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Abstract. We consider a single-species stochastic logistic model with the population’s
nonlinear diffusion between two patches. We prove the system is stochastically permanent
and persistent in mean, and then we obtain sufficient conditions for stationary distribution
and extinction. Finally, we illustrate our conclusions through numerical simulation.
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1. Introduction

Dispersal is a life history trait that has profound effects on both the species persis-

tence and evolution. There are two typical equations to model the diffusion process.

One is semilinear parabolic equations (i.e., reaction-diffusion systems) where the pop-

ulations are continuously spread out in space, like oceanic plankton (see Okubo [20]).

The other is discrete diffusion systems where several species are distributed over

an interconnected network of multiple patches and there are population migrations

among patches. The types of discrete diffusion mechanisms are referred to as linear

diffusion, biased diffusion and directed diffusion. Allen in [1] studied the effects of

the three different dispersal mechanisms on species survival, and investigated the
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logistic nonlinear directed diffusion model

(1.1)

{

ẋ1(t) = x1(t)(a1 − b1x1(t)) + d12(x
2
2(t)− α12x

2
1(t)),

ẋ2(t) = x2(t)(a2 − b2x2(t)) + d21(x
2
1(t)− α21x

2
2(t)),

where xi(t), i = 1, 2 denotes the density dependent growth rate in patch i at time t.

The constant dij , i, j = 1, 2, j 6= i is the dispersal rate from the jth patch to the

ith patch, and the nonnegative constant αij can be selected to represent different

boundary conditions in the continuous diffusion case, see [16]. Allen proved that ini-

tial value problems (1.1) have unique positive solutions. In [16], the authors extended

Allen’s results and obtained the following necessary and sufficient conditions:

(i) The system (1.1) possesses a globally stable positive equilibrium point (x∗
1, x

∗
2),

if the largest eigenvalue of matrix A is less than 0.

(ii) Every solution of the system is unbounded, if the above condition does not

hold. Here A = (aij)2×2, and aij = dij for i 6= j, a11 = −b1 − d12α12,

a22 = −b2−d21α21. That is to say, if (b1+d12α12)(b2+d21α21) > d12d21, then

system (1.1) has a globally stable positive equilibrium point.

However, system (1.1) is a deterministic model, which has some limitations in

mathematical modeling of ecological systems and does not incorporate the effect of

a fluctuating environment. In fact, a real system will not persist at such steady-state

values, since population dynamics is inevitably affected by environmental white noise

which is an important factor in an ecosystem. Therefore, the deterministic models

are often subject to stochastic perturbations, and it is useful to reveal how the noise

affects the population system. There are many papers which study differential equa-

tions with stochastic perturbations (see [8], [10], [11], [15], [13], [19]). Liu and Wang

in [15] studied the stochastic non-autonomous logistic equation. Li et al. in [13] in-

vestigated the stochastic logistic populations under regime switching. Mao et al. in

[19] revealed the effects of environmental noise on the delay Lotka-Volterra model.

Jiang et al. in [10], [11] investigated the logistic equation with random perturbation

and obtained many results, for example on global stability and stochastic perma-

nence. Ji et al. in [8] studied the Lotka-Volterra mutualism system for two species

and established that if the strength of the white noise is small, the system has a sta-

tionary distribution and is ergodic. More investigations and improvements of these

stochastic models can be found in [8], [9], [18] and the references therein. There is

very little known on the dynamic behavior in the single-species dispersal system with

stochastic perturbation and the study of diffusion phenomena and the white noise

impact on population is of significance.

868



Now we consider system (1.1) and we take into account the effect of randomly

fluctuating, i.e., we stochastically perturb the intrinsic growth rate ai. Suppose

a1 → a1 + σ1Ḃ1(t), a2 → a2 + σ2Ḃ2(t),

where Bi(t) are mutually independent Brownian motions, σi are positive constants

and σ2
i represent the intensity of the white noise. Then the stochastic system takes

the form

(1.2)

{

dx1(t) = (x1(t)(a1 − b1x1(t)) + d12(x
2
2(t)− α12x

2
1(t))) dt+ σ1x1(t) dB1(t),

dx2(t) = (x2(t)(a2 − b2x2(t)) + d21(x
2
1(t)− α21x

2
2(t))) dt+ σ2x2(t) dB2(t).

For convenience, let b̄1 = b1 + d12α12, b̄2 = b2 + d21α21, and we have

(1.3)

{

dx1(t) = (x1(t)(a1 − b̄1x1(t)) + d12x
2
2(t)) dt+ σ1x1(t) dB1(t),

dx2(t) = (x2(t)(a2 − b̄2x2(t)) + d21x
2
1(t)) dt+ σ2x2(t) dB2(t).

In this paper, we assume d12, d21 and αij are nonnegative constants, the parame-

ters ai, bi are positive constants and so b̄1 > 0, b̄2 > 0.

The rest of the paper is arranged as follows. In Section 2, we show that there

exists a unique positive global solution with any positive initial condition. In the

study of a population system, permanence is a very important and interesting topic

regarding the survival of populations in an ecological system. In Section 3, we in-

vestigate sufficient conditions for stochastic permanence and persistence in mean. In

a deterministic system, the global attractivity of the positive equilibrium is studied,

but, as mentioned above, it is impossible to expect system (1.3) to tend to a steady

state. So we attempt to investigate the stationary distribution of this system by the

Lyapunov functional technique. This can be viewed as weak stability, which appears

as the solution is fluctuating in a neighborhood of the point. In Section 4, we will

show if the intensity of the white noise is small, there is a stationary distribution

of (1.3) and it has an ergodic property. Existing results on dynamics in a patchy

environment have largely been restricted to extinction analysis, which means that

the population system will survive or die out in the future due to the increased com-

plexity of global analysis. In Section 5, we give sufficient conditions for extinction. In

Sections 6 and 7, we make numerical simulation to confirm our analytical results and

give a conclusion. Finally, for the completeness of the article, we give an Appendix

containing some results which will be used in other sections. Note the key method

used in this paper is the analysis of Lyapunov functions [8], [9], [10], [11], [19].

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t>0,P) be a com-

plete probability space with a filtration {Ft}t>0 satisfying the usual conditions (i.e. it
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is right continuous and F0 contains all P -null sets). Let R
2
+ denote the positive cone

of R2, namely R
2
+ = {(x1, x2) ∈ R

2 : xi > 0, i = 1, 2}. For convenience and sim-
plicity in the forthcoming discussion, denote x(t) = (x1(t), x2(t)). If A is a vector or

matrix, its transpose is denoted by AT. If A is a matrix, its trace norm is denoted

by |A| =
√

trace(ATA). We impose the following assumptions:

Assumption 1. b̄1b̄2 > d12d21.

Assumption 2. ai − 1
2σ

2
i > 0, i = 1, 2.

2. Positive and global solutions

Since x1(t), x2(t) in stochastic differential equation (SDE) (1.3) are population

densities at time t, we are only interested in positive solutions. Moreover, in order

for a SDE to have a unique global (i.e. no explosion in a finite time) solution for any

given initial value, the coefficients of the equation are generally required to satisfy

a linear growth condition and a local Lipschitz condition (cf. Mao [17]). However,

the coefficients of SDE (1.3) do not satisfy the linear growth condition, though they

are locally Lipschitz continuous. In this section, we will use a method similar to

Theorem 2.1 in Mao [19] to prove the solution of (1.3) is nonnegative and global.

Theorem 2.1. Let Assumption 1 hold. For any given initial value x(0) ∈ R
2
+,

there is a unique positive solution x(t) of system (1.3), and the solution will remain

in R
2
+ with probability 1.

P r o o f. Define a C2-function V : R2
+ → R+ by

(2.1) V (x(t)) = c1(x1(t)− 1− log x1(t)) + c2(x2(t) − 1− log x2(t)),

where c1 and c2 are positive constants to be determined. The nonnegativity of this

function can be observed from a− 1− log a > 0 on a > 0 with equality holding if an

only if a = 1. For x ∈ R
2
+, applying Itô’s formula, we have

(2.2) dV (x(t))

= c1

(

dx1(t)−
dx1(t)

x1(t)
+

(dx1(t))
2

2x2
1(t)

)

+ c2

(

dx2(t)−
dx2

x2(t)
+

(dx2(t))
2

2x2
2(t)

)

6

(

(−c1b̄1 + c2d21)x
2
1(t) + (−c2b̄2 + c1d12)x

2
2(t)

+ c1(a1 + b̄1)x1(t) + c2(a2 + b̄2)x2(t) +
σ2
1

2
+

σ2
2

2

)

dt

+ c1σ1(x1(t)− 1) dB1(t) + c2σ2(x2(t)− 1) dB2(t))

:= LV (x(t)) dt+ c1σ1(x1(t)− 1) dB1(t) + c2σ2(x2(t)− 1) dB2(t),
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where

LV (x(t)) = (−c1b̄1 + c2d21)x
2
1(t) + (−c2b̄2 + c1d12)x

2
2(t)

+ c1(a1 + b̄1)x1(t) + c2(a2 + b̄2)x2(t) +
σ2
1

2
+

σ2
2

2
.

In fact, in order to ensure LV is bounded, we only need

(2.3) −c1b̄1 + c2d21 < 0, −c2b̄2 + c1d12 < 0,

that is

(2.4)
d21

b̄1
<

c1
c2

<
b̄2
d12

,

and by Assumption 1 we are able to find positive constants c1, c2 satisfying the

inequality (2.4). The coefficient of the quadratic term of LV is negative, so we can

find a positive constant number K satisfying

LV 6 K

and K is independent of x1(t), x2(t) and t. The rest of the proof is similar to

Theorem 2.1 in [19] so we omit it. �

Remark 2.2. Theorem 2.1 shows that there exists a unique positive solution

x(t) of SDE (1.3) and a positive constant K independent of x1(t), x2(t) and t, such

that

LV 6 K.

Now let V = V +K, so

LV 6 V ,

and then

V R = inf
x∈R2

+
\Dm

V (x) → ∞ as m → ∞,

where Dm = (1/m,m)× (1/m,m). From V = V +K we have that

VR = inf
x∈R2

+
\Dm

V (x) → ∞ as m → ∞.

Hence from Remark 2 of [12], Theorem 4.1, page 86, one obtains that the solution

x(t) is a time-homogeneous Markov process in R2
+ (see Remark 8.1 for the definition

of time-homogeneous Markov process).
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3. Stochastic permanence and persistence in mean

In this section, we will investigate the persistence under two different meanings:

stochastic permanence and persistence in mean.

3.1. Stochastic permanence. Theorem 2.1 shows that the solution of SDE (1.3)

will remain in the positive cone R2
+ with probability 1. This nice property provides us

with a great opportunity to discuss how the solution varies in R
2
+ in detail. We will

first give the definitions of the stochastically ultimate boundedness and the stochastic

permanence.

Definition 3.1. The SDE (1.3) is said to be stochastically ultimately bounded,

if for any ε ∈ (0, 1) there exist positive constants χ1(= χ1( ε)), χ2(= χ2(ε)) such

that for any initial value x(0) ∈ R
2
+, the solution of the SDE (1.3) has the property

that

lim sup
t→∞

P{x1(t) > χ1} < ε, lim sup
t→∞

P{x2(t) > χ2} < ε,

where (x1(t), x2(t)) is the solution of SDE (1.3) with any initial value x(0) ∈ R
2
+.

Definition 3.2. The SDE (1.3) is said to be stochastically permanent, if for any

ε ∈ (0, 1) there are positive constants χ1(= χ1(ε)), χ2(= χ2(ε)) and δ1(= δ1(ε)),

δ′1(= δ′1(ε)) such that

lim inf
t→∞

P{x1(t) 6 χ1} > 1− ε, lim inf
t→∞

P{x1(t) > δ1} > 1− ε,

and

lim inf
t→∞

P{x2(t) 6 χ2} > 1− ε, lim inf
t→∞

P{x2(t) > δ′1} > 1− ε.

It is clear that if the system is stochastically permanent, it must be stochastically

ultimately bounded.

Lemma 3.3. Under Assumption 1, for any given initial value x(0) ∈ R
2
+ there

exist positive constants c1, c2 and κ(p) such that the solution x(t) of SDE (1.3) has

the following property:

(3.1) E(c1x
p
1(t) + c2x

p
2(t)) 6 κ(p), t > 0, p > 1.

P r o o f. From Theorem 2.1 we know that the solution x(t) with initial value

x(0) ∈ R
2
+ will remain in R

2
+ with probability 1. For any given positive constant

p > 1 and positive constants c1, c2 to be determined, define

(3.2) V (x(t)) = c1x
p
1(t) + c2x

p
2(t).
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By Itô’s formula and the Young inequality, we compute

d
(1

p
xp
1(t)

)

= xp−1
1 (t) dx1(t) +

p− 1

2
xp−2
1 (t)(dx1(t))

2

=
(

−b̄1x
p+1
1 (t) + d12x

p−1
1 (t)x2

2(t) +
(

a1 +
p− 1

2
σ2
1

)

xp
1(t)

)

dt

+ σ1x
p
1(t) dB1(t)

6

(

−b̄1x
p+1
1 (t) + d12

(p− 1

p+ 1
ε1x

p+1
1 (t) +

2

p+ 1
ε
−(p−1)/2
1 xp+1

2 (t)
)

+
(

a1 +
p− 1

2
σ2
1

)

xp
1(t)

)

dt+ σ1x
p
1(t) dB1(t)

=
((

−b̄1 + d12
p− 1

p+ 1
ε1

)

xp+1
1 (t) + d12

2

p+ 1
ε
−(p−1)/2
1 xp+1

2 (t)

+
(

a1 +
p− 1

2
σ2
1

)

xp
1(t)

)

dt+ σ1x
p
1(t) dB1(t)

and

d
(1

p
xp
2(t)

)

= xp−1
2 (t) dx2(t) +

p− 1

2
xp−2
2 (t)(dx2(t))

2

=
(

−b̄2x
p+1
2 (t) + d21x

p−1
2 (t)x2

1(t) +
(

a2 +
p− 1

2
σ2
2

)

xp
2(t)

)

dt

+ σ2x
p
2(t) dB2(t)

6

(

−b̄2x
p+1
2 (t) + d21

(p− 1

p+ 1
ε2x

p+1
2 +

2

p+ 1
ε
−(p−1)/2
2 xp+1

1 (t)
)

+
(

a2 +
p− 1

2
σ2
2

)

xp
2(t)

)

dt+ σ2x
p
2(t) dB2(t)

=
((

−b̄2 + d21
p− 1

p+ 1
ε2

)

xp+1
2 (t) + d21

2

p+ 1
ε
−(p−1)/2
2 xp+1

1 (t)

+
(

a2 +
p− 1

2
σ2
2

)

xp
2(t)

)

dt+ σ2x
p
2(t) dB2(t),

so we have

LV (x(t)) 6 p
{(

c1

(

−b̄1 + d12
p− 1

p+ 1
ε1

)

+ c2d21
2

p+ 1
ε
−(p−1)/2
2

)

xp+1
1 (t)

+
(

c2

(

−b̄2 + d21
p− 1

p+ 1
ε2

)

+ c1d12
2

p+ 1
ε
−(p−1)/2
1

)

xp+1
2 (t)

+ c1

(

a1 +
p− 1

2
σ2
1

)

xp
1(t) + c2

(

a2 +
p− 1

2
σ2
2

)

xp
2(t)

}

.

Now, we can find ε1, ε2 and c1, c2 such that











c1

(

−b̄1 + d12
p− 1

p+ 1
ε1

)

+ c2d21
2

p+ 1
ε
−(p−1)/2
2 < 0,

c2

(

−b̄2 + d21
p− 1

p+ 1
ε2

)

+ c1d12
2

p+ 1
ε
−(p−1)/2
1 < 0,
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and noting the inequalities can be turned into

d212(p+ 1)−1ε
−(p−1)/2
2

b̄1 − d12(p− 1)(p+ 1)−1ε1
<

c1
c2

<
b̄2 − d21(p− 1)(p+ 1)−1ε2

d122(p+ 1)−1ε
−(p−1)/2
1

,

namely

b̄1b̄2

(

1− d21

b̄2

p− 1

p+ 1
ε2

)(

1− d12

b̄1

p− 1

p+ 1
ε1

)

> d12d21

( 2

p+ 1

)2

(ε1ε2)
−(p−1)/2,

so taking ε1 = b̄1/d12, ε2 = b̄2/d21, by Assumption 1 the above inequality holds. Let

α̌ =: max
{

pa1 +
p(p− 1)

2
σ2
1 , pa2 +

p(p− 1)

2
σ2
2

}

,

β1 = c
−1/p
1 p

((

b̄1 − d12
p− 1

p+ 1

b̄1
d12

)

− c2
c1

d21
2

p+ 1

( b̄2
d21

)−(p−1)/2)

,

β2 = c
−1/p
2 p

((

b̄2 − d21
p− 1

p+ 1

b̄2
d21

)

− c1
c2

d12
2

p+ 1

( b̄1
d12

)−(p−1)/2)

,

β̂ =: min{β1, β2}.

It is clear that α̌ > 0 and β̂ > 0. Hence we can get

dV (x(t)) 6 α̌(c1x
p
1(t) + c2x

p
2(t)) dt− β̂(c

(p+1)/p
1 xp+1

1 (t) + c
(p+1)/p
2 xp+1

2 (t)) dt

+ pc1σ1x
p
1(t) dB1(t) + pc2σ2x

p
2(t) dB2(t),

and then we have

dE(c1x
p
1(t) + c2x

p
2(t))

dt

6 α̌E(c1x
p
1(t) + c2x

p
2(t))− β̂E(c

(p+1)/p
1 xp+1

1 (t) + c
(p+1)/p
2 xp+1

2 (t))

6 α̌E(c1x
p
1(t) + c2x

p
2(t))− 2−1/pβ̂(E(c1x

p
1(t) + c2x

p
2(t)))

(p+1)/p

= E(c1x
p
1(t) + c2x

p
2(t)){α̌ − 2−1/pβ̂(E(c1x

p
1(t) + c2x

p
2(t)))

1/p}.

Therefore, letting z(t) = E(c1x
p
1(t) + c2x

p
2(t)), then

dz(t)

dt
6 z(t)(α̌− 2−1/pβ̂z1/p(t)).

Consider the equation

dz(t)

dt
= z(t)(α̌− 2−1/pβ̂z 1/p(t)).
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Let y(t) = z(t)−1/p. Then

dy(t)

dt
= − α̌

p
y(t) +

β̂

p
2−1/p,

and

y(t) = e−
∫
α̌p−1 dt

(
∫

β̂

p
2−1/pe

∫
α̌p−1 dt dt+ C

)

= 2−1/p β̂

α̌
+ Ce−α̌p−1t,

where C is an arbitrary constant. Letting t → ∞ on both sides of the above equation,
we have

y(t) → 2−1/p β̂

α̌
,

and therefore,

z(t) → 2
( α̌

β̂

)p

as t → ∞.

Thus by the comparison argument we get

lim sup
t→∞

z(t) 6 2
( α̌

β̂

)p

.

Then we have

lim sup
t→∞

E(c1x
p
1(t) + c2x

p
2(t)) 6 2

( α̌

β̂

)p

=: L(p),

which implies that there is a T > 0 such that

E(c1x
p
1(t) + c2x

p
2(t)) 6 2L(p), t > T.

In addition, E(c1x
p
1(t) + c2x

p
2(t)) is continuous, so we have

E(c1x
p
1(t) + c2x

p
2(t)) 6 C(p), t ∈ [0, T ].

Let κ(p) = max{2L(p), C(p)}, then

E(c1x
p
1(t) + c2x

p
2(t)) 6 κ(p), t > 0, p > 1.

This completes the proof. �

Theorem 3.4. Under Assumption 1, the solutions of SDE (1.3) are stochastically

ultimately bounded.
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The proof of Theorem 3.4 is a simple application of the Chebyshev inequality and

Lemma 3.3.

Since the solution of SDE (1.3) is positive, by the classical comparison theorem of

stochastic differential equations [7] we have the following result.

Lemma 3.5. Let Assumptions 1 and 2 hold, let x(t) ∈ R
2
+ be the solution of

SDE (1.3) with initial value x(0) ∈ R
2
+. Then x(t) satisfies

(3.3) x1(t) > ϕ1(t), x2(t) > ϕ2(t),

where ϕ1(t) and ϕ2(t) are the solutions of equations:

{

dϕ1(t) = ϕ1(t)[(a1 − b̄1ϕ1(t)) dt+ σ1 dB1(t)], ϕ1(0) = x1(0),

dϕ2(t) = ϕ2(t)[(a2 − b̄2ϕ2(t)) dt+ σ2 dB2(t)], ϕ2(0) = x2(0).

In view of Lemma 3.6 in [13], one sees that, if Assumption 2 holds, there exist

positive constants H1, H2 and θ such that ai − 1
2 (θ + 1)σ2

i > 0, i = 1, 2 satisfying

the inequalities

lim sup
t→∞

E
( 1

(ϕ1(t))
θ

)

6 H1, lim sup
t→∞

E
( 1

(ϕ2(t))
θ

)

6 H2.

This, together with Lemma 3.5, gives

Lemma 3.6. Under Assumptions 1 and 2, the solution x(t) of SDE (1.3) with

any initial value x(0) ∈ R
2
+ satisfies

(3.4) lim sup
t→∞

E
( 1

(x1(t))
θ

)

6 H1, lim sup
t→∞

E
( 1

(x2(t))
θ

)

6 H2,

where H1, H2 are positive constants and θ > 0 is such that ai − 1
2 (θ + 1)σ2

i > 0,

i = 1, 2.

Theorem 3.7. Under Assumptions 1 and 2, SDE (1.3) is stochastically perma-

nent.

P r o o f. Let x(t) be the solution of SDE (1.3) with any given positive initial value

x(0) ∈ R
2
+. From Lemma 3.6, we have

lim sup
t→∞

E
( 1

(x1(t))
θ

)

6 H1, lim sup
t→∞

E
( 1

(x2(t))
θ

)

6 H2.
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For x(t) ∈ R
2
+ and for any ε > 0, let δ1 = (ε/H1)

1/θ, δ′1 = (ε/H2)
1/θ. Then we

derive that

P{x1(t) < δ1} = P
{ 1

(x1(t))
θ
>

1

δθ1

}

6
E((x1(t))

−θ
)

δ−θ
1

6 δθ1H1 = ε,

and

P{x2(t) < δ′1} = P
{ 1

(x2(t))
θ
>

1

(δ′1)
θ

}

6
E((x2(t))

−θ
)

(δ′1)
−θ

6 (δ′1)
θH2 = ε.

Hence

lim sup
t→∞

P{x1(t) < δ1} 6 ε, lim sup
t→∞

P{x2(t) < δ′1} 6 ε,

and this implies

lim inf
t→∞

P{x1(t) > δ1} > 1− ε, lim inf
t→∞

P{x2(t) > δ′1} > 1− ε.

The other condition of Definition 3.2 follows from Theorem 3.4. �

3.2. Persistence in mean. Chen et al. in [3] proposed the definition of persis-

tence in mean for the deterministic system. Here, we also use this definition for the

stochastic system.

Definition 3.8. SDE (1.3) is said to be persistent in mean, if

(3.5) lim inf
t→∞

1

t

∫ t

0

xi(s) ds > 0 a.s. i = 1, 2.

From the result in [9] we know that

lim inf
t→∞

1

t

∫ t

0

ϕi(s) ds =
ai − 1

2σ
2
i

b̄i
, lim

t→∞

logϕi(t)

t
= 0 a.s. i = 1, 2.

Using the above conclusions, we can get the following theorem.

Theorem 3.9. Suppose Assumptions 1 and 2 are satisfied, then the solution x(t)

of SDE (1.3) with any initial value x(0) ∈ R
2 has the following properties:

lim inf
t→∞

1

t

∫ t

0

xi(s) ds >
ai − 1

2σ
2
i

b̄i
, lim inf

t→∞

log xi(t)

t
> 0 a.s. i = 1, 2,

and so system (1.3) is persistent in mean.
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4. Stationary distribution

In this section, we investigate if there is a stationary distribution for SDE (1.3)

instead of asymptotically stable equilibria. System (1.1), if Assumption 1 holds, has

a globally stable positive equilibrium point x∗ = (x∗
1, x

∗
2) satisfying the equations

(4.1)

{

a1x
∗
1 − b̄1x

∗
1
2 + d12x

∗
2
2 = 0,

a2x
∗
2 − b̄2x

∗
2
2 + d21x

∗
1
2 = 0,

where x∗
i , i = 1, 2 are positive constants. We will prove SDE (1.3) is ergodic under

Assumption 1 (see Remark 8.1 for the definition of the ergodic property).

Theorem 4.1. Let Assumptions 1 hold. Let δ2 = 1
2c1σ

2
1x

∗
1 + 1

2c2σ
2
2x

∗
2

and let the positive constants c1, c2 satisfy the inequality (2.4). Assume δ2 <

min{(c1b̄1 − c2d21)x
∗
1
2, (c2b̄2 − c1d12)x

∗
2
2}. Then there is a stationary distribution

µ(·) for SDE (1.3) and it has the ergodic property.

P r o o f. Define V : El = R
2
+ → R+ by

(4.2) V (x(t)) = c1

(

x1(t)− x∗
1 − x∗

1 log
x1(t)

x∗
1

)

+ c2

(

x2(t)− x∗
2 − x∗

2 log
x2(t)

x∗
2

)

.

By Itô’s formula, we compute

(4.3) LV (x(t)) = c1(x1(t)− x∗
1)
(

a1 − b̄1x1(t) +
d12x

2
2(t)

x1(t)

)

+ c2

(

x2(t)− x∗
2)(a2 − b̄2x2(t) +

d21x
2
1(t)

x2(t)

)

+
1

2
c1σ

2
1x

∗
1 +

1

2
c2σ

2
2x

∗
2.

By (4.1), we have

(4.4)















a1 = b̄1x
∗
1 − d12

x∗
2
2

x∗
1

,

a2 = b̄2x
∗
2 − d21

x∗
1
2

x∗
2

.
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Substituting (4.4) into (4.3) one sees that

(4.5) LV (x(t))

= − c1b̄1(x1(t)− x∗
1)

2 − c2b̄2(x2(t)− x∗
2)

2

+ c1d12x
∗
2
2
(x2

2(t)

x∗
2
2 + 1− x1(t)

x∗
1

− x∗
1x

2
2(t)

x1(t)x∗
2
2

)

+ c2d21x
∗
1
2
(x2

1(t)

x∗
1
2 + 1− x2(t)

x∗
2

− x∗
2x

2
1(t)

x2(t)x∗
1
2

)

+
1

2
c1σ

2
1x

∗
1 +

1

2
c2σ

2
2x

∗
2

6 − c1b̄1(x1(t)− x∗
1)

2 − c2b̄2(x2(t)− x∗
2)

2

+ c1d12x
∗
2
2
(x2

2(t)

x∗
2
2 + 1− 2

x2(t)

x∗
2

)

+ c2d21x
∗
1
2
(x2

1(t)

x∗
1
2 + 1− 2

x1(t)

x∗
1

)

+
1

2
c1σ

2
1x

∗
1 +

1

2
c2σ

2
2x

∗
2

= − (c1b̄1 − c2d21)(x1(t)− x∗
1)

2 − (c2b̄2 − c1d12)(x2(t)− x∗
2)

2

+
1

2
c1σ

2
1x

∗
1 +

1

2
c2σ

2
2x

∗
2

=: −(c1b̄1 − c2d21)(x1(t)− x∗
1)

2 − (c2b̄2 − c1d12)(x2(t)− x∗
2)

2 + δ2,

where δ2 = 1
2c1σ

2
1x

∗
1+

1
2c2σ

2
2x

∗
2 (we use the fact a

2+ b2 > 2ab in the first inequality).

Then

LV (x(t)) 6 −(c1b̄1 − c2d21)(x1(t)− x∗
1)

2 − (c2b̄2 − c1d12)(x2(t)− x∗
2)

2 + δ2.

As c1, c2 satisfy the inequality (2.4), the quadratic coefficients are less than zero.

The following proof of ergodicity is similar to that of Theorem 3.2 in [8]. Note that

δ2 < min{(c1b̄1 − c2d21)x
∗
1
2, (c2b̄2 − c1d12)x

∗
2
2}, so the ellipse

−(c1b̄1 − c2d21)(x1(t)− x∗
1)

2 − (c2b̄2 − c1d12)(x2(t)− x∗
2)

2 + δ2 = 0

lies entirely in R
2
+. We can take U to be a neighborhood of the ellipsoid with U ⊂

El = R
2
+, so for x ∈ R

2
+ \ U , LV 6 −K (K is a positive constant), which implies

the condition (B.2) in Lemma 8.2 (see the Appendix) is satisfied. Therefore, the

solution x(t) is recurrent in the domain U . This together with Lemma 8.4 implies

x(t) is recurrent in any bounded domain D ⊂ R
2
+. In addition, for any D we have

M = min{σ2
1x

2
1, σ

2
2x

2
2 : (x1, x2) ∈ D} > 0
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so that
2

∑

i,j=1

( 2
∑

k=1

gik(x)gjk(x)

)

ξiξj =

2
∑

i=1

(σ2
i x

2
i ξ

2
i ) > M |ξ|2

for all (x1, x2) ∈ D, ξ ∈ R
2. From Remark 8.3 we know that condition (B.1) of

Lemma 8.2 is also satisfied (see [21], page 349). Therefore, the stochastic system (1.3)

has a stationary distribution µ(·), satisfies the strong law of large numbers, and it
is ergodic (see e.g. [14], Theorem 4.2 and Corollary 1 and [12], Theorem 4.2 on

page 110). �

5. Extinction

We know that, if Assumptions 1 holds, the solution of ODE (1.1) converges to

a positive equilibrium point or is unbounded, so the population will not become

extinct, and by Theorem 3.7, we note that if the condition ai > 1
2σ

2
i , i = 1, 2, is

also satisfied, then the small white noise intensity makes both species stochastically

permanent and persistent in mean. We will show in this section that if the noise is

sufficiently large, the solution to the associated SDE (1.3) will become extinct with

probability 1.

Theorem 5.1. Let Assumptions 1 hold. Let ǎ = max{a1, a2}, 1
2 σ̂

2 =
1
2 (σ

−2
1 + σ−2

2 )
−1
and let the positive constants c1, c2 satisfy the inequality (2.4).

For any given initial value x(0) ∈ R
2
+, the solution of the SDE (1.3) satisfies

lim sup
t→∞

log(c1x1(t) + c2x2(t))

t
6 ǎ− σ̂2

2
a.s.

Particularly, if ǎ− 1
2 σ̂

2 < 0, then lim
t→∞

x(t) = 0 a.s.

P r o o f. Define

(5.1) V (x(t)) = c1x1(t) + c2x2(t), t > 0.

Using Itô’s formula, one can derive that

(5.2) dV (x(t)) = (−(c1b̄1 − c2d21)x
2
1(t)− (c2b̄2 − c1d12)x

2
2(t) + c1a1x1(t)

+ c2a2x2(t)) dt+ c1σ1x1(t) dB1(t) + c2σ2x2(t) dB2(t).
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Let ǎ = max{a1, a2}, 1
2 σ̂

2 = 1
2 (σ

−2
1 + σ−2

2 )−1. Applying the Cauchy inequality and

Assumptions 1, we compute

(5.3) d logV (x(t)) =
1

V (x(t))
(c1a1x1(t) + c2a2x2(t)− (c1b̄1 − c2d21)x

2
1(t)

− (c2b̄2 − c1d12)x
2
2(t)) dt

− 1

2V 2(x(t))
(c21σ

2
1x

2
1(t) + c22σ

2
2x

2
2(t)) dt

+
1

V (x(t))
(c1σ1x1(t) dB1(t) + c2σ2x2(t) dB2(t))

6
1

c1x1(t) + c2x2(t)
max{a1, a2}(c1x1(t) + c2x2(t)) dt

− (c1x1(t) + c2x2(t))
2

2(σ−2
1 + σ−2

2 )(c1x1(t) + c2x2(t))2
dt

+
c1σ1x1(t) dB1(t) + c2σ2x2(t) dB2(t)

c1x1(t) + c2x2(t)

6

(

ǎ− σ̂2

2

)

dt+
c1σ1x1(t) dB1(t) + c2σ2x2(t) dB2(t)

c1x1(t) + c2x2(t)
.

Integrating both sides of inequality (5.3) from 0 to t gives

(5.4) logV (x(t)) 6 logV (x(0)) +

∫ t

0

(

ǎ− σ̂2

2

)

ds+M(t),

where M(t) is the martingale defined by

M(t) =

∫ t

0

c1σ1x1(s) dB1(s) + c2σ2x2(s) dB2(s)

c1x1(s) + c2x2(s)

with M(0) = 0. The quadratic variation of this martingale is

〈M,M〉t =
∫ t

0

c21σ
2
1x

2
1(s) + c22σ

2
2x

2
2(s)

(c1x1(s) + c2x2(s))2
ds 6 max{σ2

1 , σ
2
2}t.

By the strong law of large numbers for martingales (see [9]), we have

lim
t→∞

M(t)

t
= 0 a.s.
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It finally follows from (5.4) by dividing by t on both sides and then letting t → ∞
that

(5.5) lim sup
t→∞

logV (x(t))

t
6 lim

t→∞

logV (x(0))

t

+ lim sup
t→∞

1

t

∫ t

0

(

ǎ− σ̂2

2

)

ds+ lim
t→∞

M(t)

t

= ǎ− σ̂2

2
a.s.

By the definition of V (x(t)) = c1x1(t) + c2x2(t), t > 0, we have that

lim sup
t→∞

log(c1x1(t) + c2x2(t))

t
6 ǎ− σ̂2

2
a.s.

Thus the required assertion follows. �

6. Numerical simulation

We assume αij = 1, and then b̄1 = b1 + d12, b̄2 = b2 + d21, so the SDE (1.3) can

be rewritten in the form

(6.1)

{

dx1(t) = (x1(t)(a1 − b̄1x1(t)) + d12x
2
2(t)) dt+ σ1x1(t) dB1(t),

dx2(t) = (x2(t)(a2 − b̄2x2(t)) + d21x
2
1(t)) dt+ σ2x2(t) dB2(t).

We numerically simulate the solution of (6.1). Using Milstein’s higher order

method in [6], we get the discretization equation

(6.2)























x1,k+1 = x1,k + (x1,k(a1 − b̄1x1,k) + d12x
2
2,k)∆t+ σ1x1,k

√
∆tξ1,k

+ 1
2σ

2
1x1,k(∆tξ21,k −∆t),

x2,k+1 = x2,k + (x2,k(a2 − b̄2x2,k) + d21x
2
1,k)∆t+ σ2x2,k

√
∆tξ2,k

+ 1
2σ

2
2x2,k(∆tξ22,k −∆t),

where the time increment is ∆t > 0, ξ1,k and ξ2,k, k = 1, 2, . . . , n are indepen-

dent Gaussian random variables with distribution N(0, 1). We choose the initial

value (x1(0), x2(0)) = (0.58, 0.60) and the parameters a1 = 0.3, a2 = 0.4, b̄1 = 1.2,

b̄2 = 1.1, d12 = 0.6, d21 = 0.5. We take ∆t = 0.01. From Matlab, we get Figures 1–6

and we will use them to illustrate our results. Obviously, Assumptions 1 is satisfied,

so the corresponding deterministic model has a globally stable positive equilibrium

point x∗ = (x∗
1, x

∗
2)

.
= (0.5734, 0.6090). According to Theorem 2.1, system (6.1) has
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Figure 1. The left subgraphs are the solutions of SDE (6.1) and the corresponding deter-
ministic system. The two curves of represent xi(t) from the same initial point.
The middle subgraphs are the histograms of (6.1) and the right subgraphs are
normal quantile-quantile plots of x1(t) and x2(t), respectively. The stochastic sys-
tem is stochastically permanent and has stationary distribution. Here σ1 = 0.05,
σ2 = 0.04.
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Figure 2. Population distribution of stochastic system (6.1) around the deterministic
model’s positive equilibrium x

∗ .
= (0.5734, 0.6090). Here σ1 = 0.05, σ2 = 0.04.

883



a unique positive solution. In Theorem 4.1 and Theorem 5.1, we need c1 and c2 to sat-

isfy the inequality (2.4), so we only take both numbers c1, c2 equal to 1. We divide the

white noise intensity into three cases to study the impact of white noise on the system.

Case I. White noise of small intensity. In Figures 1–2, we choose σ1 = 0.05,

σ2 = 0.04. Obviously Assumption 2 holds and the SDE (6.1) is stochastically perma-

nent and persistent in mean. We compute δ2 = 1
2c1σ

2
1x

∗
1 +

1
2c2σ

2
2x

∗
2

.
= 1.204 ∗ 10−3,

and min{(c1b̄1 − c2d21)(x
∗
1)

2, (c2b̄2 − c1d12)(x
∗
2)

2} .
= 0.18544, so the condition δ2 <

min{(c1b̄1 − c2d21)(x
∗
1)

2, (c2b̄2 − c1d12)(x
∗
2)

2} is satisfied. By virtue of Theorem 4.1,
there is a stationary distribution (see the middle histogram in Figure 1). The left

pictures in Figure 1 show that the stochastic system imitates the deterministic sys-

tem and their curves nearly coincide. The right subgraphs are the normal quantile-

quantile plots of the values of the paths x1(t) and x2(t), and they are quite similar to

straight lines. This means that the distribution is an approximately standard normal

distribution. Moreover, from Figure 2, we find that almost all population distribu-

tions lie in the neighborhood, which can be imagined as a circular or elliptic region

centered at (x∗
1, x

∗
2) (see the scatter picture in Figure 2). Hence, although there is no

equilibrium of the stochastic system (6.1) as a deterministic system, it is stochasti-

cally permanent, persistent in mean and has ergodic property by Theorems 3.7, 3.9

and 4.1.

Case II. White noise with relatively large intensity. In Figures 3–4, we choose

σ1 = 0.4, σ2 = 0.3. The populations of x1 and x2 suffer relatively large white noise.

Comparing Figures 1 and 3, we see that in Figure 3 the left curves fluctuations are

more violent, the histograms distribute in relatively large regions, and the curves of

QQ plots slightly deviate from a straight line. Comparing Figures 2 and 4, the points

distribute in larger areas in Figure 4, but we can find an ellipse to meet the condition

δ2
.
= 0.073277 < min{(c1b̄1 − c2d21)(x

∗
1)

2, (c2b̄2 − c1d12)(x
∗
2)

2} .
= 0.18544, and from

Theorems 3.7, 3.9 and 4.1, we know that SDE (6.1) is stochastically permanent,

persistent in mean and has a stationary distribution.

In Figure 5, we select σ1 = 0.01, σ2 = 0.6. The conditions of Theorems 3.7, 3.9

and 4.1 are satisfied, and x2 suffers relatively large white noise. From the left pictures

in Figure 1 and Figure 5, we see that the fluctuations of the two curves are different,

and the reason is that larger white noise of x2 impacts x1 in Figure 5. In other

words, due to the presence of diffusion, the relatively big white noise intensity in

the individual patches will be evenly distributed to the other patches. Therefore,

system (6.1) is stochastically permanent and has a stationary distribution.

Case III. White noise of large intensity. In comparison with small white noise

in Figures 1 and 2, we choose σ1 = 0.9, σ2 = 1.0 in Figure 6. Both x1 and

x2 suffer large white noise. We find that ai < 1
2σ

2
i , i = 1, 2, δ2

.
= 0.53637 >

min{(c1b̄1 − c2d21)(x
∗
1)

2, (c2b̄2 − c1d12)(x
∗
2)

2} .
= 0.18544, so the conditions of The-
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Figure 3. The subgraphs are defined in Figure 1. Here σ1 = 0.4, σ2 = 0.3. The stochas-
tic system is stochastically permanent, persistent in mean and has a stationary
distribution.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

Figure 4. Population distribution of stochastic system (6.1) around the deterministic
model’s positive equilibrium x

∗ .
= (0.5734, 0.6090). Here σ1 = 0.4, σ2 = 0.3.
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Figure 5. The subgraphs are defined in Figure 1. Here σ1 = 0.01, σ2 = 0.6. The SDE (6.1)
is stochastically permanent, persistent in mean and has a stationary distribution.

orems 3.7, 3.9 and Theorem 4.1 are not satisfied and the extinction conditions in

Theorem 5.1 are satisfied. That is, ǎ − 1
2 σ̂

2 .
= −0.04751 < 0, as the case in The-

orem 5.1 expected, and the species x1 and x2 will become extinct although the

deterministic system is globally asymptotically stable.

7. Conclusion

In this paper, we study the stochastic logistic single-species model with nonlinear

directed diffusion. We divide the white noise intensity into small, medium and large

cases, and through numerical simulation, we are able to understand the important

role played by the white noise and diffusion phenomena in biological populations. In

addition, we can see from the left subgraphs in Figures 1, 3, 5, 6 that, due to the

random disturbance, the curves starting from the same initial value are not over-

lapped. From these figures, we find that when the white noise is small, system (6.1)

imitates its deterministic system and it is stochastically permanent and has a sta-

tionary distribution (see Figures 1–2). When the white noise is relatively large in
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Figure 6. The subgraphs are defined in Figure 1. Here σ1 = 0.9, σ2 = 1. The populations
of x1(t) and x2(t) will become extinct.

some groups, it will produce relatively large deviation (see Figure 5) but will not

produce the species extinction due to the presence of diffusion. When the noise is

sufficiently large in all the groups (see Figure 6), the species will become extinct even

if diffusion exists. In the real world, the large white noise may be bad weather or

serious epidemic, which can be considered decisive factors responsible for the extinc-

tion of populations. Therefore, our research and analysis on population has great

practical significance.

8. Appendix

In this section, we list some results about the stationary distribution (see [12],

page 101) which we used in the previous sections.

Let X(t) be a regular time-homogeneous Markov process in El (El denotes the

Euclidean l-space i.e., ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξl(ω)) is a vector in El) described by

SDE

dX(t) = b(X) dt+

k
∑

r=1

gr(X) dBr(t).

The diffusion matrix is

Λ(x) = (λij(x)), λij(x) =

k
∑

r=1

gir(x)g
j
r(x).
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Remark 8.1. We say that the Markov process X(t) is regular if for any (s, x) ∈
E (E = El × I and I = I∞), P

s,x{τ = ∞} = 1; here P is a probability measure and

the random variable τ is the first exit time of the sample function from every bounded

domain, or briefly the explosion time (see [12], page 75). The Markov process X(t)

is called time-homogeneous if the transition probability function P(s,X, t+ s, A) is

independent of s for 0 6 s 6 t and A ∈ B (recall that B denotes the σ-algebra of

Borel sets in El) (see [12], page 68 for details of transition probability function).

Assume a Markov semigroup (Pt)t>0 is strong Feller and irreducible, so then there

exists at most one invariant measure for it. An invariant measure µ of Pt is said to

be ergodic if

lim
T→∞

1

T

∫ T

0

Ptϕdt = ϕ̄, ϕ ∈ L2(H,µ),

where ϕ̄ is the mean of ϕ,

ϕ̄ =

∫

H

ϕ(x)µ(dx), x ∈ H,

and H is a separable Hilbert space (see [4], page 14 and [2] for more details about

the ergodic property).

Assumption B ([12]). There exists a bounded domain U ⊂ El with regular bound-

ary Γ, having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of

the diffusion matrix Λ(x) is bounded away from zero.

(B.2) If x ∈ El \ U , the mean time τ (that is Exτ) at which a path issuing from x

reaches the set U is finite, and sup
x∈K

Exτ < ∞ for every compact subsetK ⊂ El.

Lemma 8.2. If Assumption B holds, then the Markov process X(t) has a station-

ary distribution µ. Let f(·) be a function integrable with respect to the measure µ.
Then

(8.1) P

{

lim
T→∞

1

T

∫ T

0

f(X(t)) dt =

∫

El

f(x)µ(dx)

}

= 1

for all x ∈ El.

Remark 8.3. (i) Note (8.1) is called the strong law of large numbers. The proof

of Lemma 8.2 can be found in [12]. More precisely, the existence of a stationary

distribution with density can be found in Theorem 4.1, page 108. The weak conver-

gence and the ergodicity is obtained in Theorem 4.2 on page 110, and Corollary 4.3,

Corollary 4.4 on page 112.
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(ii) To verity (B.1), it is sufficient to show that F is uniformly elliptical in U ,

where Fu = b(x) ·ux+
1
2 trace(Λ(x)uxx), that is to say, there is a positive number M

such that
l

∑

i,j=1

λij(x)ξiξj > M |ξ|2, x ∈ U, ξ ∈ El

(for details we refer to [5], page 103, and Rayleigh’s principle in [21], page 349). To

verify (B.2), it suffices to prove that there exist a neighborhood U and a non-negative

C2-function V such that Λ(x) is uniformly elliptical in U and for any x ∈ El \U , LV
is negative (see [22], page 1163).

Lemma 8.4 ([12]). LetX(t) be a regular time-homogeneous Markov process in El.

If X(t) is recurrent relative to some bounded domain U , then it is recurrent relative

to any nonempty domain in El.
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