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ON THE HOMOTOPY TRANSFER OF A,, STRUCTURES

JAKUB KOPRIVA
Dedicated to the memory of Martin Doubek

ABSTRACT. The present article is devoted to the study of transfers for Ao
structures, their maps and homotopies, as developed in [7]. In particular, we
supply the proofs of claims formulated therein and provide their extension
by comparing them with the former approach based on the homological
perturbation lemma.

1. INTRODUCTION

The notion of strongly homotopy associative or A, algebras is a generalization
of the concept of differential graded algebras. These algebras were introduced by
J. Stasheff with the aim of a characterization of (de)looping and bar construction
in the category of topological spaces. Since then they found many applications
ranging from algebraic topology and operads to quantum theories in theoretical
physics.

We consider the following situation: let (V,dy) and (W, 0w ) be two chain
complexes of modules, and f: (V,0yv) — (W,0w) and g: (W, 0w ) — (V,0v) two
mappings of chain complexes such that gf is homotopic to the identity map on V'
and (V, 0y ) is equipped with A, algebra structure. Then a natural question arises
— can Ay structure be transferred to (W, dy ) and secondly, what is its explicit
form in terms of A, algebra structure on (V,9dy) and and in which sense is it
unique?

While the existence of a transfer follows from general model structure considera-
tions, an unconditional and elaborate answer producing explicit formulas for the
transferred objects was formulated in [7]. The present article contributes to the
problem of transfer of A, structures. Its modest aim is to supply detailed proofs of
many claims omitted in the original article [7], thereby facilitating complete subtle
proofs to a reader interested in this topic. This exposition also extends the results
of the aforementioned article in several ways, and sheds a light on its relationship
with the homological perturbation lemma.
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The content of our article goes as follows. In the Section [2] we recall a well-known
correspondence between A, algebras and codifferentials on reduced tensor coalge-
bras. This allows us to simplify the proofs in Section [3| considerably. The Section
is devoted to the problem of homotopy transfer of A, algebras. We first derive
the formulas introduced in [7], and then give their self-contained proofs. Here we
achieve a substantial simplification of all proofs due to the reduction of sign factors.
We also comment on another remark in [7], namely, the relationship between the
homological perturbation lemma and homotopy transfer of A, algebras. We prove
that on certain assumptions the explicit formulas in [7] do coincide with those
coming from the homological perturbation lemma.

We shall work in the category of Z-graded modules over an arbitrary commutative
unital ring R, and their graded R-homomorphisms.

We first briefly recall the concepts of A, algebra, Ao, morphism of A, algebras

and A, homotopy of A, morphisms, cf. [7], [4].
Definition 1.1. Let (V,9y) be a chain complex of modules indexed by Z, i.e.
(V,0v) is a Z-graded modules V = @:° ___V; with dy(V;) C V;_1 and 9y 0y = 0.
Let pin,: V™ — V be a collection of linear mappings of degree n — 2 (n > 2),
satisfying

n

Ovpin — > (1) (1P @0y @ 19"7)

i=1
(1) = (=) (197 @ pe @19
A(n)
foralln > 2 and A(n) = {k,{ e N | k+{=n+ 1,k > 2,1 <4i < k}. The
structure (V, 0y, po, ps, ... ) is called A, algebra.

Throughout the article, we use the Koszul sign convention. This means that for
U,V aW graded modules and f: U -V, g: U —=V, h:V —->Wandi:V —-W
linear maps of degrees |f/|, |g|, |h| and |é|, respectively, holds

(h@i)(feg) = (D) hfoig.

Similarly for uq, us € U of degree |u;| and |usg|, respectively, holds

(f @ g)(ur ®uz) = (=1)" 119/ f(uy) @ g(us)
Definition 1.2. Let (V,dv, us,...) and (W,0w,va,...) be Ay algebras. Then
the set {f,: VO™ — W, |fn| = n — 1},,>1 is called Ao, morphism if

Ow fr+ Y (=1)"T0 Ty (fr @ © fr,)

n

= fipn = Y (D) f (17 @Oy @19"7)

i=1

(2) _ Z (_1)i(é+1)+nfk (ﬂgifl ® phe ® ﬂgkﬂ‘)
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holds for all n > 1 with B(n) ={k,r1,...,7rc EN|k>2,r1,...,1. > 1,r1 +--- +
T =n}and 9(r1,...,18) =30 o5 e Tilr + 1)

Morphisms of A, algebras can be composed: for (U, dy, 02,...), (V,0v, ua,...)
and (W, 0w, va,...) A algebras, {f,: U®" — V},>1 and {g,: V®" — W},>;
Ao morphisms, their composition {(gf),: U®" — W },>1 is defined as

(3) (gf> - glfn + Z 19(r1, )gk(fm ®®f7'k)

B(n)

Definition 1.3. Let {f,: V" — W},>1 and {g,,: V" — W},,>1 be morphisms
between A, algebras (V, 0y, ua,...) and (W, 0w, va,...). The set of linear map-
pings {h,: V" — W, |h,| = n},>1 is an Ao, homotopy between A,, morphisms
{fn: V" - W},>1 and {g,, : V™ — W},,>1 provided
fro=gn =hipn =Y _(=1)"hn (1 @ Oy @19"7)
i=1
— Z DDy (197 @ e @ 19570 + dwh,

+Z D (DT

B(n) 1<i<k
(4) (fﬁ "'®fﬁ—1 ®h7’7‘, ®g7’7¢+1 ®"‘®gm)a
is true for all n > 1 with B(n) = {k,r1,...,7. EN |k >2,r,...,rp > 1,11+ -+
ry =n}.

2. REDUCED TENSOR COALGEBRAS

In the present section we introduce a bijective correspondence between A,
algebras and codifferentials on reduced tensor coalgebras, cf. [4]. We retain the
notation V = EBF?OO V; for Z-graded modules as well as

(A) An)={kleN|k+l=n+1,kl>21<i<k},
(B) B(n)={k,r1,...,mk EN|k>2r,...,rx > 1,71+ -+ 1rp =n}
for n € N, and A(1) = A(2) = B(1) = 0. We use a few natural variations on this
notation, e.g. A'(n) ={k", 0’ e N | K +¢ =n+ 1,k >21<i <k}
1. Codiferentials on tensor coalgebras.

Definition 2.1. Let TV = @7, V®", where the elements in V®' have degree
(or homogeneity) i, and let the mapping C: TV — TV ® TV be defined in such a
way that C: v+ 0 for v € VO =V and

n—1

(5) C:o1®- Qua Y (® - 0v) @ (Vg1 © - Q)

i=1
for n > 2 and vy,...,v, € V. The pair (TV,C) is called the reduced tensor
coalgebra.
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Definition 2.2. A linear mapping §: TV — TV of degree —1 is called coderivation
if Cod = (0®14+1®J)oC. Moreover, if § satisfies dod = 0, it is called codifferential.

Remark 2.3. We notice that C is coassociative, (1 ® C')oC = (C ® 1) o C. For
all v € TV holds C(v) = 0 if and only if v is of homogeneity 1. For all maps
@: VO - TW, n > 1, holds Cgyy, 0 ¢ = 0 if and only if ¢ (V®™) C W. For all
V=01®..Q0u, €ETVandw=w ®... 0wy, € TV, we have

n—1 -1
Clo@w) =Y (1) ® (Vir1n ©w) + )+ Z v@wi) @ (Wit1m)
i=1 i=1

with v;j = v, ®...®v;, 1 < j, 1,5 € {1,...,n}, and analogously for w; ;. This
little calculation expresses a fact that T'V is a bialgebra which is, as a conilpotent
coalgebra, cogenerated by V.

Lemma 2.4. Let E : TV — TW be a linear mapping for which there exist
{€n : VO = W},>1 with Elyen = e, + 2 B(n) €r1 @ .. @€y, and B(n) given in
(B). Then

n—1

(6) Cow © Elven = Y (Elve:) @ (Elyen-i).

i=1

Proof. Obviously, we can write E|yen = €, + > 1 e; ® E|yen—i. The proof is by
induction on n: the claim holds for n = 1 and we assume it is true foll all natural
numbers less than n. Then

n—1
CTW o E|V®n = CTW o (en + Z e; X E‘V®nﬂ‘)

= Gy, <261®E|V®n 7,)

—

1—1

1
L

() ® (Elyoni) + Y

1=

n

(]

(e; ® Elyei) @ (Elyen—i—j)

Il
i

j=1

-
| <
=l

n—1 n—14~4

(ei) ® (Elyen—i) + (ej ® Elyee-i) ® (Elyen-e)

i=1 =23
n—1 —1

= () ® (Blvon1) + Y (ee+d_e;® Elvors ) @ (Elyent) ,

2 j=

-1

~
[
—

and the proof follows by induction hypothesis from F|yec = e; + ZZ 16 ®
Elyees. O

Theorem 2.5. Let E: TV — TW and G: TV — TW be linear mappings for
which there exist linear mappings {e, : V™" — W}us1, {gn : V" — W},>1 such
that Elyen = ey + 3 p(n) €r @ @ er,, and Glyen = gn + 3 p(n) Iri @ - © gr,



ON THE HOMOTOPY TRANSFER OF A., STRUCTURES 271

with B(n) given in , Given a linear mapping F : TV — TW, the following
conditions are equivalent:

(1) Cop o F=(EQF+F®G)oCqy,

(2) there exist linear mappings { fn : V™ — W},>1 such that

Flyen=fa+D> D en® Qe @ fr, @0, ® 0.
B(n) 1<i<k

PI‘OOf (2) = (1): We have F'lyen = fn+z E|V®1®fn z+z7: 11 fi®Glyen-i+
Yo Z" T Elyes @ fi @G|y en—i; for all n 2 1. We now verify (1) by expanding
both bldeb
n—1 ) )
(EQF+F®G)oCqylyen =(E@F+F®G)o Y (19" ® (1Y)
1

%

ij [(Elyon-s) @ (Flyer) + (Flyens) ® (Glyes) ]

and by Lemma [2.4] we get

n—1
o (2 Blver ® fui)
i=1

= (Elyeon—i) @ (fi) + (Elyon-i-) @ (Elve; ® fi) ,
1 7

|
—
3
|
—
3
|
—
|
<

)

Il
-
<.
Il
—

n—1—1

n—1
= Z (fz) ® (G‘V®”*i) + (.fz & G|v®1) (G|v®n—i—j) s
i=1

1 j=1

3
|
i

%

n—1ln—i—1

Cswr (i i Elye; ® i @ Glyen—i—j

o

N—

=1 j=1
n—1ln—i—1 n—1ln—i—1
=3 Y (Blveni-)@ (£ @GClves) + > > (Elves ® fi) @ (Glyen-i-s)
=1 j=1 =1 j=1

+ > (Elven-i-i-x) ® (Elye; ® f; ® Glyer)

33 Y (Blves @ fi ® Glyer) @ (Glyen—i-i-x) -
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The summation in the variables ¢ + j and ¢ + j + k, respectively, yields
n—1
o (2 Elve: ® fui)
i=1

n—1 n—14£4—1

= Z (Elven-) @ (f) + Y (Blyen-e) ® (Elyecs ® f;) ,

Il
—
AN
I
-

I
s}
<
®
3
L
&
S
&
Q
<
?
|

+ (Elye-i ® f;) @ (Glyen-t)
+Z (Elven-) ® (Elyee: ® fi ® Glyei-i)

+ (Elvei-i @ fi @ Glye-i) ® (Glyen-t) .

Taking all terms of the form (E|yen-i) @ x and x ® (G|yen-:) results in
n—1
Cow o Flyen =Y [(Blven-:) @ (Flye:) + (Flyeni) ® (Glye:) ]
i=1
and the implication is proved. Notice that we also proved, on the assumption
F|V®’" = fn+ZB(m) Elgigk €ry - '®6m71 ®f7'i ®gT'i+1 - '®97'k forn >m > 17
that

n n—1ln—i—1

— n—1
CTW o ( E|V®L ® fn i + Zfl ®G‘V®n i+ Z Z E|v®3 & fz & G|V®n i J)
=1 1=1 =1 j=1
n—1
= 3 [(Blven) @ (Flye:) + (Flyon-) @ (Glyer) ] -

i=1
(1) = (2): The proof is again by induction. For all v € V' holds Czy;, o F'(v) = 0,
which gives F(V) C W and so there exists a linear mapping f1: V — W such that
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F|y = f1. Assume now the claim of the implication is true for all natural numbers
less than n, i.e. F‘V‘@m = fm+ZB(m) Zlgigk er, @ Qe ®f7‘i ®gri+1®' ©Qry
for n > m > 1. The proof of the previous implication claims for F|yem =
fm + 2By im0 €1 @ @ ery @ fr, @ Griyy © - @ gy, With n>m > 1, that

n—1

Cw © Flyen = Z [(E|V®nﬂ') ® (Flye:) + (Flyen-i) ® (GlV@i)]
i=1

n—1ln—i—1

Couy (ZEW@@fu ﬁZﬁ@G\V@n AD D Elves ® fi @ Glyen-ii).

=1 j=1

Because Cyy 18 linear, F|yen differs from S Elvei®fasitSors! fioGlyen—it
> Zn T Elyes @ fi® G|y@n-i-; by a linear map f,,: V®" — W. This means
F |V®n is of the required form and the proof is complete. (]

Theorem 2.6. A linear mapping 6: TV — TV of degree —1 fulfills C 0§ =
(0 @1y + 1y ®§) o C if and only if there exist a set of maps {0,: VO™ — V},>1
of degree —1 such that 8|y = &, and for n > 2 holds §|yen = 8, + >0 1971 ®
IR A > Am) 1971 @ 6, @ 1977, where A(n) is given by (A).

Proof. In Theorem 2.5 we take E = G = 1y, where e; = g; = 1y and e, = g, =0
for n > 2. O

Lemma 2.7. Let§: TV — TV bea linear map of degree —1 such that Oly =01 and
forn > 2 holds é|yen = 6n+> 1y ]l%?“l R0 ]l{‘?"*’ + ZA(n) Il%?%1 R0 R ]l%kﬂ.
Then the following conditions are equivalent:

(1) 6o0d =0,

(2) 61061 =0 and for all n > 2 we have

n

(1) 610n)+) 619 @6 219" )+ 61 @ s 019 ) =0,
i=1 A(n)

where A(n) is given by (A).

Proof. (1) = (2): The proof goes by induction. By assumption we have for v € V'
§(61(v)) =0, s0 61: V — V implies §;(d1(v)) = 0. Now assume ([7) is true for all
natural numbers less than n. Then

n
52lv®n = ((Sn) + Z 5|V®n (ﬂ.gi_l ® 01 ® ]l%?n_i)
=1
+ Z 6“/@1@ (ﬂ.gi71 ® b ® ]].{G;kii) .
A(n)



274 J. KOPRIVA

Schematically, this means

n
Plyen = 01(8n) +D_0n (17T @ b @ 15" )
i=1
+ 3 0AY T 1P+ 19 @ Gran (15 ® 6. @ 19 @ 1§
A(n)
+3 106015 06,015 - > 1906015 @ 6 15",
where the last row is a consequence of the Koszul sign convention:

(19°®6, ® 19T1F) (192 6, ®18°) = 19" ® 0, ® 19° ® 64 ® 15,

(1§a+1+c®6d ® ]]‘{G;e) (1§a ®5b ®1§C+d+e) _ (_1)|6b||6d|1§a® §b®1§6®6d®1§6

with |0,| = —1 for all n € N. The term > 19" ® dpyar1 (17" ® 6. ®194) @ 15°
can be written as
19°® Oprar1 (1506, 0197) @ 19° = (19 @0p+ar1®19°) (15 @6, 0157¢) .

We have a + b+ ¢+ d + e = n, choose arbitrary a, e > 0, 1 < a+ e <n and sum
over all b, ¢, d such that 0 < b,d <n—a—eand 1 <c¢ <n—a— e such that
bt+c+d=n—e—a:

’
n

S Gprart (180 © 6, @ 189) = 51(00) + 80 (19! @ 8y @ 187 )
b,c,d im1
+ ) 6y e 01,
A(n’)
where n’ = n — a — e. By induction hypothesis, the last display is equal to 0, and
we have

S5 @ an (106 01§01 =3 15" 0 (Y dpan (1 @ 6. 0 157) )
a,e b,c,d
®1P°=> 19"® 0 ®1§° =0.
a,e

Consequently, is true for n and
0100) + > 6 (AT @O @17 ) + > (1Y @0 @17 ) = 8fyen = 0.
i=1 A(n)

(2) = (1): The second implication can be easily deduced from the first one. O

2.2. Morphisms and homotopies.

Definition 2.8. Let ¥ be a codifferential on (TV,C) and 6" be a codifferential
on (TW,C). A linear mapping F': (TV, C, 5V) — (TVV, C, 6W) of degree 0 is called
morphism provided Cgy, 0 F = (F @ F) o C,, and 6" o F = F o4



ON THE HOMOTOPY TRANSFER OF A., STRUCTURES 275

Lemma 2.9. Let F': (TV, 5V) — (TVV, 5W) be a linear map of degree 0. Then

the following claims are equivalent:
(1) Gy o F = (FQF)oCgpy,
(2) there is a set of linear mappings { fn : V™ — W},>1 of degree 0 such that

Flven = fo+ X pm) fri ® - @ fr,, with B(n) given in [B).
Proof. (2) = (1): A consequence of Lemma

(1) = (2) The proof goes by induction. For v € V' we have C'(v) = 0, which implies
0=(F®F)oCg, =Cgy 0 Fand so F(v) € W.
Assuming the claim is true for all natural numbers less than n,
n—1 n—1
(F®F)oClyen =(F®F)o Y (1%) @ (1%"7") =Y (Flye:) @ (Flyen—:)
i=1 i=1
and by induction hypothesis Flyem = fin +ZB(m) fri®- - fr foralln >m > 1.

Lemma [2.4] gives
n—1 n—1
> (Flve:) @ (Flyen-s) = Cgy o (Y i ® Flyen-)
i=1 1=1

and because Cry;, is linear, F|yen differs from Z?;ll fi ® Flyen—i by a linear map
fn: VO — W. Then F|yen is of the required form and the proof is complete. [
Lemma 2.10. Let F : (TV, 5V) — (TW, 5W) be a linear map of degree 0 such
that Flyen = fn + ZB(n) i ® .. ® frp, with all {fn: VO™ — W},>1 linear of
degree 0. Then the following are equivalent:

(1) WoF=Fod",

(2) for allmn > 1 holds

N )+ Y 0 (fr @@ fr) = f1 ()

B(n)
® FL LAY e P ) £ 30 AP e 9 1Pt
=t A(n)

Proof. (1) = (2): The proof goes by induction. The restriction to V, 6" o F|, =
F o6V |y, corresponds to 81" o fi = f1 0§} . We now assume applies to all
natural numbers less than n. We expand both sides of ,

5W () F‘V®n

:5¥V(fn)+z Zfr1®"'®fm®5l‘:v (fra+1®"'®fra+b)®fra+b+1®"'®fm’

B(n) a,b

F05V|V®n
- fl 61 + Z th '®fn‘71 ®fn‘ <1§j®62/®1gri_j_l)®fTi+1 - '®ka

B(n) j,t
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and compare the terms of same homogeneities. We fix j > 1 and ry,...,7; > 1,
r1+---+7; <nand 0 <m < j, and focus on terms of the form f,, x--- ®
frios @%@ fr, ® -+ ® fr,, where * is an expression of the form 6} (f, ® -+ ® f.)
or f, (19" @6Y ®1y%).

Terms on the right hand side of the form f,., ® -+ - ® f,,_, @6V (fi @ -+ @ fo) ®
fri ® -+ ® f,, correspond to

Jro @@ frn @ () + 3 0 (fy @@ fy) ) @ frs @@ oy
B(n')

while the terms of the form fr, @+ ® fr,_, ® fu (15" ®6Y @ 1Y) ® fr, @ -+ ® fr,
correspond to

fro @@ foa(f (@) + Y fr P o) 1§ )
i=1
i Z fa (]l%i—l ® 5}/ ® ﬂ%k—i)) R ®f sy @ ® fr,
A(n’)
with n’ =n —ry +--- 4+ rj. Because n’ < n, they fulfill the equality and hence

are equal. Subtracting from both sides all elements of homogeneity greater than 1,
we arrive at

N () + D (fry @ ® fr,)

B(n)

= A )+ AT e 01 + 3 A1 @8 o).
i=1 e

However, this equality is true by for n.

(2) = (1): This implication can be again reduced to the previous one. O

Definition 2.11. Let §¥ be a codifferential on (TV,C) and §" be a codiffe-
rential on (TW,C). Let F: (TV, C, 5V) — (TVV, C, 5W) and G: (TV, C, 5V) —
(TVV, C, §W) be morphisms. F' and G are homotopy equivalent provided there exist
linear maps H: TV — T'W of degree 1 such that Gz, o H = (F®@H+H®G)o
Czy and F' — G = HSY + 6" H. The map H is a homotopy between F a G.

Remark 2.12. Theorem implies that H: TV — TW of degree 1 fulfills
CzyoH = (F ® H 4+ H ® G)oCx,, if and only if there is a set of maps {h,,: V& —
Whi>1 of degree 1 such that Hl|yen = hn + 3 g 0 fri @ @ froy @ hyy ®
9rita ® "'®grk'

Theorem 2.13. We retain the assumptions of Definition |2.11], and in addition

assume the existence of the set of linear maps {e,: V™ — W}, >1, {gn: V" —
Wha>1 of even degree d such that Elyen = en+3 g, €r @ ®er, and Glyon =
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Gn + ZB(n) Gr, @ @G, Let F: TV — TW be a linear mapping for which there
exists a set of linear maps {fn: VO™ — W}h,>1 of odd degree d+ 1 fulfilling

Flyon = fn + Z er, @ ®ep,_, @ fr, D Gri @ @ Gry, -
B(n),r;>0

Then the following assertions are equivalent:
(1) E-G=F§" +6"F,
(2) en—gn = H1(6)+ X1 fn(1P T @0 Q1Y)+ X4 S0P 06 ®
195 461V (fa) + Y B0 OF (€r, @ @ er @ fr, @ gy, @~ Dgr,)
for allm > 1.

Proof. The proof can be done along the same lines as the proofs of Lemma
and Lemma 2.101 O

2.3. Codifferentials and A, algebras.

Definition 2.14. For V graded we define sV in such a way that (sV), = V;_;.
The graded modules V' and sV are canonically isomorphic: s: V' — sV is a linear
map of degree 1 called suspension, w: sV — V is a linear map of degree —1 called
desuspension.

n(n—1)

Remark 2.15. We have s®" @ w®" = (—1)~ = by the Koszul sign convention.

Theorem 2.16. The following claims are equivalent:
(1) {pn: VO = Vi |un| =n —2},>1 is A structure on V,

(2) The linear maps 6y, =so tnow®" are of degree —1, and are the components
of a codifferential on T'sV in the sense of Theorem .

Proof. (2) = (1): 6, = s o u, ow®" are the components of a codifferential, and so
we have for all n > 1

n
51000) + > 0 (1P @0 @1P" ) + Y 6 (1P @ @1 ) = 0.
i=1 A(n)
This can be rewritten, by Koszul sign convention, as

Rn

51(6) = 50 111 0w 0 5.0 fin 0 W = 50 i1 (i) 0 W™,

Z On (]l%?i*1 ® 61 ® ]l%"*i) = Z 50 fiy, 0 W™ (ﬂ§i71 ®sopow® Il%nﬂ.)
i=1 i=1

()" sopn (W @ ow @WT)

-

«
Il
-

(_1)n—’i(_1)i—18 O/j/n (]lg’b—l ® M] ® ]]_%71—7,) Ow®n7

s
Il
N

M-
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Z Ok (]l@i_1 ® 0 ® ]1%k_i) = Z 50 g 0w (]l@i_1 ®sopow® ® ]l%k_i)
A(n) A(n)

S s e o 5
A(n)

— Z (_1)k—i(_1)2(i—1)8 o (ﬂ.gi_l ® pe ® 1%k—i) ow®n .
A(n)

The mappings s and w are linear, hence

80(/“ fin +Z ZAYT @ @1
i Z WD) +n=1 19 @@ ]l%e;kfi)) 0w® — 0.
A(n)

(1) = (2): This can be easily reduced to the proof of the previous implication. [

Theorem 2.17. The following claims are equivalent:
(1) {pn: VO = W;|on| =n — 1} ,>1 is Ase morphism from (V,p) to (W,v),

(2) the mappings
fo = s 0 P 0w
are of degree 0, and are the components of Ao morphism from (TsV,8V)
to (TsW,8W) in the sense of Lemma . The codifferentials are given by

Ao structures on' V- and W, respectively, via Theorem [2.16,
The following claims are equivalent:

(1) {hn: VO — W; |hy| = n}ln>1 is Aso homotopy between Ao, morphisms ¢
with components {¢,: VE™ — W;|on| = n—1},>1 and ¥ with components
{thp: VO — Wi |hn| = n — 1},>1, respectively, from (V,p) to (W,v),

(2)

hy = sw ohnow{e}”

are of degree 1, and are the components of A homotopy between morphisms

F and G from (TsV,6") to (TsW, "), where F corresponds to ¢ and G

corresponds to ¥ in the sense of the first equivalence in the theorem. The

codifferentials are given by Ao, structures on 'V and W, respectively, as in

Theorem [2.16

Proof. The proof goes along the same lines as in Theorem [2.16 (]

3. HOMOTOPY TRANSFER OF Ao, ALGEBRAS

The starting point for the present section are the chain complexes (V, dy) and
W, 0w), f:V — W, g: W — V their morphisms such that ¢gf is homotopy
equivalent to 1y by a homotopy h. Let (V,dy) be equipped with A, algebra
structure, which means that there is a set of multilinear maps p = (u2, us,...)
satisfying the relations . We would like to induce Ao, structure (W, Oy, vo, vs, .. .)
on (W,0w) by transferring (V, Oy, pa, ps, . .. ), as well as the morphisms of A,
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algebras l‘/) = (9#/)2, V3, .. ) from (VV, 8w,l/) to (Vva aV,[.L) and p = (fa P2, P35 .- )
acting in the opposite direction such that their composition ¥ is A, homotopy
equivalent with the identity map via H = (h, Ho, Hs, ... ).

The strategy to solve this problem, cf. [7], suggests to construct the set of
maps {p,: V" — V},>2 of degree n — 2 called p-kernels, and the set of maps
{gn: V" — V},>1 of degree n — 1 called g-kernels in such a way that vy, @, ¥y,
and H, defined by

(9) Vn::fopnog®n7 @n::foqnv wn::hopnog(g", Hn:hOQH7
fulfill the transfer problem of A, algebra as discussed in the previous paragraph.

We shall first introduce the p-kernels and based on them we introduce the
g-kernels later on. Apart from a (B)), we shall rely on the notation (cf., [7])

(C) C(”) :{kvzvrl,;TZGN‘ZSkSna]-SZSkaTh77'221,
ri+-+r+k—i=n},

for n € N, and

(9) Dur,..ue) = Y wiuy+1),

1<i<j<k

for arbitrary uq,...,ur, k € N.

3.1. p-kernels.

Lemma 3.1. The p-kernels together with Ow constitute an Ay structure on
(W, 0w) via @D if and only if for all n > 2 holds

n

Fo(ovpn =D (-1 pa@P* 0y 17"

u=1
- Z (_1)i(£+1)+npk(1§i71 ®@gfope® 11@’“)) 0g® =0.
A(n)

Proof. (W,0w,vs,...) is an A algebra if we have for all n > 1

n

Owvm — > (—1)"vy (A3 @ Ow @ 177 ")

u=1
_ Z (_1)i(€+1)+nl/k(]l%/ifl QU ® ]l%krfi) —-0.
(n)
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This is true for n = 1, because (W, dw) is the chain complex (f o dy = dw o f and
analogously for g.) Now expand v, following @D:

Ow v, _Z(_l)nyn(]l%ufl RO ® :ﬂ-%niu) _Z (_1)i(€+1)+nyk(1%71®ye® 1%]671‘)
u=l A(n)

n

= Ow(fopnog®) =Y (=1)"(fopnog®)AH " ©dw @17 ™)

u=1

= (DT (Fopo g®F) (15 @ (foprog®) @ 1R,
A(n)
Because both f and g are linear maps of degree 0, this equals to

n

fo(dvop,)og® —fo (Z(—l)”pn(g‘@“*l ® godw @ g®n7u))

u=1

—fo <Z(il)i(€+1)+npk(g®ifl®gf o pe og®2®g®k7i)) 7
A(n)

which is

n

fO(aV Opn) (Z pn ]l®u 1®8V®]].®n U))Og@)n

~fo (Z (1)t 1Y @ gf ope ® 1{‘?’“‘@) 0g®" =0.
A(n)

O

Lemma 3.2. Let us assume that p-kernels induce the transfer of Ao, algebra as
formulated above, and they fulfill (n > 2)

n

ann - Z(_l)npn(]]-®u_1 ® 8V ® ﬂ%n—u)

(10) 72 DD (15 @ gf ope @ 1P = 0.
A(n)

Then

P O g®n _ ( Z (_l)ﬂ(rl,...,rk)uk(h op, ®--®h Op%)) Og®n7
B(n)

where we define hop, = 1y .

Proof. According to these p-kernels induce A, structure on (W, 0w ) by
Lemma It remains to verify that they give A, morphism from (V,dy,p) to
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(VV, ow, I/), ie

avz/wZ 1?00 (g, © - © )

n

= rvn — Y ()" (15 @ Ow @ 1F )

u=1

_ Z z(£+1)+n,(/] (]]_(X)z 1 QU ® 1%k7i)’
A(n)

which by @D can be formulated as
Ay hopn Og®" + ( Z (_1)19(7’1 ..... "”k)‘uk(h op,, X Qh Oprk)) Og®n

B(n)

n

281

= gf 0P g™ —ho (3 (-1)"pa(1f" @Oy © 1" ) 0 g°"

u=1

—ho ( Z(—l)““”*"pk(ll@i‘l Qgfopr® ﬂgk—i)) o g®".
A(n)

Due to gf — 1y = Oy h + hdy, we have

( Z (—]_)19(T1""’Tk)llvk(h opr V- ® h oprk)> o g®n
B(n)

=pnog”" — ( Ovpn + Z )P, (18" @ 8y @ 18"~ “)) o g&n

u=1

—ho (3 (-1 AP @ gf opy @ 155 ) 0 6"
)

By assumption , we obtain

hO( 3vpn+z )P ( ]l®u 1®6V®]l®n u)>°9®n

+ho (D (-0 A @ gf ope @194 ) 0 g =0,
A(n)

which reduces to

(po— S (P (hopy, © -0 hopy,)) 0g® = 0.
B(n)
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Remark 3.3. The assumption of Lemma can be weaken to

n

Ovpao g™ = YU PP @Oy B 1) 0 g

(11) - Z DD (15 @ gf ope @ 1FH ) 0 g®" =0,

A(n)
where is fulfilled if the p-kernels define Ao, structure on (W, dw ), and f is
a monomorphism. In the situation of interest is f, however, assumed to be an
epimorphism.

Definition 3.4 (p-kernels, [7]). We define for each n > 2:

(12) Pn = Z (_1)19(T1,4..,Tk)ﬂk(h opy, ®---@hop,,.),
B(n)

where h op; = 1y, with B(n) given in and J(r1,...,75) given in (J).

Remark 3.5. For p-kernels there exists a non-inductive explicit expression. Each
term in the p-kernel can be represented by a rooted plane tree, and there is
a function which associates to a rooted plane tree a sign corresponding to our
inductive definition.

Theorem 3.6. The p-kernels introduced in 7] satisfy

n

Ovpn — Z(—l)”pn@l@"*1 ® 0y @ 15"

(20) - Z 1)/t 19 @ gfopr @ 1) =0,
A(n)
for allm > 2.

Proof. Let us first simplify our situation by passing to the suspension T'sV with
the induced codifferential §. Because s and w are by Definition izomorphisms,

is true if and only if

n

so <8Vpn — Z(—l)"pn(]l%?“_l ® 0y ® ]l%"_“)) ow®"

u=1
=so ( Z (_1)i(£+1)+npk(]l§z‘—1 ®gfops® ﬂgk—i)) 0w
A(n)

Introducing p,, = s 0Py, o w®™, § = sogow and f=sofouw (Ip,,| = —1,
9] = |f] = 0), we have

n
0up, + > DA @O 1Y) + Y Y T @ gfop, @ 1P =0.
u=1 A(n)
The proof of the last claim goes by induction. The case n = 2 corresponds to

0100 + 52(111/ ® 51) + 52<51 ® ]lv) =0,
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which is certainly true because {d,: V®" — V1,51 are the components of the
codifferential on T'sV (cf., (7)) for n = 2 in Lemma )

By induction hypothesis, we assume the claim is true for all natural numbers less
than n. The proof is naturally divided into three steps:

I. We shall first expand the term §1p,,: we have p,, = sop, 0w®", so by Definition

by =50 ( 3 (-1’ (hop,, @ @hopy,)) 0w
B(n)
= 3 (1) (1) 0 w0 50 hopy, 0w
B(n)

® - @wosohop,, ow?F)

with o = 37, iy, 7i(rj +1). However, [sohop,, ow®"| = 1+1+4(r; —2) —1; = 0,

so the last display equals to

Zso,ukow@k(sohowosopﬁow®”®---®Sohowosoprkow®r’“).

B(n)
Consequently,
(13) = 6u(hop, @---@hop,), h=sohow (h]=1),
B(n)
and so

61, = Y 016k(hop,, ®---@hop,,)

B(n)
. (Z& @t ea 01y ")) (hop, ©- @ hop,)
B(n) =1
—_ Z <Z5k, 1{8;171(@6[@1%’6 71))(;},Oﬁ,’a1®"'®ﬁoﬁrk>'
B(n)  A(k)

The last summation can be rewritten as

3 (Z&k/ (181 ® 5, ®Il®k_z)>(fzoﬁm®-~-®7LOf’rk)
B(n)  A(k)

= Z Zék/ hOprl (X)(Se(iloﬁ’” ®®ﬁoﬁn+4)®®ﬁoi)m)
B(n) A

= Z (Sk(hoprl®...®i)ri®...®ﬁof)rk)7
B(n),r;>1
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where the last equality comes from the summation over all rq,...,r;y; with r; +
-+ 4 140 fixed. We conclude

0p, == S(hop, ® @ (G1h+1v)p, ® - @hop,,)
B(n),ri>1
— Y wlhop, @ ®@b&hop, @---@hop,,).
B(n),r;=1

II. We shall apply the induction hypothesis to d;p,,. We remind the formal
equality hop; = 1y and also gf —1y = Oy h+h0y equivalent to 61h+1y = §f —hd;.
Then

Sip= Y, Ok(hop, @@ (hé1 — ), @ - ®hop,,)

B(n),r;i>1

(14) - > b(hop, @ ®dthop, @ -@hop,).
B(n),r;i=1

The second part of the first term on the right hand side equals

= bp(hop, @ @Gfop, ®---@hop, )
)

B(n
= 5k(ﬁof)rl ®...®Boj)1 @...@}Azof)m)(]l%‘g@gfof)m ®]l§n757”),
B(n)
where s = >, _; ;. The second term in equals

_ Z 516(?10137«1®"'®5lﬁoﬁri®"'®ﬁoi’rk)
B(n),r;=1

=— Z 5k(ﬁ0ﬁ,.l ®...®I}oﬁm ®...®ﬁoﬁm)(1§s ® 6, ®1%n757“).
B(n),ri=1

By induction hypothesis, we have for all m < n
m . .
1P = =) P15 @& @1F ) = Y (17 @ gfop, @ 1P ).
u=1 A(m)
Finally, the first part of the first term equals

S Ghop, ®- @hodip, ®- @hop,,)
B(n),?’i>1

=— > 5k(ﬁoprl®...®Zﬁoi,m(1§u—1®5l®1§ri7u)®...®ﬁoi,m)
B(n),r;i>1 u=1

-y 5k(ﬁopn®- -©3 hop (1% @ §fop, ® 18 ) @0 h of)rk) .
B(n),ri>1 A(rs)



ON THE HOMOTOPY TRANSFER OF A., STRUCTURES 285

ITI. Now we pair up the contributions appearing in the previous step: the right
hand side of can be rewritten as

(P1)
= > a(hop, @0 hop, AP @n @1F T @ v hop,, )
B(n),r;i>1 u=1
(P2)
- Z (sk(ﬁof’n@"'@ Z hop, (1Y ' ® gf opy®@15F ) ®"'®hof’m>
B(n),r;i>1 A(rq)
(P3)
=Y 0(hop, @ - @hop ® - @hop, )" ©9fob, 1T
B(n)
(P4)
- Z 5k(ﬁ Oﬁrl ®--® IA7‘ oi)ri Q- }Al Oi)"'k) (1%8 ®0® ]]_%?”_s_”) ’
B(n),ri=1
with s = >, 7;, and we get
PO+ @D =- 5,07 ' @a o1y ™),
u=1
P2+ @3 =Y p(17 ' ©ofop @ 13H).
A(n)

Remark 3.7. Theorem implies that the p-kernels in [7] fulfill (TT).
3.2. g-kernels.

Lemma 3.8. The q-kernels constitute Ao, morphism @ = (f,p2,03,...), pn =
foqn and vy, = fop, o g®, from (V,0v, pa, i3, ...) to (W,0w,va,vs,...) if and
only if for all n > 2:

f o (8VQTL + Z(il)nQn(:ﬂ-%u_l & aV & ]]_%n—u)
u=1

+ > (=) p(gf o g ® - ® gf 0 gy,
B(n)

+ Z (—1)" g 1P @ e @ 1Y) — QLUJn) =0.
A(n)

Proof. The proof easily follows from the explicit expansion of A, morphism

Y= (f)¢27@37"')7 which maps (‘/78‘/’/-‘/2’/-1/37"') to (VVa8WaV27V3a"') for Pn =
fogn and v, = fop, 0g® (cf. ([@)). O
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Lemma 3.9. Let the q-kernels fulfill

Ovan + Z )", (1247 © dy @ 18"Y)

+Z 1)?Crmp (gf 0 g, @ - ® gf 0 gy,
B(n)

(15) + Z z(€+1)+n (ﬂ_%i—l ® fe ® ]l%n—k) — Qi = 0.
A(n)

for allm > 2. Then we have

gn =Y () (), @ @ (), ©hogr, ®1FFT),
C(n)

for all m > 2, where Ay, morphisms ¢ and ¥ are given by p-kernels and q-kernels,
(©). We also used the notation C(n) as in and 9(ry,..., 1) as in ().

Proof. Assuming , the set of g-kernels constitutes by LemmaLAoo morphism

= (f, 02,3, .. ) from (V, Oy, pa, pis, - .. ) to (W, 0w, va, vs, ... ). We also demand
the set of maps H,, = hogq, gives As, homotopy H = (h, Ha, Hs, . ..) between thp
and 1. This is equlvalent by Definition [T-3] to

n

Oy Hp — Z(—l)"Hn(ﬂ{‘?“_l ®dy @17"")

+Z n+m+19(1”1,m,7“z‘)‘uk((thp)rl®. R (Qp(p)m_l@ HT@®]]-%k_i)+Hlﬂn
C(n)

= > ()T H AT @ n @ 15"7F) + @9)n — (1)
A(n)

for all n > 2. According to , we have

(WP) '(/)190171 + Z 79(7’1 ' 7rk)wk(<pr1 D ® L)07‘k) ;
m)

and so we can write the composition of A, morphisms in terms of p-kernels and
g-kernels:

(16)  (@)m =gf ogm+ Y (-1)"" " hopy(gfog, @---@gfogr).
B(m)
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By Deﬁnition the Ay, homotopy H = (h, Ha, Hs, ...) can be rewritten in terms
of p-kernels and g-kernels (we use again dyh = gf — 1y — hdy and (1),, = 0):

9f 0@y —qn —hdvan — > (=1)"hogq, (1" ' @ oy @ 17"")

u=1
+ Z (_1)7L+Tz'+'l9(7-1,...,7'i)uk((f‘)b(p)rl ® e ® (¢¢)ri,1 ® h o qri ® ]l?;kf’i)
C(n)
+ h oq1ln

= ) (1) ho g (1 @ pe @ 19" 7F) + gf 0 gn
A

+ Z (_1)19(T1,...,Tk)h Opk(gf ogr, R ® gf o qu) .
B(n)
We subtract from both sides of the last display ¢f o q,, and by conclude

n

—hdvgn — Y (—1)"hog,(1§" ' ®dy @ 15" ") + hogqupy,

u=1
= 3 (DR (18 @ e @ 187 )
A(n)
+ Z (_1)19(7‘1,...,7‘k)h Opk:(gf o qu ® e ® gf o qu) ,
B(n)

which finally results in

C(n)
t

Remark 3.10. The assumption is fulfilled as soon as the g-kernels give a A,
morphism Y= (f? P2, P35 .- ) from (‘/7 8V7:u27:u’3a cee ) to (W7 8VV7 V2,V3,. .. ) and f
is a monomorphism.

Definition 3.11 (g-kernels, [7]). Let n > 2 and define ¢; := 1y. We define
g-kernels inductively by

In = Z (_1)n+ri+ﬂ(r17m7ri)uk((")b(p)h @ (’l)b(p)’l"i—l ®ho ar; ® ]lgkii) )
C(n)

where (Y)m = g.f 0 @m + X () (1) hopr(gf o gy, ® - @ gf 0gr,) (cf,
(116))), p-kernels were introduced in with C'(n) given in and H(uq, ..., ux)
in .

Remark 3.12. There is an explicit description of the g-kernels in terms of rooted
plane trees, but it is much more complicated when compared to the analogous
description for the p-kernels.
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We shall now prove that the g-kernels introduced in Definition satisfy .
Let us consider again the suspension T'sV with the induced codifferential § such
that §; = so 0y ow and §, = 50, ow®" n > 2. Then q,, = s 0 g o W™,
1?)m = 50ty ow®™ and @, = 50 @y ow®™ for m > 2 (|§,,] = [Pl = \'lzvm| =0),
and is equivalent to

018, + > pp(f o, @ ®4f0q,,)
B(n)

n
= 4,@y" ' ea 1P + Y 4,0y @6, 19" ) + 4,6,
u=1 A(n)
In the following two lemmas we prove that 1}92) is an A, morphism.

Lemma 3.13. Let us assume is true for all n < m. Then the p-kernels in
Definition[3]] and the gq-kernels in Definition [3.17] fulfill

m

5 W@)m = Y BP)m(1F T @5 @1P™T)

+ 3 @AY @8 @ 15"7F) + () 10m

for allm > 2.

Proof. We shall first expand the composition of morphisms in the suspended form
as in , and also use the homotopy h between §f and 1y:

01 (@) = 3f 0 O1gm + Y S1hop(gfoq,, @ @ifoq,,)
B(m)

(17) =gfobigm+ > (Gf —1v —hé1) opy(9fod,, @@ 3f04q,,).
B(m)

By Theorem [3.6]

Z hoélﬁk@fOQ'rl ®®gfoqu)

B(m) k
(18) ==Y > hop (AP @6 @1FF ) (3f 0d,, @ © §f0qy,)
B(m) u=1
(19) =Y hop (1Y T @gfopy @1 ) (9f 04, @ ®4f 04,,)
B(m) A’ (k)

and as g, f and gq,,, are of degree 0, we have

k
@ =->"> hopy(gfod, ® - ®jfodg,, ® - 04foq,).

B(m)u=1
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By (15) for n < m, we expand the terms of the form 6,9, as
Tu

k
- > Y h(9f0q,, @ --®) afoq,, (17 @6 1T )@ @4 fq,,)

v=1

k
- ZZm(gfoam@-@ S oo, (18 " @iy 018 )@@ ok, )

©---®4fod, )©--®ifd,,).

=Y > bw(afod, @ ®ifopu(ifod, ® - ®ifoq, , )
B(m) A’ (k)

®'.'®ngQT'k/)?

we sum over all inner positions of p,, (gf 0q, ®..0eQ...Q gf ) éw) and get

[ - Zzpk(f Q00 S fobu@fody @ 2gfody )

B(m)u=1 B'(ry)

Up to a sign, this is the same expression as the expression on the fourth line of the
expansion (I8). We substitute into for 3> gy ho01Pe(9f 04y, ©...®§f 0q,,)
the combination + and also substitute for d14,, according to (15)):

01 @) =— Y 9f opy(ifod,, @ ®§foq,,)

+) 9f0q, 1P T @s ®1PY)

+ Y 9feq (1P T @1 ) +3f 0 g
A(m)

+ Z v)opp(§fod, @ --@igfeq,,)
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T

k
+ > Yn(afea, 00 ofoq, P wa @1y )

B(m) u=1 v=1
®--®gfoq,,)
k .
+ 3 Sb(afod, @0 Y afoa@y T @sy o1y )
B(m) u=1 Al(r)
®--®jfod,,)
k
+ Y plofeq, @ 04foqidr, @0 4f04,,)
B(m)u=1
This completes the proof. ([l

Lemma 3.14. The p-kernels in Definition[3.4) and the q-kernels in Definition[3.11

fulfill
> 6k (@), @@ @P)r) = > Pr(df 0, @ @3fod,,)

B(m) B(m)
for allm > 2.

Proof. By , we have
Y pafod, ®®gfod, )= Y dwlhop,®--@hop, )

B(m) B(m) B'(k)
X (gfoqh ®®gf0@irk)
Taking into account that g, f and q,,, are of degree 0, the last display equals to
Z Z 6k’(hopri(gf06r1 - ®§f06rr/)
B(m) B'(k) '
®-®@hopy (3foq,,, ., ® - ®4foq,,))
and the summation over the terms 6y (*,, @ - -+ ® %, ) in all possible indices (x;

denoting a map V®7 — V) gives

Zék{(ngQTl—i_ Zpk’ @ ®®gfoérk/>)
B(m) B’(r1)
@0 (9f 0, + Y buafody®-©ifou,))]
B/(T‘k)

However this is already composed with the suspension, and the proof is
complete. [l

Because the formula for the g-kernels in Lemma [3.9) was based on the assumption
, we have to prove that it is fulfilled by the g- kernels in Definition
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Theorem 3.15. The p-kernels in Definition[3.4) and the q-kernels in Definition
fulfill (T5), i.e.

8\/‘1n + Z Qn j]-®u ! ® 8V ® ]]'®n u)
+ Z (~1)7 " p(gf 0 g @ @ gf 0qy,)
n Z z(€+1)+n (ﬂ_%i_l @ e @ ]l{@;n—kt) —qi1ln = 0.
A(n)

This means that the objects introduced in @D solve the problem of the transfer of
Ao structure.

Proof. We shall prove an equivalent assertion:
0y + Y P(afod, ®®3f0d,,)
B(n)

= >3, @6 @1 + Y 4,18 T @6 @197 F) + 4,0,
u=1 A(n)

with suspended g-kernels given by Definition [3.11}

(20) = > a(( @ ($@)r,_, ®hog, L),
C(n)
The proof goes by induction on n: for n = 2, we have by (for n = 2) and :
018z = 01(52(5f @ h) + b
= — 56 @1y)@f®f
— 52((51 X ﬂ.v)( ®1

®1y))
) — a1y ® 61)(9f © h)
1y) —6(ly ®6,)(h@1y).
By the Koszul sign convention
52(01 @ 1v)(3f @ h) = (-1 Moy(gf @ B) (61 @ 1v)
52(9f ® §f — 1v — héy)
=0(9f @ 9f) — 62(4f ©@ 1v) = 62(9f @ h)(Lv @ 61),

A

521y ®61)(af @ h)

82(01 @ 1) (h @ 1y) = 62(3f — Ly — hdy ® 1)
=0(9f ®1y) — do(ly @ 1y) — Sa(h @ Ly) (6 @ L),

S(ly ®6)(hely) = (—1)|61”m52(fl @1y)(ly ®d1),
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where (—1)‘51%| = —1is a consequence of |h| = |0;| = 1, and so

518y = 62(9f ® h)(61 @ 1y) + da(h @ 1y) (61 ® Ly) +
+ (52(]7, ® ﬂ.v)(]lv ® (51) + (52(]].\/ X ]].\/) — 52(Af‘
=401 @ 1yv) +4o(Ly @ 61) + 4102 — D, (f @ §

The induction step is divided into three steps:
I. We first expand the term 6:q,,: by

51&71 = Z 515]@((’2’@)“ ®--® (12)95)7”1’—1 ® IAl © qh ® ﬂ‘%kii)
C(n)
k

= Z (Z‘Sk ]l®u71 ® 6 ® ]lie;kfu))

u=1
X((wso)m® @ (PP)r,_, ®hog, @15

—Z(Zék 11®1‘1®5@/®11®’f‘1))

C(n) A(k)
x (("p‘P)n T W"?’)ma ® B © @m ® ﬂ‘%kii) '
The first summation can be rewritten as

- (Zé @ @6 @13 ) (@) @ ... © BP)r,_, ®hog, @1FT)

C(n) u=1

i—1
== > w@e), ®.. . ©6P),, ®...© @), ®hog, @1F)

_ Z 5k(({b¢)r1 ®...Q0 (’l?){b)ri71 ® §1fAL 1o qh‘ ® ]]_%?k_i)

~ k A ~
DI N 5 (@), ® -+ @ (@),

C(n) u=1+1

(QL3) |
®ho qri ® 1§U*1® (51@ I]_ie;kfufz) ,

while the second as

-3 ( 3 60 (18 @5 018K )) o (@), @ - @ PP),,_, @hog, @11

C(n)  A’(k)



ON THE HOMOTOPY TRANSFER OF A, STRUCTURES 293

(Q2.1) == (@), ® - @5 (@) ® - ® $P).)
C(n)

Q@ @P)r, , ®hog, @17"7)

(Q2.2) = (@), @ @0, (($P). @ @®@)r,_, ®hog,
C(n)

®1Y) @19

(QQS) - <_1)|6[/Wll Z Z 6k'+i(<’g)¢)r1 Q---® ("2’4\7)”71
C(n) A’(k—1i)

® il ° qu® 1{8;2”,1@ 5@’@ ]]_gk’fi/) '

The summation over all indices in terms of the form 5k(("2’¢’)r1 R RDx®
® (1/)¢)T’i—1 @ }Al o an’ ® ]].{e;k_i) leads to

e Y (@) ® Y Se(@D) @ © @)

C(n)u=1 B’ (ry)
® @ @PP),_, ®hog,, ® 11@’“) :

Analogously, the summation over all indices in ) terms of the form &, (($@),, ®
L@+ @195 gives

@2 =-> > a(@)n @ @ @), ©4, @177).
C(n)ri>1

I1. By Lemma

i—1
@D =-> > o(Wd)® ® > pp(dfod, @ ®ifoq,,)

C(n) u=1 B'(ry)
Q- @ @P), , ®hog, @1F7),
and Lemma for (¥@)m (Definition and definition of C(n) in imply

that m is strictly less than n, so that assumptions of Lemma [3.13] are fulfilled by
our induction hypothesis) gives

+(@J) =
(QL1 +2.1a)
Z Z Z 5k "/"P r Q- ®( )lﬁlléll("?)(;))Tuél@' : '®(17)¢)T1‘71 ®Boqri ®]]'§k7i>
n)u 1r,=1

T4

+ Z Z Z 5k ’ll) L 9.0 Z(_l)lfl\\&\@@)”(l%u—l ® 6, ® ]l%”*“)

Yu=1ry,>1 u=1

(QL1 + 2.1b) ©-® @@, @hog, ®LF)
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+ Z Z Z 5k ’(/)go - Z ‘hH‘S/' 90) ,(]lgi/fl Ry @ ]]_%T“_k/)

C(n)u=1ry,>1 A(ry)
(QL.1 + 2.1¢) R ® (12;4‘2)”71 @h °q,, ® ]]_%k—i)
(QL.1 + 2.1d)

+Z ZZ(S’“ ¢ n@"'®(—1)|h”6m‘('(2’¢)15ru®"'®('§7"fo)ri,1®ﬁ0(§”®]l§k7i)

C(n) u=1r,>1

B S0 (@), DL ()6, 00 (), Dhog,, @)

C(n) u=1r,>1

(Q2.1)
i—1
- Z Z Z 5k(("2’¢)r1® : '®(_]‘)|hH6MI(Q/A)@)l&“u(@' . '®({/}¢)7’i—1 ®ﬁ06ri®1§kii) ]

C(n) u=1r,>1

where the first five terms come from (QL.2) by application of Lemma [3.13] and the
fifth one cancels out when combined with (Q2.1). Recall that we have || = —1

for all ¢, and so (_1)\’3ll5z| = —1 as well as

QI+ @2D= > 6(W@)r @ @ @@)r_, ® (—01h—1y)q,, @ 1FF)
C(n),ri>1
+ Y (@), @ ® @), @ —0i1hog, @1PFT)

C(n),ri=1
= Y (@), - © @), © (her — 9)a,, @ 1)

C(n),ri>1
+ > (@) @ @)y, ,® (hdy—§f+1v)g, © 1F) .
C(n),r;i=1

Thanks to the induction hypothesis we substitute for 6;1q, and the last display
turns into

P

= > (@)@ @ @@)r, ,®Y hopp(ifod, @ --©§fod,, )@17F)

1%

C(n),ri>1 B'(r;)
Z 5/€(<’J)¢)T1 Q- (’&(To)rifl ® gf © ari ® ]]-{e;kii)
C(n),r;>1
(QL.2 + 2.2a)

+ Z 616((12’(:0)7'1 K- ("2":0)7"1-71 ®Z(}T@ (]]'gu_l ® 51 ® ]1%'”7“) ® ]]‘%'k_i)
C(n),ri>1 u=1
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(Q1.2 + 2.2b)
+ > (@), @ @W@)r, ,®Y 4 (1T @6 @17 T )+4,6,, 2155
C(n),ri>1 A (ry)

(Q1.2 + 2.2¢)
+ Y 5 (@@), ©© (@), ®hog, 5 012

~

+ Z 6k((¢¢))rl @ ® (l{/\)@)m_l ® (_gf"’_ ]lV)QT‘i ® :ﬂ-gkiz) .
C(n),ri=1

The non-numbered terms (first, second and sixth) can be further simplified. We
notice

= > (@)@ - ®W@)r, @Y hopy(3fod, ®-® jfod,, ) @ 1)

C(n),ri>1 B/(re)
— Y (@) @@ B, @ 0f 0d, 1P
C(n),ri>1
+ Y (@) @ B, @ (-9F +10)a, 1)
C(n)vrzfl
== 0(@@)r, ® - ® @), © BP)r, @ 1P
C(n)
+ Z 61@((12)@)7‘1 R (¢¢)T'i—1 ® ﬂ%k—i-‘rl)
C(n)
== > w(@P)r, ® - © B)r,) + 6, (17").
B(n)

By Lemma [3.14] this expression equals to

(QL.2 + 2.2d) = > b(afod, @ @ifod,,) +d:0n.
B(n)

III. In the last step we pair various contributions together: the first step can be
written as

514, = (QT.1) + (Q1.2) + (QL.3) + (Q2.1) + (Q2-2) + (Q2.3),

while the second step as

Q1) + (Q2:1) = (QL.1 + 2.1a) + (QL.1 + 2.1b) + (QL.1 + 2.1d) + (QL.T + 2.1d)

and

(QT.2) + ([Q2.2) = (Q1.2 + 2.2a) + (QT.2 + 2.2B) + (Q1.2 + 2.2d) + (QT.2 + 2.2d) .
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Taken altogether,
(Q1.3) + (Q1.1 + 2.1a)) + (QL.1 + 2.1b)) + (Q1.2 4+ 2.2a) + (Q1.2 + 2.2d)

=) 4,07 T ea 01y ),
u=1

(@Q23) + (QT.1 + 2.1d) + (QLT.T + 2.1d) + (Q1.2 + 2.2H)
=2 a1y s oLyt

A(n)
@Qi2+22d) =- > p(9f 0, @ ©3fq,) +a0n.
B(n)
The proof is complete. O

4. HOMOTOPY TRANSFER AND THE HOMOLOGICAL
PERTURBATION LEMMA

In the present section we discuss a motivation to find explicit formulas for the
transfer of A, algebra structure presented in an apparently arbitrary form in @D
In the following, we recall the homological perturbation lemma and show that it
gives a recipe to search for the transfer problem exactly in the form @D This is
the approach with which we develop and formalize [7, Remark 4].

Lemma 4.1 (Homological perturbation lemma, [1]). Let (V,dyv) and (W, 0w ) be
chain complexes together with quasi-isomorphisms f :V — W and g: W — V
such that gf — 1y = Oy h + hdy for a linear map h:V — V. Let p: V — V be a
linear map of the same degree as Oy such that (Oy + p)? = 0 and the linear map
1y — ph is invertible (u is called in this context perturbation.) We define

(21) v="0w+ fAg, b=g+hAg, @=Ff+fAh, H=h+hAh,

where A = (1y — ph)~*u. Then (V,0y + p) and (W,v) are chain complezes and
p: V=V, : W — W their quasi-isomorphisms with ¥ — 1y = (Oy + p)H +
H(0v + ).

In our case, on (V, dy ) we have an additional A, structure given by a collection
of multilinear maps p = (o, ps, ... ) fulfilling certain axioms. In order to regard p
as a perturbation, we have to pass to the (suspended) tensor algebra generated by
V. Let us consider T'sV with a coderivation &y and TsW with a coderivation oy, F
and G morphisms and H a homotopy between G F and the identity on T'sV. Here
dy is given by components {sodyow: sV — sV}U{0: sV&" — sV}, >4 in the sense
of Theorem [2.6] and it is codifferential by Lemma[2.7 because dy is a differential on
V. Analogous conclusions do apply to dy. The map F': (TsV,6v) — (TsW, sw) is
given by components {so fow: sV — sW}U{0: (sV)®" — sW},>o (Lemma.
By Lcmma F'is a morphism (f is a map of chain complexes), i.c. F|(SV)®n =
f®” for f = s o f ow. Analogous conclusions apply to G as well. Homotopy
H:TsV — TsV is a map given by {§f: sV — sV} U{0 : (sV)®" — sV },>9
on the left, {sohow: sV — sV} U{0: (sV)®"* — sV},>2 in the middle and
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{1y : sV — sV}U{0: (sV)®" — sV}, on the right in the sense of Theorem
Because h is a homotopy between gf and 1y, His a homotopy between GF and
the identity on T'sV according to Theorem the notation is b = s 0 h o w.

Let d,, be a coderivation on T'sV corresponding to p, whose components are given
by {0: sV — sV} U{sop,ow®": (sV)®" — sV},>2 in the sense of Theorem [2.16
Because dy and p form an A, structure on V, (dy + 8,)? = 0 by Theorem [2.16
we use the notation d,, = s o i, o W®".

The remaining assumption in Lemma is the invertibility of the map 1 — 5‘,1:[ .
We know

H|svyen = Z @fH¥@he1y’

i+j=n—1,
,j20

so that H((sV)®") C (sV)®" for all n > 1, and also 8|5 = 0 implies
(5#‘(81/)@” =0, + Z ﬂ_%i_l R0 ® ]l%vn_k
A(n)
for all n > 2 with A(n) as in (A]). Consequently, for all n > 2 holds 4, ((sV)®™) C
sV @-- @ (sV)®1, and its iteration results in (3, H)"~1((sV)®") C sV,
(B D)™ (sV)") = 0.
By previous discussion and in accordance with Remark 2.3, [1],

n—1

(L= uH) Moveraevyen =1+ Y (6uH)",

i=1
which means that 1 — 5”ﬁ is invertible. Now all assumptions of Lemma are

fulfilled and we can write

o + 0, = b + F (0, 3 (6" )G b =G A (6, (118,)")G
n>0 n>0
o=F+ F( Z@ﬁ)n) L H=H+ H(Z(auﬁ)n) .
n>1 n>1
Here we see immediately the motivation for (9): é, ano(fléy)” corresponds to

the p-kernels and Zn>1(5ﬂff )™ corresponds to the g-kernels. For our purposes it is
more convenient to write

b + 8y = Sw + PG+ B (0,11)") 0,6,

n>1

(22)
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There is a drawback related to these formulas, however: by a direct inspection we
see that oy + d, is not a coderivation in the sense of Theorem @ and 't?) do not
define a morphism in the sense of Lemma and H does not fulfill the first part
of morphism definition in the sense of Theorem [2.5

In what follows we prove that on the additional assumptions (see [7, Remark 4]):

(23) fg=1, fh=0, hg=0, hh=0,
the homological perturbation lemma gives the results compatible with Section
Lemma 4.2. Let us assume the formulas in are satisfied. Then

(1) q,,09%" =0 forn > 2,

(2) @iy1y;0 (@) @h@157) =0 foralli, j >0, i+j>1.
Proof. (1): The proof goes by induction. By definition g, = 62(Gf @h)+02(h@1y)
for n = 2, so that g, ® §%% = 02(§f9 ® hg) + 52(hg ® §) and the claim follows from

[23) (hg =0).
We assume the assertion is true for all natural numbers less than n € N (n > 2).
By definition

0,00 = o ([@ln 0§*" @@ [@ly, 0§ @hog,, 0§ @),
C(n)

where

(24) [W@lm = §f 0@+ Y hopp(§fod,, @ ®ifoq,,)
B(m)

with [[12)(2)]]1 = gf. In the case r; > 1, the composition A 0g,, o g™ is trivial by the
induction hypothesis. If r; = 1, ho G,0§= fzg is trivial by .
(2): The proof is by induction on n =i+ 1+ j. For n = 2 we prove

G(h®@1y) =0, §(9f©h)=0.

As we know §o(h @ 1y) = (=1)MIMS, (g fh @ h) + 6o(hh @ 1y) and §,(5f ® h) =
62(9fGf @ hh) + 62(hgf ® h), the claim follows thanks to ([23).

Let the claim hold for m > 2 and all natural numbers less than n, we prove it is
true for n. First of all, for n > i’ + j' + 1 > 2 we have

[$@)ir 115 0 (3/) @ he1y) =0
and also f]fmjl oh= gfo h=0. By definition
[l s14j 0 (3H)¥ @h @157 ) = §f 0@y 14y 0 (GH® @ h@1y’)

+ Y. hopy(gfoq, ®--®ifoq, )0 () ®h@1’),
B(i/+1+")
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and by induction hypothesis g,/ 1 © ((gf)®" ®B®]l{8;j/) = 0. The last summation
can be conveniently rewritten as
> hop(afod, @ ®afoq,)o (GH ©he1y)
B(i'+1435")
= Y. hopy(§feoq, c@H* @--®4foq,,
B(i'+1+4j5")
o (@H* ehe1y) e ©ifoq,,),
and the induction implies q,. o (@H®* @ ho 19*) = 0 for r, > 1. We already
showed §fog, o((9f)®*@h®19*) =gfog oh=0forr, =1.
We now return back to the main thread of the proof and show g,, o (9 ohe
]l{e;]) = 0. We consider k, i’, r1,...,ry_1,7 in C(n) given by , and compute
(W@l @ @ [l , ®hoq,, @19 ) o (9/)® @ h®1}’).
After substitution for [[12)(,?)]], there are the following three possibilities for indices 4
a i
i <71+ -4 ry_1: Then there exist 1 < u < i such that [@],, o (5f)®* ®
h ®1%*). For r,, > 2 we already proved [$@],, o ((3f)®* © h©19*) =0,
for r, = 1 we have [@],, o (§/)®* @ h®12*) = §f o h = 0.
ri+---4ry_q1<i<ri+---+ry: In the tensor product there is a term of
the form hogq, , o ((§/)** @ h® 19*), which is by the induction hypothesis
0 for i > 1. If 7y = 1, then h 0q,,° (0H)®* o h® 19%) = hh equals to 0
by .
ry + .-+ 7y <i: In this case we get in the tensor product the term of the
form f o q,,° (@f)® =ho q,,° 9% o f®rr which is trivial for r > 2
by (1) of the lemma. If ; = 1, then h 0q,,° (9f)®" = ho§f equals to
zero again by .
Because k, i, r1,...,ry_1,7# in C(n) was chosen arbitrarily, we get
> 6e([9@lr, @ @ [l , ®hog,, @13 ) o (GH* @he1y) =0,
C(n)
and so finally §,, o (§)® @ h®1%7) = 0. 0
Remark 4.3. We easily observe:

(1) For all n > 2 and for linear mappings {a,: (sV)®" — sV},>1,

n—3
Zan@"'@am: Zan®"'®aTk+Z Z ar1®...®ark®a?u
B(n)

B(n) u=1 B(n—u),
re>1 rEe>1

n—1
+ Zau ®a(18m—u +a§§n7

u=2
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where B(n) given as in (B,
(2) For all n > 2, we have
[$¢]n 055" =hop, ™",
and if hop, = 1y (Definition the formula is true for n =1 as well.
(3) Foralln>land 0 <u<n-—1:

[$@ln o ((f9)%" @ h@1g—1=") = 0.

Lemma 4.4. Let us assume 1s true for n > 2. Then

n—1 n—i
(25)  Puog™" = 000G+ Y Gy ipro (D AP @G @1PTIT) 0 g
=2 u=0

Proof. The proof goes by induction on n. As for n = 2 we have p, = J2, hence
the claim follows.

We now assume the assertion holds for all natural numbers greater than 1 and
less than n. Let us consider 2 < m < n and k,i,r1,...,7—1,7; as given in C(m), so
that

5 (@l © - @ W@l , ®hog, @15 ) o (3® 5 ®®m 1) =0

whenever u < ry +---4+1r;_1 or r; +--- + r; < u because ﬁoqm 0 §®"i = 0 for all

r; > 1 by Lemma
Wefixn—1>k>2k>i>1andry,...,7,_1 > 1asin . As follows from
the previous observation, all terms in

n—1 n—iu
St (Tagr o s wagmn) oger
=2 u=0

are of the form & ([@],, 0 5™ @ -+ @ [9@]r,_, 0 §¥" ' @ * ® §¥F ) with *
representing a mapping (sV)®* — sV (the g-kernels are given by . We can
rewrite them in the form

5k ([["2'@]]7"1 © §®T1 - [[/‘?)‘p]]h‘—l © g@ri,1®

n'—1 n'—i

®{6n’ Og@m + Z én/—i—&-l ° ( Z ]]_%zu ®6;® 1%n'—i—u> Og@n’} ®g®k7i> 7
=2 u=0
where n’ =n+i—k—(ri +---+r_1), n’ > 1. Applying the second point of
Remark to [@]« o §®*, the inducing hypothesis reduces the last display to

(26)  Ou(hop,, 0% @ @hop, 0§ @hop, 0 @§™ )

1
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(we write =hop 0 §). By the first point of Remark
n—1
. mo(zn%am@nw) o
=2
= Y bu(hop, 0g® @ ®@hop, 0g® i @hop, 0¥ @ =)
C(n),ri>1
= > S(hop, 0g® @ --@hop, 0§®™"),
B(n),k#n

so that for each term in the sum there exists u, r, > 1 (they are of the form of
terms in with n’ > 1). Adding the remaining term d, o §®" and using the
formula for the p-kernels, the proof concludes. O

Lemma 4.5. Let us assume , and also

n—1 n—i

(27) Qn = 671 © IA{|(SV)®" + Z Qn7i+l o (Z ]]'?;'u ® 57, ® ]]_%nfifu) ] ﬁ‘(s‘/)@"

=2 u=0

to be true for all2 < m < n. Then

[b@]n — hop, o (9)®" = [Y@]1 0 6n 0 H|(svyon

n—1 n—i
+ > 9@laiv1 0 (D15 @8 @187 0 Hl e
=2 u=0

Proof. By , we have for all m > 2

[@lm = f 0@+ > hopy(afod,, ®- ®3f4q,,),

B(m)

(and [$@], = §f). We can split

n—1 n—i

[$@l1 0 6n 0 Hlsvyen + Y [@lnit1 0 (Z 1 ®6® 13"717“) o Hl(syyen

i=2 u=0
in two components and write
(28) ngA 0(5 O.H|(SV)®7L

+ ngoqn i+1 o (Z]l@u ®6 ®]1®’ﬂ - u) OH|(6V)®"
u=0

+Z > hopy(gfoq,, ©-®ifoq,,)
1=2 B(n—i+1)
(29) ( 1®“®5 ® 19m—i- U) o H|(svye

u=0
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Because q,, = 1y, we have (28) = §f o q,, thanks to . As for the second
component (29), consider k, 71, ..., € B(n—i+1) for some i > 2 with B(n—i+1)
as in . Then

n—i
hopp(ifod,, @ ®gfoq,,)o (Z 17" ®6; ® 11%"_1_1‘) o Hl(svyon

u=0

k
=Y howi(9f0d,, 0 @f)* @ 2 4f oty 0 (1)

u=1
ru—1

X {gf oé?"u o ( Z ]].%?U (2] 61 ® ]].%ruiliU) o H|(SV)®)~“71+i]
v=0

®-®ifoq,).

The reason for the appearance of such terms is that when r, > 2 and h were in

any other g-kernel than d;, we would get g, o ((¢f)®* ® h ® 13*) which is trivial

by Lemma If r, =1, we get ng(}l o h = 0 because q; =1y and ffz =0 by
(23). Thus we have for i > 2:

Z h Oﬁk(QfO(?m@ e ® ﬁfoﬁrk) ° ( Z 19" ®6; ® ]l%n_i_u) ° ﬁ|(sV)®n
B(n—i+1) u=0

= > hom(gfos, @ ®ifoq,)
B(n—i+1)

n—i—1

+ > Z hopyw((§foa)® ®afod,, ® - ®3afoq,,)

+ > hop, 1 ((9f o) @gf0q,,),

where §f o q,, = ﬁfoqu o (221;01 19'®6; ®]l§“_1_") OH|(SV)®T1—1+L'. We notice

g,, © (gf)®m # 0 if and only if m =1 (cf., Lemma . Therefore, we expand the
second contribution into

n—1
=> Y hop(gfed, ®--®ifoq,,)
=2 B(n—i+1)
n—1n—i—1 R R N .
+Y Y Y hop i (@fed)® @ifeq, ©--®4f04,,)
i=2 u=1 B(n—it+l—u)
n—1 n—1 . . .
YD hop, (@ 0q)® " ®4f04,,)
1=1

=2 r
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PN

and for fixed k, i, ro,...,7; sum up all terms of the form h o p,((§f 0 §,)®" ' ®
ifod,®3f0d,,® - ©fod,) in @)

?Lof)k((f )®/€ z®z:gfoqm(@gfoqr2 .®gfoqm>’
ri=1
where 1’ =n —k+1i— (ro +-+-+1;).
We recall gf © q’“l = gfoqﬁ °© (221:_01 lgu ® 57”—7“1-',-1 & ]1%3”717“) Oﬁ|(sv)®rl—1+i
and use to get

(30) hopp((9f 0@)* " ®4f 0t ©if 0, ®--®3f04,,).
Clearly ' > 1, and the summation over all terms in leads to
@)= > hop(gfod, @ --2ifeq,)
B(n),r1>1

n—3
Y hen(fea)® ©ifed, ® - ©ifod,)
u=1 B(n—u),r1>1

n—1

+ Z B Oﬁn7r+1((gf/\ol/11)®n_r ®§f06r) .

r=2

We conclude

29 = Z hopy(f o, @ ®jfedq,,),
), k#

because all terms are as those in and there is always at least one u such that
ry > 1 (this is equivalent to ' > 1 in ) Recall we started with

n—1

[[w(pﬂlo(s OHl 9V®"+Z[[¢Sa]]n z+lo(zﬂ-®u®5 ®]]_®n i- u)OH‘ sV)®

=2 =
=23+

and showed

@)+ @D =dfcd,+ >, hopy(gfod, ®---®3fo4q,).

B(n),k#n

Taking into account the definition of [$@],, in (24), the desired conclusion follows
immediately. (I

Lemma 4.6. Let us assume to be true. Then for all n > 2

n—1 n—i

(31) g —5 OHl(gv)®n +an it1© (Z]]_@u@é‘ ®]l®n i— u) OH|(9V)®”.

=2
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Proof. The proof is by the induction hypothesis on n. For n = 2, by we have
52(9f @ h) + 62(h®@1y) =620 (§f @ h+ h ®1y) which is certainly true.

We assume the claim is true for all natural numbers greater than 1 and strictly
less than n. Let us consider 2 < j < n and ki,rq,...,7r;—1,7; as given in C(n—j+1).
The same reasoning as in Lemma leads to

(32)
5k ([[{)b@]]h - ® II/{)b(lb]]’f‘i—l ® B o QW ® ]l?;kii)
n—j . R
o (Z ]lgu Q (5j ® ]l%n—,j—U) o H|(sV)®"
u=0

= 5k([[¢¢]]r1 ®® [[’l)/b{b]]n 1 & ]Al qu ® ]]‘®k7i)
+ 0k (hop,, o (3))°" © [l @@ @, ,®hoq, ®17*)
+ 0, (hopo(@f)® @ @hop, o @) 2@l ,® hog, @195
o (4f

( (9
+ (5k( Oﬁho( f)®r1 Q- ®hopr )®r1 1R hho ]]_®k77;)
( (@

A

>

+ 0 (hop,o (§f)® @ - @hop,, o (Gf)* " @hod, ® H|yer).

Hereby we expanded a general summand in the definition of g,,_;,, as in ,
where

Tg—l

[l = [9el (Y 15 © 8 @177 0 Hlqyyer-ras
u=0

ri—1

hogq,. (211@“@5 ®1§" ! u) o H|(sy)ori-1+s »
u=0

ho (}m

. ri—1
h OQT«; =h O‘jri( Z ﬂgu & (5]‘ ® 1]_{8;?”71—1—71) ° (gf)@m—l-&-] )
u=0

In the previous formulas there are no signs whatsoever, because fzotjm pass through

the terms of degree 0, and hin H and d; are of degree 1 and —1, respectively, so
that their sign contributions cancel out.
In the next few steps we show how the terms are organized:

I. Let us choose k, i, r1,...,r; given in C(n) such that r; > 1, and sum up all
terms of the form 0y (hop, o (§f)¥" @ ---@hop,. o (§f)®"*@hoq, ® 19F71)
out of the summation

n—1 n—t

8y 0 H|(syyon + Z dn—it1° (Z 17" ®6® ﬂgn_i_u> o H|(syyen

=2 u=0
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for all allowable r. We get

Ok (h opT1 ( f)®r1 ® ® h Opm . ®r7 1 Zh 0g, ® ]l%k_i) 7
where
r—1
ot oty o (54070 0181
u=0

Because r; < n, we get by the induction hypothesis
(33) 5]9(?7, of)r1 o (gf)@rl Q- @ﬁof)”il o (gf)@?"i—l ®ftoqr ]lgkfi) )

If 7;_1 > 1, we sum up all terms of the form & (h op,, © @GP @ @ @], ®
ho 4, ® 18k:

Ti—1

Si(hop, o @) @0 el ®hog, @17*),
=1

with
r—1

[l = W@l o (318" @6ry i1 @17 ) 0 Al ypenis -
u=0

Because 7; < n, by the induction hypothesis is Lemma [4.5] fulfilled and the last
display reduces to

Sk(hop,, o (Gf)® @ - @hop,,  o(gf)er 2
® [l , —h p o (gH ] @ hog, @1E).
The sum of the last display and results in
Ok(hop,, 0 @) @ @hop, o @f)* @ [l ®hog, 17",

=hop (9f>”*1
in this case. Repeating this procedure, we arrive at 0 ([@],, ® - ® [[¢'<p]]m )
ho q,, ® 19k,
We summarize the previous considerations: for k, i, r1,...,7; as in C'(n) such
that r; > 1, we have

5 ([9@lr, ® - @ [$@]r,_, ® hog, ® 1)

which is the same expression as for r;_1 = 1 because [¢@],,_,

= 0 (hop,, o(3/)®" @ -~ @ hop,,  0(gf)®" @) hog, ®17")
r=1
Ti—1

+o(hop, 0@ @ ® > [Y@l,_, @hog, @17

r=1
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+ ot r(hop, 0 (3)® @ [l
r=1

@@ Pl ®hog, @18

r1
(34) + 5/6(2 [['l/)()b]]r ® [[Q/]Co]]rz ®-® [[¢¢]]TL—1 ®ho éri ® ﬂ-%k_l) .

r=1
II. Let us choose k, i, r1,...,7; as in C(n) such that ¢ > 1, ; = 1, and there exists
1 <u<i—1suchthatr, >1and ryy1 =---=1r;_1 = 1. Then

(9l © - © [gl, © (31)% "+ © he1g)

= 6 ( > [0l © Wl @ - @ [Pl © (GH* " ©ho1§t)
r=1

T2
+ 5k(h op,, © GH%" @ ZM@ @[],
r=1
®@H* T @ he1fh)
oot S (hop,, 0 (Gf)F @ @ hop,, o3PS el
r=1

A miiwil ek
@ @NHE T ohe 1Y)

+84(hop,, 0 @) @ @hop, 0@ ©Y hog,
r=1

A A\ ®i— 7 k—1
(35) ® (3))* T o he 1P
with
r—1
hog, =hog,o (Zﬂg“ ® Ory—rt1 @ 113“1_”) o (gf)® .
v=0
By Lemma [£.4]
> hog,=hop, o(Gf)*™,
r=1

which can be justified in the same way as in the first step I.
We expand all terms in the summation (denoted (32))

n—t

n—1
Y dn-in1© (Z 19" ®6; ® 11{8?"”_") o Hl(svysn
1=2

u=0



ON THE HOMOTOPY TRANSFER OF A., STRUCTURES 307

and use a to rewrite terms in the definition of q,,:

n—1 n—i
S 410 (Z 19 6 ® 11;‘?"—1‘—") o Hiyyryon
=2 u=0

- Z 616([[12,60}]7-1 @& [[,lz(foﬂ"iﬂ ®ho Qn & 1%k_i) .
C(n),k#n

Certainly,

On © ﬁ(sv)®n - Z 6k([[12)¢]]71 @ ® [[12)(:0]]7'171 ® ho qh' ® ﬂ‘gk_i) )
C(n),k=n

which together with completes the proof. (I

Remark 4.7. Adopting slight changes in the proofs, our claims can be reformulated
as follows:

Lemma (.4t On the assumption holds for alln > 2

(Zhopr e ®hopr) gom =g

B(n)
+ Z Z [[12)@]]7“1 R [["2)92)]]7"1'71 ® il’ ° qh‘ ® ]l{e;kii
i=2 C(n—i+1)
(36) ° (Z :ﬂ_{e;u ® 67,‘ ® ]I{G;nfifu) o §®n,
u=0

where we write / op, 0§¥ ® - ® h op,, instead of o (h op, 0§¥" ®
@ h op, ) and [¥@],, ® - @ @]y, @ ho 4, ® 19" instead of
Ox (el © - © [l ® hod, ®1F);
Lemma [4.5 On the assumption holds for alln > 2

foa,+> fogq,® - ®foq, —f"=Ffod,oH|ue

B(n)
+z(foqn it 3 fot,ewfo,)
n ’L+1
(37) o (Zﬂ.%u ® 9; ®]]_§n—i—u) o ﬁ|(w)®m
=0

A A

where we write foqr1 ®-- -®foqu instead of EOﬁk(gfoqu ®---®jfoq,,);
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Lemma (4.6 On the assumption ([23)), we have for all n > 2

~

>N Wl @ @[l ®hod, 1 = H|yen

C(n)
n—1 R R .
+Z Z [[1/)40}]7“1 Q@ [[1/)‘:0}]7%—1 ®h0qn ®]]‘§kil
=2 C(n—i+1)
(38) ° (Z 12" ®6; ® 11{‘?"*"*“) o Hl|(gyyon
u=0

where we write [$@],, @ - -@[p@],, ,@hoq,,@1F* " instead of 3y([@],, ©
- @ [l , ®hog,, ®1FF).

Theorem 4.8. On the assumption , the formulas produced by the homological
perturbation lemma fulfill

(1) Slvyen =Fop,og® + Y 1F '@ fop,0g® @1 ",
A(n)

op, 0 g®" + Zﬁoﬁhog®“®...®ﬁoﬁmo§®”,
B(n)

Il
>

(2)  Plevyen

(3)  @levyen =fod,+ Y fod,, @@ foq,,,
B(n)

(4) ﬁ'(sV)®" = ]Al © Qn + Z [[’J)Sb]]rl Q- [[’[/\)Sb]]’l‘i—l ® i" © Qn- ® 1§k_i
C(n)

for allm > 2. In particular, dw + 6, is a codifferential, '(2), @ are morphisms and H

is a homotopy between Y@ and 1. When expressed in terms of A, algebras, the
relevant objects fulfill @

Proof. We already noticed

N

(5#H)((SV)®”) CsVad--- @ (SV)(mel ’
(5“E[)”—1((5V)®n) C sV, (5“1;[)”((8‘/)@") —0.

& : We prove by the induction hypothesis . For n =2, we get by

Plsvyer = F\(sv)®2 + F5uﬁ|(sV)®2 =fef+fo (52(§f® h) +ds(h @ 1v))
:fo‘h@fofh‘f'fo@z-
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Let us assume holds for all natural number greater than 1 and less than n.
Because 0, H decreases the homogeneity,

(fo‘(sv)@n = ﬁ'|(sv)®n + ﬁ'(;”ﬁksv)@n + F( Z (5ﬂﬁ)m)5”ﬁ|(sv)®n

m=1
= F|yyen + Fo (Z 194 ® §; ® 1§n7i7u) o H|(syyon
u=0

al nif ()™ o ( ni 19" @8 @ 19"77") 0 Hlavyon
u=0

m=1

The mapping (Zz;é ]l{e}“ ®6 R ]l%"_i_”) o ﬁ|(sv)®n is of homogeneity n —1i + 1,

so (22)) allows us to rewrite the last result as

F‘(sv)®n + f 00y, 0 IA{|(SV)®n
n—1 n—i )
+ Z ¢7|(SV)®n71+1 o <Z ]].%-u ®0; ® 1{%”_1_“) o H|(sV)®"
=2 u=0

and the combination of induction hypothesis @|(sy)#n—i+1 and Lemma B7,
gives the required form

Fl(sv)®n —l—fo@n—‘,— Z foqu ®...®fhok _f‘®n.
B(n)
Let us remark that gives for all n > 2

n—1 n—1i
(5,,|(SV)®n = f o 5n o f]®n + Z ¢|(SV)®n7i+1 o (Z ]].{8;“ X 52 & ﬂ%n—i—u) o g@n .
=2 u=0

Choosing 2 < j <n — 1, Lemma [4.2] implies

n—i

Plivyen-wio (31§ @6 @1 ) 0 5o
u=0

n—t

= fo Qp_it1© (Z ]l%u ®R6; ® ]l%"_i_u) o G®"
u=0

n—i+1
+Z g@u 1®f0(50A®1®( )®nz+1u

-1
+ Z ®21®foqo(21®u®5®1®21u)
A(n—i+1) u=0

g@é 1+14 ® ( g)@n—i+1—k )
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We take into account , ff] = 1y, and sum up over all terms of the form
15 @« @ 15

n—1
Sul(svyon = fo,0g®" + Y fod, s
n—i i
o (Do agres @1y o gt 4 3 (fg)*
u=0 A(n)
1 i
® [f 0dp0g® + Z fo Qp_ip1° (Z 19 ®6® 1§€_i_u> ° §®Z]
1=2 u=0

® (fg)= .
The application of Lemma [£.4] concludes the proof.

& : Similarly to the previous part of the proof, we first concentrate on
and then derive (2. For n = 2, it follows from

ﬁ'(sV)‘@z = EI'(SV)@z + ﬁaﬂﬁhsV)@Z
=gfoh+hely +ho(6Gf@h)+8&(holy))
[["/)‘P]]@)hoﬁ"'h()ql@]lv—kil

By the induction hypothesis, we assume holds for all natural numbers greater
than 1 and less than n. We can write

ﬁl(s\/)‘@" = ﬁl(s\/)‘@" + ]Al 00y 0 ﬁ‘(s\/)@m

n—1 n—1
ZH‘ sV)®n—i+l O (Zﬂ®u®(5 ®]].®n i u) OH|(SV)®7L
=2

Thanks to the induction hypothesis we can expand H |(syyen—i+1, and apply
Lemma together with :

?L OQn + Z [[1)2'40]]7‘1 ®---® [["2’92’]]7“1-71 ® ]Al Oéri ® ]lie;kii )
C(n)

which completes the proof of the first assertion. Now we use again for n > 2:

Plsvyen = Gl(syyen +hody o é(sV)@’"
n—1

+ZH|(9V)®" 1+10(Zﬂ-®u®5 ®]]-®n - u)OG‘ sV)®

=2
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A consequence of Lemma [£.2] 2 < j < n — 1 arbitrary, is
n—j )
H|( v yon-s+1 0 (Z 17" ®4; ® ]lgni]fu) o Gl(svyon
u=0

n—j

=h Oén—j-&-l o (Z]l%?u ®0; ® ]l%n—j—u> o G‘(Sv)@l

u=0

+ > hop, 0g® @ ®@hop, , of®i

C(n—j+1)
ri—1
® h oqri o ( Z ]L?;u ®0; ® jlgn—l—u) oG® (hopy og)@k—z ’
u=0

because h o d,, ©9®™ = 0 for all m > 1. In other words, if d, in the last summation
would not fit into & o g, the corresponding term will be trivial. The summation
then leads to

Pl(svyen = Glsvyen +hod, o Gavyen
n—1 n—i
+ Y hodlvenin o (Y18 @6 @177 ) 0 Clryen
=2 u=0

+ ﬁoﬁrl Og®rl ® e ®}A7/Oﬁ7"i71 og®m_1
)

C(n
/—1 i—1
® {hoégOG+ZhOQg_i+l o (Zn%"@&@ﬂ?y—") OG}
=2 u=0

® (hopy 0 g)® ",

In order to finish the proof, we remind the equality ho p; = 1y and use Lemma
O
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