be a collection of boxes with pairwise disjoint

interiors such that

(3.8) F ∩
∞⋃

i=1

Ui = F \ A, dist(Ui, A) > 0, i ∈ N

and
diam(Ui)

dist(Ui, A)
→ 0 as i → ∞.

Then the following two statements hold.

1. Suppose that F \ A is a non-universal differentiability set and let ε > 0. Then

there exists a Lipschitz function f : Rd → R with the following properties:

f is nowhere differentiable in (F \ A) \

(
∞⋃

i=1

∂Ui

)
,(3.9)

‖f − h‖∞ ≤ ε and Lip(f) ≤ Lip(h) + ε,(3.10)

f(y) = h(y) whenever y ∈ Rd \
∞⋃

i=1

Int(Ui).(3.11)

2. Let x ∈ A and suppose f : Rd → R is any Lipschitz function satisfying the

condition (3.11). Then f is differentiable at x if and only if h is differentiable

at x.

Proof: Let us first verify statement 1. Note that the boxes {Ui}∞i=1, the function

h and σ = ε/2 satisfy the conditions of Lemma 3.5. Let ĥ : Rd → R be the function
given by the conclusion of Lemma 3.5.

The conditions of Lemma 3.3 are satisfied for E = F \A, the collection {Ui}∞i=1

and η = ε/2. Let g : Rd → R be given by the conclusion of Lemma 3.3. We define

f = ĥ + g. The assertions (3.9), (3.10) and (3.11) now follow easily from the

properties of ĥ and g.
Finally, we prove statement 2. Suppose f : Rd → R satisfies (3.11) and let

x ∈ A. We show that the function (h− f) has derivative zero at x, which suffices.
Given ε > 0 we use (3.8) to choose N ∈ N such that

diam(Ui)

dist(Ui, A) − diam(Ui)
<

ε

Lip(h) + Lip(f)
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for all i ≥ N . Let r := min{dist(x, Ui) : 1 ≤ i ≤ N} and y ∈ B(x, r) \ {x}. If
y ∈ Rd \

⋃
∞

i=1 Int(Ui) then (h − f)(y) = (h − f)(x) = 0. In the remaining case,
there exists i ∈ N with i > N such that y ∈ Int(Ui). We choose y′ ∈ ∂Ui and
observe, using h(y′) = f(y′) and h(x) = f(x), that

|(h − f)(y) − (h − f)(x)|

‖y − x‖
≤

|h(y) − h(y′)| + |f(y′) − f(y)|

‖y − x‖

≤
(Lip(h) + Lip(f))diam(Ui)

dist(Ui, A) − diam(Ui)
< ε.

The above argument proves that the derivative of (h − f) at x is zero. �

We are now ready to combine the results of the present section in proofs of our
main results:

Proof of Lemma 2.1: Suppose the contrary for some A ⊆ F ⊆ Rd. Then there
exists a Lipschitz function h : Rd → R such that h is nowhere differentiable in A.
Applying Lemma 3.1, part (i), we find a collection {Ui}∞i=1 of boxes with pairwise
disjoint interiors such that (3.8) holds. The conditions of Lemma 3.6 are satisfied
for F , A, h and {Ui}∞i=1. Further, the hypothesis of Lemma 3.6 part 1 is satisfied
for F , A and arbitrary ε > 0. Let f : Rd → R be the Lipschitz function given by
the conclusion of Lemma 3.6, part 1.

By Lemma 3.6, part 2 the differentiability of f and h coincides at all points of A.
Thus f is nowhere differentiable in A. Moreover, f is nowhere differentiable in
(F \A)\

⋃
∞

i=1 ∂Ui by (3.9). Hence F \
⋃

∞

i=1 ∂Ui is a non-universal differentiability
set and Lemma 3.2 asserts that F is also a non-universal differentiability set. �

Proof of Theorem 2.3: Note that ker(F ) is a closed subset of F and F \ker(F )
is a non-universal differentiability set by Corollary 3.4. Therefore, we may apply
Lemma 2.1 with A = ker(F ) to deduce that ker(F ) is a universal differentiability
set. This proves (i). For (ii), it only remains to check that ker(ker(F )) = ker(F ).
Let x ∈ ker(F ) and ε > 0. Then we observe that

B(x, ε) ∩ ker(F ) = ker(B(x, ε) ∩ F ),

and the latter set is a universal differentiability set by part (i) and x ∈ ker(F ). �

Proof of Theorem 2.4: Suppose that the contrary holds for some universal
differentiability set E ⊆ Rd. This means that there exist relatively closed subsets
Ai of E such that E =

⋃
∞

i=1 Ai and each Ai is a non-universal differentiability set.
An inductive argument based on Lemma 2.1 yields that for each k ∈ N the set⋃k

i=1 Ai is a non-universal differentiability set and relatively closed in E. Hence,
we may assume that Ak ⊆ Ak+1 for each k ≥ 1. We will obtain a contradiction
by proving that E is a non-universal differentiability set.
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We begin the construction by using Lemma 3.1, part (i) to find a collection of
boxes {Ui,1}

∞

i=1 with pairwise disjoint interiors such that

E ∩
∞⋃

i=1

Ui,1 = E \ A1, dist(Ui,1, A1) > 0, i ∈ N

and
diam(Ui,1)

dist(Ui,1, A1)
→ 0 as i → ∞.

Choose a Lipschitz function f1 : Rd → R such that f1 is nowhere differentiable
in A1.

Suppose n ≥ 1, the Lipschitz function fn : Rd → R and the collections {Ui,l}
∞

i=1

of boxes with pairwise disjoint interiors are defined for l = 1, . . . , n such that

fn is nowhere differentiable in the set An \

(
n−1⋃

l=1

∞⋃

i=1

∂Ui,l

)
,(3.12)

E ∩
∞⋃

i=1

Ui,n = E \ An, dist(Ui,n, An) > 0, i ∈ N(3.13)

and
diam(Ui,n)

dist(Ui,n, An)
→ 0 as i → ∞.

Let the Lipschitz function fn+1 : Rd → R be given by the conclusion of Lemma 3.6,
part 1 when we take A = An, F = An+1, h = fn, Ui = Ui,n and ε = 2−(n+1).
Then fn+1 is nowhere differentiable in (An+1 \ An) \

⋃
∞

i=1 ∂Ui,n. From part 2
of Lemma 3.6, the differentiability of fn+1 and fn coincides at all points of An.
Hence, using (3.12), fn+1 is nowhere differentiable in the set

An+1 \
( n⋃

l=1

∞⋃

i=1

∂Ui,l

)
.

Let the collection of boxes {Ui,n+1}∞i=1 be given by the conclusion of Lemma 3.1,
part (ii) when we take F = E, A = An+1 and Vi = Ui,n. This ensures the validity
of (3.13) with n replaced by n + 1.

We have defined, for each integer n ≥ 1, a Lipschitz function fn : Rd → R and a
collection of boxes {Ui,n}∞i=1 with pairwise disjoint interiors. In addition to (3.12)
and (3.13), the construction ensures that the following conditions hold for each
n ≥ 2:

‖fn − fn−1‖∞ ≤ 2−n and Lip(fn) ≤ Lip(fn−1) + 2−n.(3.14)

fn(y) = fn−1(y) whenever y ∈ Rd \

(
∞⋃

i=1

Int(Ui,n−1)

)
.(3.15)

For each i ∈ N there exists j ∈ N such that Ui,n ⊆ Uj,n−1.(3.16)
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For the sake of future reference we point out that

(3.17) fm(y) = fn(y) whenever m ≥ n and y ∈ Rd \

(
∞⋃

i=1

Int(Ui,n)

)
.

This follows from (3.15) and (3.16). By (3.14) the sequence {fn}∞n=1 converges
uniformly to a Lipschitz function f : Rd → R. Using (3.17), we deduce that the
function f satisfies

(3.18) f(y) = fn(y) whenever y ∈ Rd \

(
∞⋃

i=1

Int(Ui,n)

)
.

We are now ready to prove that E is a non-universal differentiability set. In
view of Lemma 3.2, it is sufficient to show that E′ = E \

(⋃
∞

k=1

⋃
∞

i=1 ∂Ui,k

)
is

a non-universal differentiability set. We will prove that f is nowhere differentiable
in E′.

Fix x ∈ E′ and choose n such that x ∈ An. The condition (3.13) ensures
that the conditions of Lemma 3.6 are satisfied for F = E, A = An, h = fn and
Ui = Ui,n. Further, from (3.18), the hypothesis of Lemma 3.6, part 2 is satisfied
for the function f : Rd → R. Therefore, the differentiability of f at x coincides
with that of fn at x and, by (3.12), the proof is complete. �

4. Differentiability inside sets of positive measure

In this section we give an application of Theorem 2.4 to differentiability inside
sets of positive Lebesgue measure.

Theorem 4.1. Let d ≥ 2 and suppose P1, P2, . . . , Pd ⊆ R are sets of positive one-

dimensional Lebesgue measure. Then P1 × . . .×Pd contains a compact universal

differentiability set with Lebesgue measure zero.

Proof: We may assume that each set Pi is closed. For k = 0, 1, . . . , d, let Πk

be the statement that P1 × P2 × . . . × Pk × Rd−k contains a compact universal
differentiability set Ck with Lebesgue measure zero. The statement Π0 is proved
in [4]. Suppose now that 0 < k ≤ d and that the statement Πk−1 holds. Let us
prove the statement Πk and thus, by induction, Theorem 4.1.

Let {rn}∞n=1 be an enumeration of Q and consider the set

Fk =

∞⋃

n=1

(Rk−1 × (Pk + rn) × Rd−k).

Writing Fk,n = Rk−1 × (Pk + rn)×Rd−k for each n, we have Fk =
⋃

∞

n=1 Fk,n and

each set Fk,n is closed. Further, observe that pk(Rd \Fk) = R\
⋃

∞

n=1(Pk +rn) is a
Lebesgue measurable subset of R, which is closed under rational translations and
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whose complement has positive Lebesgue measure. Thus, the next (known) propo-
sition (see [2, Theorem A]) immediately implies that pk(Rd \ Fk) has Lebesgue
measure zero. The proof is based on the Lebesgue density theorem [16, p. 235].

Proposition. Let U ⊆ R be a Lebesgue measurable set such that U + q ⊆ U for

all q ∈ Q. Then either U or R \ U has Lebesgue measure zero.

Proof: We write L for the Lebesgue measure on R. If U has no density points
then the Lebesgue Density Theorem implies that U has Lebesuge measure zero.
If U has a density point y ∈ U , then we may choose s0 > 0 such that L((R \
U) ∩ (y − s, y + s)) < 1

4s for all s ∈ (0, s0). Given x ∈ R and s ∈ (0, s0), let

λ ∈ Q be such that |λ − (y − x)| ≤ 1
4s. Using that R \ U is closed under rational

translations, we deduce

L((R \ U) ∩ (x − s, x + s)) = L((R \ U) ∩ (x + λ − s, x + λ + s))

≤ L((R \ U) ∩ (y − s, y + s)) + |λ − (y − x)| <
1

2
s.

Hence every point x ∈ R is not a density point of R \U and the Lebesgue density
theorem implies that R \ U has Lebesgue measure zero. �

Let us return to the proof of Theorem 4.1. We can write

Ck−1 = (Ck−1 ∩ Fk) ∪ (Ck−1 ∩ (Rd \ Fk)).

Since Rd \Fk projects to a set of one-dimensional Lebesgue measure zero, we may
apply [8, Lemma 2.1] to conclude that Ck−1 ∩ Fk is a universal differentiability
set. Next, using Theorem 2.4, we deduce that there exists n such that Ck−1∩Fk,n

is a universal differentiability set. Setting

Ck = (Ck−1 − rnek) ∩ (Rk−1 × Pk × Rd−k),

we observe that

Ck = (Ck−1 ∩ Fk,n) − rnek.

Ck is a universal differentiability set, due to the easily verified fact that any trans-
late of a universal differentiability set is a universal differentiability set. Moreover,
Ck is also compact and has Lebesgue measure zero. Note that (Ck−1 − rnek) ⊆
P1 × . . . × Pk−1 × Rd−k+1. Hence, Ck ⊆ P1 × . . . × Pk × Rd−k and the proof of
statement Πk is complete. �

The above Theorem 4.1 provides a partial answer to the following question
of Godefroy: does every subset of Rd with positive Lebesgue measure contain a
universal differentiability set of Lebesgue measure zero? This question was asked
following a talk of Maleva at the 2012 conference ‘Geometry of Banach spaces’ in
CIRM, Luminy, and remains open. Theorem 4.1 also builds on an observation of
Doré and Maleva: a consequence of Lemma 3.5 in [5] is that every set of the form
P × Rd−1 ⊆ Rd, where P ⊆ R is a set of positive Lebesgue measure, contains a
Lebesgue null universal differentiability set.
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