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Abstract. For a finite group G denote by N(G) the set of conjugacy class sizes of G.
In 1980s, J. G.Thompson posed the following conjecture: If L is a finite nonabelian simple
group, G is a finite group with trivial center and N(G) = N(L), then G ∼= L. We prove
this conjecture for an infinite class of simple groups. Let p be an odd prime. We show
that every finite group G with the property Z(G) = 1 and N(G) = N(Ai) is necessarily
isomorphic to Ai, where i ∈ {2p, 2p+ 1}.
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1. Introduction

Let G be a finite group. The set of conjugacy class sizes of G is denoted by N(G).

Let n be a natural number. We denote by π(n) the set of all prime divisors of n. For

a finite group G, the set π(|G|) is denoted by π(G). Let Γ(G) be a simple graph with

vertex set π(G) such that two distinct prime numbers p and q are adjacent whenever

G has an element of order pq. This graph is called the prime graph of G. The number

of connected components of Γ(G) is denoted by s(G). Also we may define another

simple graph on π(G), which is called the solvable graph of G and is denoted by

Γsol(G). In Γsol(G), two distinct prime numbers p and q are adjacent whenever G

has a solvable subgroup H such that {p, q} ⊆ π(H). In these two graphs, a subset

T of π(G) is called an independent subset if for every two elements p and q from T

there is no edge.

If p ∈ π(n), then by np we mean the p-part of n, i.e. np = pk if pk | n but

pk+1 ∤ n. Also from pα ‖ n we get that np = pα. The set of all prime numbers p with

n/2 < p 6 n is denoted by Π(n).
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A famous conjecture of J.G.Thompson about the characterization of finite non-

abelian simple groups is expressed as follows:

Thompson’s conjecture. If L is a finite nonabelian simple group, G is a finite

group with trivial center and N(G) = N(L), then L and G are isomorphic.

This conjecture, which is Problem 12.38 in the Kourovka notebook [11], was posed

in 1988. Chen in [5] proved that this conjecture is valid for simple groups G with

s(G) > 3. In [13], it is proved that Thompson’s conjecture holds for A10 and

L4(4). Also Ahanjideh in [2] and [3] proved that Thompson’s conjecture is true

for Ln(q) and Dn(q), respectively. The set of all groups G, which have the property

π(G) ⊆ {2, 3, 5, 7, 11, 13, 17}, is denoted by ζ17. In [6], it is proved that Thompson’s

conjecture is valid for those ζ17, whose prime graph is connected. Also the simple

groups An, where n = p, p+ 1, p+ 2 and p > 3 is a prime, satisfy Thompson’s con-

jecture (see [4]). Moreover, this conjecture is valid for the alternating simple group

A22 (see [14]). Also in [7] it is proved that Thompson’s conjecture is true for An,

where n > 1361 and at least one of numbers n or n− 1 are decomposed into a sum

of two primes; we use this article for proving Lemmas 3.10 and 3.11.

In this paper, we prove that this conjecture holds for the simple group A2p and

A2p+1, where p is an odd prime number. Indeed, we have the following theorem:

Main theorem. Let p be an odd prime number and i ∈ {2p, 2p + 1}. If G is

a finite group with trivial center and N(G) = N(Ai), then G ∼= Ai. In particular,

Thompson’s conjecture holds for the simple group A2p and A2p+1.

2. Preliminary results

Lemma 2.1 ([12], Lemma 3). If n > 21, then |Π(n)| > 0.366n/ ln(n). In partic-

ular, |Π(n)| > 3.

Lemma 2.2 ([1], Lemma 2.2). Let g ∈ An and suppose the cycle decomposition

of g contains exactly ci = ci(g) cycles of length i for each i ∈ {1, . . . , n} so that

n =
n∑

i=1

ici. Let z = n!
( k∏
i=1

ici
k∏

i=1

ci!
)
−1

. Then for the size of the conjugacy class gAn

of g in An we have:

(1) If for all even i, ci = 0 and for all odd i, ci ∈ {0, 1}, then |gAn | = z/2.

(2) In all other cases, |gAn | = z.

Lemma 2.3 ([13], Lemma 4). Suppose that G is a finite group with trivial center

and p is a prime from π(G) such that p2 does not divide |xG| for all x in G. Then

a Sylow p-subgroup of G is elementary abelian.
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Lemma 2.4 ([13], Lemma 5). Let K be a normal subgroup of G and G = G/K.

(1) If x̄ is the image of an element x of G in G, then |x̄G| divides |xG|.

(2) If (|x|, |K|) = 1, then CG(x̄) = CG(x)K/K.

(3) If y ∈ K, then |yK | divides |yG|.

Lemma 2.5 ([6], Lemma 1.4). Let x, y ∈ G, (|x|, |y|) = 1, and xy = yx. Then

CG(xy) = CG(x) ∩ CG(y).

Lemma 2.6 ([14], Lemma 7). Let L be a finite simple group, let G be a finite

group, and let p ∈ π(L).

(1) Then there exists an element x ∈ L such that |L|p = |xL|p.

(2) If N(G) = N(L), then |L| divides |G|.

Lemma 2.7 ([10], Lemma 2.2). Let G be a finite group and p, q ∈ π(G) such that

p 6= q. Also let |G|p = p, |G|q = q, p ∤ q − 1 and q ∤ p− 1. Then p ∼ q in Γ(G) if and

only if p ∼ q in Γsol(G).

Lemma 2.8 ([10], Theorem 2.1). Let G be a finite group and T be an independent

subset of Γsol(G) with |T | > 2. Then there exists a nonabelian simple group S such

that

S 6 G :=
G

N
6 Aut(S),

where N = OT ′(G). Also we have T ⊆ π(S) and π(G/S) ∩ T = ∅. Moreover,

CG(N) 6 N or S 6 CG(N)N/N .

Lemma 2.9 ([10], Theorem 2.4). Let n > 13 be a natural number and p be the

greatest prime number less than or equal to n. Also let G be a finite group such that

|G| | n!. If Π(n) is an independent subset of Γsol(G), then there exists a natural

number m such that

Am 6 G/N 6 Sm,

where N = OΠ(n)′(G) and p 6 m.

Lemma 2.10 ([9], Theorem 4.34). Let A act via automorphisms on an abelian

group G, and suppose that (|G|, |A|) = 1. Then G = CG(A) × [G,A].

Lemma 2.11 ([8], Lemma 5). Let g act via automorphisms on an abelian groupG,

and suppose that (|G|, |g|) = 1. Then |g| divides |[G, g]| − 1.
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Lemma 2.12 ([6], Lemma 1.6). Let G be a finite group, N E G, and C 6 G.

Then |N : N ∩ C| divides |G : C|.

3. Proof of the Main theorem

Let G be a finite group with trivial center. First, suppose that N(G) = N(A2p).

We are going to prove G ∼= A2p.

According to [6], [14], if N(G) = N(A2p), then G ∼= A2p for p 6 11. So in the

following we assume that ̺ := Π(2p) and p > 11 is a prime number. We will prove

the above assertion using the following lemmas:

Lemma 3.1. There exists g ∈ G such that the conjugacy class size of g is equal

to (2p)!/2p2 and it is a maximal element of N(G) by divisibility.

P r o o f. Since N(G) = N(A2p), for every a ∈ A2p there exists g ∈ G such that

|gG| = |aA2p |. Let a := (1 2 . . . p)(p+1 p+2 . . . 2p) be a permutation in A2p. Hence

|aA2p | = (2p)!/2p2 by Lemma 2.2. Since |aA2p | is a maximal element of N(A2p), the

proof is complete. �

Lemma 3.2. Let s ∈ ̺. Every s′-number of N(A2p) is divisible by p.

P r o o f. Let |bA2p | be an s′-number of N(A2p). Let the cyclic structure of b be

denoted by 1t12t2 . . . ltl , where 2p =
l∑

i=1

iti. Hence, we have

|bA2p | =
(2p)!

1t1 . . . ltlt1! . . . tl! d
,

where d ∈ {1, 2}. Since s does not divide |bA2p | and s ‖ (2p)!, so s ‖ 1t1 . . . ltlt1! . . . tl!.

Therefore we have the two following cases:

Case 1. Let s | 1t1 . . . ltl . So there exists a natural number m 6 l such that m = s.

On the contrary, assume that p does not divide |bA2p |. Similarly to the above

discussion, we get that p2 ‖ 1t1 . . . ltlt1! . . . tl!. We have the following cases:

⊲ Let there exist a natural number m′ 6 l such that m′ = p and tm′ = 2. It follows

that

2p =

l∑

i=1

iti > mtm +m′tm′ > s+ 2p > 3p,

which is a contradiction.
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⊲ Let there exist a natural number m′ 6 l such that tm′ > 2p. Consequently,

2p =
l∑

i=1

iti > mtm +m′tm′ > s+ 2p > 3p,

which is impossible.

⊲ Let there exist a natural number m′,m′′ 6 l such that p 6 tm′ , tm′′ < 2p. Conse-

quently,

2p =
l∑

i=1

iti > mtm +m′tm′ +m′′tm′′ > s+ p+ p > 3p,

which is impossible.

⊲ Let there exist a natural number m′,m′′ 6 l such that m′ = p and p 6 tm′′ < p2.

Hence,

2p =

l∑

i=1

iti > mtm +m′tm′ +m′′tm′′ > s+ p+ p > 3p,

which is a contradiction.

Therefore p divides |bA2p |.

Case 2. Let s | t1! . . . tl!. Therefore there exists a natural number m 6 l such that

tm > s. By the same discussion, we get that p divides |bA2p |. �

Remark 3.1. Let s ∈ ̺ and g ∈ G. There exists a ∈ A2p such that |gG| = |aA2p |.

Since |aA2p |s 6 s, s2 does not divide |gG|. Now by Lemma 2.3, we conclude that

a Sylow s-subgroup of G is elementary abelian.

Lemma 3.3. Let s ∈ ̺. A Sylow s-subgroup S of G has the order s.

P r o o f. By Lemma 2.6 we know that s divides |G|. Let |S| > s2, hence s2

divides |G|. Let g ∈ G such that |gG| = (2p)!/2p2, which is a maximal element of

N(G) by Lemma 3.1. By Remark 3.3 for every x ∈ G we know that s2 does not

divide |xG|, which implies that s divides |CG(x)| for every x ∈ G. We consider the

following two cases:

Case 1. Assume that s does not divide |g|. By the above discussion, we know

that there exists w ∈ CG(g) such that |w| = s, which implies that CG(gw) =

CG(g) ∩ CG(w). Then |gG| divides |(gw)G| and |wG| divides |(gw)G|. Since |gG|

is maximal, |gG| = |(gw)G| and so |wG| divides |gG|. On the other hand, according

to Remark 3.3, S is abelian, so CG(w) includes S up to conjugacy. Then s does

not divide |wG| which implies that p divides |wG| by Lemma 3.2. Consequently,

p divides |gG|, which is impossible.
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Case 2. Suppose that s divides |g|. Let t ∈ N such that |g| = st. Since S is

elementary abelian, the numbers s and t are coprime. Put u = gs and v = gt. Then

g = uv and CG(g) = CG(u)∩CG(v). Therefore |vG| | |gG|. On the other hand, since

|v| = s, |vG| is an s′-number. Therefore p divides |vG| by Lemma 3.2, which implies

that p divides |gG|, which is a contradiction. �

Lemma 3.4. Let s, t ∈ ̺ and s < t. There is no element of order st in G. In

particular, ̺ is an independent set in Γ(G).

P r o o f. On the contrary, let g ∈ G such that |g| = st. Put u = gs and v = gt.

Then g = uv and CG(g) = CG(u) ∩ CG(v). Then st divides |CG(g)|. On the other

hand, by Lemma 3.4 |G|s = s and |G|t = t, hence st does not divide |gG|. Consider

that b ∈ A2p such that |gG| = |bA2p |. Suppose that the cyclic structure of b is denoted

by 1t12t2 . . . ltl , where 2p =
l∑

i=1

iti. Hence |gG| = (2p)!/(1t1 . . . ltlt1! . . . tl! d), where

d ∈ {1, 2} and so st divides 1t1 . . . ltlt1! . . . tl!. We consider the following cases:

Case 1. Assume that there exist m,m′ 6 l such that m = s and m′ = t. We have

2p =
l∑

i=1

iti > mtm +m′tm′ > s+ t > 2p,

which is a contradiction.

Case 2. Suppose that there exist m,m′ 6 l such that m = t and s 6 tm′ < t.

Then

2p =

l∑

i=1

iti > mtm +m′tm′ > s+ t > 2p,

which is impossible.

Case 3. Let m 6 l such that tm > t. Let m > 2. Therefore

2p =

l∑

i=1

iti > mtm > 2t > 2p,

which is a contradiction.

Therefore m = 1 and so t1 > t. Recall that

|gG| =
(2p)!

1t1 . . . ltlt1! . . . tl! d
,

where d ∈ {1, 2}, p < t 6 t1 < 2p and for all i > 2 we have ti < p. Consequently,

|gG|p = p.
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So we have

p = |gG|p =
|G|p

|CG(g)|p
.

Then we can consider Sylow p-subgroup P of G such that M = P ∩CG(g) has index

p in P . It follows thatM is normal in P and so there exists a nontrivial element z in

M ∩ Z(P ). Since z ∈ Z(P ), p does not divide |zG|. On the other hand, z ∈ CG(g),

so |g| divides |CG(z)|, hence st divides |CG(z)|. Consequently, st does not divide

|zG| and so p divides |zG| by Lemma 3.2, which is a contradiction. Therefore there

is no element of order st in G. �

Lemma 3.5. There exists a nonabelian simple group S such that

S 6 G := G/N 6 Aut(S),

where N is a normal subgroup of G such that π(N) ∩ ̺ = ∅. Moreover, ̺ ⊆ π(S).

P r o o f. By Lemmas 2.7 and 3.5, we know that ̺ is an independent set in

Γsol(G). On the other hand, since p > 11, |̺| > 2. Therefore the result follows by

Lemma 3.5 and Theorem 2.8. �

In the following, we consider S and N as in the last lemma. Also let G = G/N

and x̄ be the image of an element x of G in S.

Lemma 3.6. The order of finite nonabelian simple group S divides (2p)!.

P r o o f. Since S is simple, it is normal in G. Then |x̄S | divides |x̄G| by

Lemma 2.4. Also we know that |x̄G| divides |xG| by Lemma 2.4. Hence, for ev-

ery x in G, |x̄S | divides |xG|. Since N(G) = N(A2p), for every x in G, |x̄S | divides

(2p)!. On the other hand, by Lemma 2.6 for every r ∈ π(S) there exists y in S such

that |S|r = |yS |r. Consequently, for every r ∈ π(S), |S|r divides ((2p)!)r , which is

the desired conclusion and now, the result follows. �

Lemma 3.7. The prime number p does not divide |N |.

P r o o f. On the contrary, suppose that p divides |N |. Put N0 = Op′(N). We

know thatN0 is a normal subgroup ofG and we consider G̃ = G/N0. In the following,

if A 6 G, then Ã is the image of A in G̃. Let T̃ = Op(Ñ). Then T̃ is a nontrivial

p-group and so Z(T̃ ) 6= 1. Since T̃ is characteristic in Ñ , T̃ is normal in G̃ and hence

Z(T̃ ) is normal in G̃. Let y ∈ G be of order l, where l is the greatest prime number

in ̺. Hence, the order of ỹ, which is the image of y in G̃, is equal to l. Since Z(T̃ )

is abelian, Z(T̃ ) = C
Z(T̃ )(ỹ)× [Z(T̃ ), ỹ] by Lemma 2.10. Consequently,

|[Z(T̃ ), ỹ]| =
|Z(T̃ )|

|Z(T̃ ) ∩ C
G̃
(ỹ)|

.
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Now we have that |[Z(T̃ ), ỹ]| divides |G̃ : C
G̃
(ỹ)| by Lemma 2.12. Therefore

|[Z(T̃ ), ỹ]| divides |yG| by Lemma 2.4. On the other hand, since |[Z(T̃ ), ỹ]| divides

|Z(T̃ )|, |[Z(T̃ ), ỹ]| = 1, p or p2. Furthermore, by Lemma 2.11, |ỹ| | |[Z(T̃ ), ỹ]| − 1,

which implies that [Z(T̃ ), ỹ] = 1. It follows that Z(T̃ ) = C
Z(T̃ )(ỹ). Let P̃ be

a Sylow p-subgroup of G̃ such that Z(T̃ ) 6 P̃ . Since Z(T̃ ) E G̃, Z(T̃ ) ∩ Z(P̃ ) 6= 1.

Let z̃ ∈ Z(T̃ ) ∩ Z(P̃ ). Since z̃ ∈ Z(P̃ ), |z̃G̃| is a p′-number. Moreover, we have

z̃ ∈ Z(T̃ ) = C
Z(T̃ )(ỹ), then ỹ ∈ C

G̃
(z̃). Consequently, |z̃G̃| is an l′-number. Let

z ∈ G such that z̃ is the image of z in G̃. We can consider p ∤ |z|, hence (|z|, |N0|) = 1,

so C
G̃
(z̃) = CG(z)N0/N0 by Lemma 2.4, which implies that

|zG| = |z̃G̃| ×
|N0|

|N0 ∩ CG(z)|
.

Therefore |zG| is an l′ and p′-number, which is a contradiction by Lemma 3.2. Con-

sequently, p does not divide |N |. �

Lemma 3.8. The simple group S is isomorphic to A2p.

P r o o f. By Lemmas 3.6, 3.7 and Theorem 2.9, we have S = Am, where l 6 m

and l is the greatest prime number in ̺. Therefore Am 6 G 6 Sm. So it is sufficient

to show m = 2p. By Lemma 3.8, p does not divide |N |, so p2 divides |Am|, which

implies that m > 2p. On the other hand, we know that |Am| divides (2p)! by

Lemma 3.7, so m 6 2p. Consequently, m = 2p as we desire. �

Lemma 3.9. G/N is isomorphic with A2p.

P r o o f. We have A2p 6 G = G/N 6 S2p by Lemma 3.9. On the contrary, let

G ∼= S2p. In this case, N(G) = N(S2p). Let a = (1 2 . . . p)(p+1 p+2 . . . 2p) ∈ A2p.

So α := |aA2p | = (2p)!/2p2 is a maximal number of N(A2p). On the other hand, we

have b = (1 2 . . . 2p) ∈ S2p and |bS2p | = (2p)!/2p = pα. By Lemma 2.4, for every

c ∈ N(S2p) there exists d ∈ N(A2p) such that c divides d. It follows that there exists

β ∈ N(A2p) such that pα divides β, which is a contradiction, since α is maximal in

N(A2p). �

Lemma 3.10. N is trivial.

P r o o f. We know that p ∈ π(G) \ π(N) by Lemmas 2.6 and 3.8. Let g be

the image of g in G. Consider that |g| = p, then |g| = p. We know that there

exists an isomorphism from G to A2p, say ϕ, by Lemma 3.10. Let a = (1 2 . . . p)

(p+ 1 p+ 2 . . . 2p) and ϕ(g) = a. We have

α := |gG| = |aA2p| = (2p)!/2p2,
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and α is the maximal number in N(A2p) by Lemma 3.1, then α is maximal number

in N(G). In other words, |gG| is the maximal number in N(G). On the other hand,

|gG| divides |gG| by Lemma 2.4, so |gG| = |gG|. Hence, |gG| is the maximal number

in N(G). Since (|N |, |g|) = 1, N 6 CG(g) by Lemma 2.4. Let n be an arbitrary

element in N , hence (|n|, |g|) = 1, then CG(ng) = CG(n)∩CG(g), and so |gG| divides

|(ng)G|. Since |gG| is maximal, |gG| = |(ng)G|. Consequently, CG(g) 6 CG(n), which

implies that n ∈ Z(CG(g)). Therefore N 6 Z(CG(g)). On the other hand, since G

is simple, G = 〈gG〉. Consequently, G = 〈gG〉N , which implies that N 6 Z(G).

Therefore N = 1 as we desire. �

The proof of the assertion is an immediate consequence of above lemmas.

Similarly, if G is a finite group with trivial center such that N(G) = N(A2p+1),

then G ∼= A2p+1.
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