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Abstract. A stochastic affine evolution equation with bilinear noise term is studied, where
the driving process is a real-valued fractional Brownian motion with Hurst parameter greater
than 1/2. Stochastic integration is understood in the Skorokhod sense. The existence and
uniqueness of weak solution is proved and some results on the large time dynamics are
obtained.
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1. Introduction

In the paper the formula for stochastic evolution system generated by an equation

with bilinear stochastic term and affine drift term is studied. The existence and

uniqueness of solutions is proved and the relation between weak and “mild” form of

solutions is investigated. Some peculiarities of large time behaviour are also demon-

strated. The results obtained for the equation in the general infinite-dimensional

form are applied to linear stochastic PDE of second order.

Stochastic differential equations in Hilbert spaces with multiplicative white noise

have been studied in numerous papers, e.g. Da Prato, Iannelli, Tubaro [5], [4], Flan-

doli [9], and in Chapter 6 of the monograph by Da Prato and Zabczyk [6]. The

solution to such equations may be viewed as a generalization of the geometric Brow-

nian motion, which has a wide range of applications. In all these cases the driving

process is the Brownian motion. Later, Bonaccorsi in [3] studied mild solutions of
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equations with additional nonlinear terms in the drift and diffusion parts, defined by

means of the stochastic evolution system induced by the bilinear equation.

Analogous results have been obtained for bilinear evolution equations of the same

type with fractional Gaussian noise by Duncan, Maslowski, Pasik-Duncan [7] (for

H > 1/2, where H denotes the Hurst parameter of the driving fractional Brownian

motion) and Šnupárková [20] (for H < 1/2). In these papers the stochastic integral

is understood in the Skorokhod sense, i.e. as the adjoint operator to the Malliavin

derivative, the existence (not uniqueness) of the solution is proved and large time

behaviour is studied. On the other hand, semilinear evolution equations with bilinear

Stratonovich noise have been studied in [10]. It was shown that the equation defines

a random dynamical system (which is not true in the case of Skorokhod integration)

and the long time behaviour was dealt with.

The present paper is organized as follows. In Section 2 the notion of Skorokhod

integral with respect to fractional Brownian motion with Hurst parameter H > 1/2

and its basic properties are recalled. Section 3 is devoted to an extension of a result

from [7] on the existence of a weak solution to the bilinear equation. In Section 4

the existence and uniqueness of the mild solution is proved (Theorem 4.1). If the

perturbation F does not depend on the solution process, the mild solution of the

corresponding affine equation is the weak one (Theorem 4.7). Unlike in the case of

the standard Brownian motion, this is no longer true if the equation is semilinear

(the perturbation F depends on the solution) as shown by a simple counterexample.

Note that it is not completely clear how to define the candidate on the “random

evolution system”, as explained in Example 4.5. Following the ideas from [3], this

system is used to define the mild solution of an equation with additional nonlinearity

in the drift part for H > 1/2. While the mild formulation implies the weak one in

the Wiener case it need not be true in the case of fractional Brownian motion unless

the perturbation is independent of the solution process. It is shown that this “mild”

solution satisfies a certain different equation in the weak sense.

Some large time behaviour results are also proved. Sections 5 and 6 are devoted to

the proof of uniqueness of solutions to the affine equation. This problem is nontrivial,

because the Gronwall lemma is not applicable as in the case of standard Brownian

motion. Instead, we prove the uniqueness of the mild solution to the bilinear equation

inductively, showing uniqueness of the coefficients in the Wiener chaos expansions,

and using this result we prove the uniqueness of weak solutions to the affine equation.
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2. Preliminaries

Let (Ω,F ,P) be a complete probability space. A stochastic process BH = {BH
t ,

t ∈ [0, T ]} is a fractional Brownian motion with Hurst parameter H ∈ (0, 1) if it is

a real-valued centered Gaussian process with the covariance function given by

E[BH
t B

H
s ] = 1

2 (s
2H + t2H − |s− t|2H), s, t > 0.

In what follows

(i) Hurst parameter H > 1/2 is assumed,

(ii) a version of BH with continuous path is considered (it always exists by Kol-

mogorov continuity theorem).

Let E be the set of step functions of the form

f =

N−1∑

k=0

akI(tk,tk+1],

where N ∈ N, 0 = t0 < t1 < . . . < tN = T , ak ∈ R, k = 0, . . . , N . Define the linear

operator K∗
H : E → L2([0, T ]) as

(K∗
Hf)(t) = CHΓ(H − 1/2)t1/2−H(I

H−1/2
T− fH−1/2)(t),

where f ∈ E , fH−1/2(t) = tH−1/2f(t), t ∈ [0, T ], IH−1/2
T− is a Riemann-Liouville

fractional right-sided integral defined as

(I
H−1/2
T− f)(t) =

1

Γ(H − 1/2)

∫ T

t

f(s)

(s− t)3/2−H
ds for a.e. t ∈ [0, T ],

and

CH =

√
H(2H − 1)

B(2− 2H,H − 1/2)

(see [19] for a detailed treatment on fractional calculus).

Using the operator K∗
H , define the scalar product on E as

〈ϕ, ψ〉H := 〈K∗
H(ϕ),K∗

H(ψ)〉L2([0,T ]), ϕ, ψ ∈ E .

Denote by (H, 〈·, ·〉H) the Hilbert space obtained as the completion of E with respect

to the scalar product 〈·, ·〉H and let ‖·‖H be the norm induced by 〈·, ·〉H.
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For ϕ ∈ E define the stochastic integral with respect to the fractional Brownian

motion

I(ϕ) ≡

∫ T

0

ϕ(s) dBH
s :=

N−1∑

k=0

ak(B
H(tk+1)−BH(tk)).

Since

E

[∫ T

0

ϕ(s) dBH
s

∫ T

0

ψ(s) dBH
s

]
= 〈ϕ, ψ〉H, ϕ, ψ ∈ E ,

(see [1]), the integral can be uniquely extended to H (the standard notation I(ϕ) =

BH(ϕ) =
∫ T

0
ϕ(r) dBH

r is also used) and the operator K
∗
H provides an isometry

between spaces (H, ‖·‖H) and L2(Ω).

Let S be a set of smooth cylindrical random variables of the form

(2.1) F = f(BH(ϕ1), . . . , B
H(ϕn)),

where n > 1, f ∈ C∞
b (Rn) (f and all its partial derivatives are bounded) and ϕi ∈ H,

i = 1, . . . , n. The derivative operator (Malliavin derivative) of a smooth cylindrical

random variable F of the form (2.1) is an H-valued random variable

DHF =

n∑

i=1

∂f

∂xi
(BH(ϕ1), . . . , B

H(ϕn))ϕi.

The derivative operator DH is closable from Lp(Ω) into Lp(Ω;H) for any p ∈ [1,∞).

Let D1,p
H be the Sobolev space obtained as the closure of S with respect to the norm

‖F‖1,p := (E[|F |p] + E[‖DHF‖pH])1/p

for any p ∈ [1,∞). Similarly, given a Hilbert space Ṽ ⊂ H, set D1,p
H (Ṽ ) for the

corresponding Sobolev space of Ṽ -valued random variables.

Definition 2.1. The divergence operator (Skorokhod integral) δH : Dom δH →

L2(Ω) is defined as the adjoint operator of the derivative operator DH : L2(Ω) →

L2(Ω;H), i.e. for any u ∈ Dom δH the duality relationship

E[FδH(u)] = E[〈DHF, u〉H]

holds for any F ∈ D
1,2
H .

A random variable u ∈ L2(Ω;H) belongs to the domain Dom δH if there exists

a constant 0 < cu <∞ depending only on u such that

|E[〈DHF, u〉H]| 6 cu‖F‖L2(Ω)

for any F ∈ S.
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The useful facts listed below can be found e.g. in [16]. Let |H| ⊂ H be the linear

space of measurable functions ϕ on [0, T ] such that

‖ϕ‖2|H| = αH

∫ T

0

∫ T

0

|ϕ(r)||ϕ(s)||r − s|2H−2 dr ds <∞,

where αH = H(2H − 1). Then E is dense in |H| and (|H|, ‖·‖|H|) is a Banach space.

Moreover,

L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H,

thus there exists a constant Ke <∞ such that

(2.2) ‖K∗
H(ϕ)‖L2([0,T ]) = ‖ϕ‖H 6 Ke‖ϕ‖L2([0,T ])

for any ϕ ∈ H. Note that

(2.3) D
1,2
H (|H|) ⊂ D

1,2
H (H) ⊂ Dom δH

and for some constant 0 < C̃H,2 <∞

E[δ2H(u)] 6 C̃H,2(E[‖u‖
2
|H|] + E[‖DHu‖2|H|⊗|H|]), u ∈ D

1,2
H (|H|),

holds, where D1,p
H (|H|) (p ∈ (1,∞)) contains processes u ∈ D

1,p
H (H) such that u ∈ |H|,

DHu ∈ |H| ⊗ |H| P-a.s. and

E[‖u‖p|H|] + E[‖DHu‖p|H|⊗|H|] <∞.

The normed linear space (|H| ⊗ |H|, ‖·‖|H|⊗|H|) is defined in a similar way as

(|H|, ‖·‖|H|) (for a precise definition see e.g. [16]). Hence, for some constant

0 < CH,2 <∞,

(2.4) E[δ2H(u)] 6 CH,2(E[‖u‖
2
L1/H([0,T ])] + E[‖DHu‖2L1/H([0,T ]2)]), u ∈ D

1,2
H (|H|).

Since the process BH has an integral representation (see e.g. [16])

(2.5) BH
t =

∫ t

0

(K∗
HI(0,t])(s) dWs, t > 0,

where W = {Wt, t > 0} is a Wiener process on (Ω,F ,P), similar relations are valid

for derivatives and divergence operators, i.e.

(i) for any F ∈ D
1,2
W

K∗
H(DHF ) = DWF,
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where DW denotes the derivative operator with respect to W and D
1,2
W the

corresponding Sobolev space,

(ii) Dom δW = K∗
H(Dom δH) and

(2.6) δH(u) = δW (K∗
Hu)

for any u ∈ Dom δH , where δW denotes the divergence operator with respect

to W .

R em a r k 2.2. The construction (and the properties) of Malliavin derivative and

Skorokhod integral for Hilbert space-valued random variables are completely analo-

gous.

3. Random evolution system

In this short overview section, a result from [7] is slightly extended to obtain

a random two-parameter evolution system representing the solution to the equation

(3.1) dYt = AYt dt+BYt dB
H
t , t > s,

Ys = x,

in a separable Hilbert space V on a finite interval [0, T ] with general initial time

s ∈ [0, T ] and deterministic initial value x ∈ V . The driving process {BH
t , t > 0}

is a one-dimensional fractional Brownian motion with Hurst parameter H > 1/2 on

a complete probability space (Ω,F ,P) and the stochastic integral is understood in

the Skorokhod sense (see [1] for more details).

The linear operators A and B on V satisfy

(A1) the operator A is closed and densely defined with the domain D := Dom(A),

(A2) the resolvent set contains all λ ∈ C such that Re(λ) > ω for some fixed ω ∈ R

and for some constant M > 0 the resolvent R(λ,A) satisfies

‖R(λ,A)‖L(V ) 6
M

|λ− ω|+ 1

for all λ ∈ C, Re(λ) > ω, where L(V ) stands for the space of all linear bounded

operators on V ,

(B2) the operator B is closed, densely defined and generates a strongly continuous

group {SB(u), u ∈ R} on V .
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The conditions (A1) and (A2) imply that the operator A generates an analytic

semigroup {SA(t), 0 6 t 6 T } on V . The condition (B2) ensures the existence of

constants MB > 1, ωB > 0 such that the inequality

(3.2) ‖SB(u)‖L(V ) 6MB exp{ωB|u|}

holds for each u ∈ R.

For simplicity assume that ω < 0 (cf. (A2)). Note that since the operator −A is

sectorial, the fractional powers (−A)α for α ∈ (0, 1] are well-defined (see e.g. [17]),

so the following condition makes sense. Suppose that

(B3) B2 is closed and

(3.3) Dom(B2) ⊃ Dom((−A)α)

for some α ∈ (0, 1).

Define the operators Ā(t) : D → V as

Ā(t) = A−Ht2H−1B2

for any t ∈ [0, T ].

Lemma 3.1. Under the assumptions (A1), (A2), (B2), and (B3) the system

{Ā(t), t ∈ [0, T ]} generates a strongly continuous evolution system {U(t, s), 0 6

s 6 t 6 T } on V .

P r o o f. See [7]. �

The system {U(t, s), 0 6 s 6 t 6 T } satisfies

Im(U(t, s)) ⊂ D,

‖U(t, s)‖L(V ) 6 CU ,(3.4)
∥∥∥
∂

∂t
U(t, s)

∥∥∥
L(V )

= ‖Ā(t)U(t, s)‖L(V ) 6
CU

t− s
,

‖Ā(t)U(t, s)(Ā(s)− ωI)−1‖L(V ) 6 CU

for some constants CU > 0, ω ∈ R and any 0 6 s < t 6 T (see e.g. [21], Theo-

rem 5.2.1).
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R em a r k 3.2. Instead of (A2) and (B3) we may assume directly that {Ā(t), t ∈

[0, T ]} generates a strongly continuous evolution system {U(t, s), 0 6 s 6 t 6 T }

on V . Nevertheless, the condition (A2) can be useful in applications to stochastic

partial differential equations (as shown in [7]).

Note that if H < 1/2 the system of operators {Ā(t), t ∈ (0, T )} is singular at

t = 0. In this case the theory of strong evolution operators does not seem to give

outcomes satisfactory for our purpose (in [20] some results have been achieved by

means of approximative systems). We do not consider this case here.

Let A∗ denote the adjoint operator to the operator A. Let Dom(A∗) = D∗ be the

domain of A∗ and suppose that

(B1) D∗ ⊂ Dom((B∗)2).

Definition 3.3. A (B([s, T ])⊗F)-measurable stochastic process {Yt, t ∈ [s, T ]}

is said to be a weak solution to the equation (3.1) if for any y ∈ D∗

〈Yt, y〉V = 〈x, y〉V +

∫ t

s

〈Yr, A
∗y〉V dr +

∫ t

s

〈Yr, B
∗y〉V dBH

r P-a.s.

for all t ∈ [s, T ], where the integrals have to be well-defined.

Theorem 3.4. Let

(AB) the operators A and {SB(u), u ∈ R} commute on the domain D, i.e.

SB(u)Ay = ASB(u)y

for any u ∈ R and y ∈ D.

The process {UY (t, s)x, s 6 t 6 T } defined as

(3.5) UY (t, s)x = SB(B
H
t −BH

s )U(t− s, 0)x, s 6 t 6 T,

is a weak solution to the equation (3.1) for any fixed x ∈ V and s ∈ [0, T ] under the

assumptions (A1), (A2) and (B1), (B2), (B3).

P r o o f. The proof is completely analogous to the proof of Theorem 2.3 in [7].

�

R em a r k 3.5. The system {UY (t, s), 0 6 s 6 t 6 T } is not a random continuous

evolution system, because it does not possess the standard composition property.
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4. Perturbed equation

In this section the equation with a perturbation in the drift part is studied.

Let H > 1/2 and let {UY (t, s), 0 6 s 6 t 6 T } be the system of operators defined

as

UY (t, s)x := SB(B
H
t −BH

s )U(t− s, 0)x, x ∈ V,

where {U(t, s), 0 6 s 6 t 6 T } is a strongly continuous evolution system associ-

ated with operators {A−Ht2H−1B2, t ∈ [0, T ]}, and {SB(u), u ∈ R} is a strongly

continuous group associated with an operator B satisfying the conditions from The-

orem 3.4. Recall from the previous section that for any fixed s ∈ [0, T ] the process

{UY (t, s)x, s 6 t 6 T } is a weak solution to the equation

(4.1) dYt = AYt dt+BYt dB
H
t , t > s,

Ys = x ∈ V.

Theorem 4.1. Let F : [0, T ]× V → V be a measurable function satisfying

(i)F there exists a function L̄ ∈ L1([0, T ]) such that

‖F (t, x)− F (t, y)‖V 6 L̄(t)‖x− y‖V , x, y ∈ V, t ∈ [0, T ],

(ii)F for some function K ∈ L1([0, T ])

‖F (t, 0)‖V 6 K(t), t ∈ [0, T ].

Then the equation

(4.2) y(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F (r, y(r)) dr

has a unique solution in the space C([0, T ];V ) for a.e. ω ∈ Ω and any initial value

x ∈ V .

R em a r k 4.2. The conditions (i)F and (ii)F imply

(4.3) ‖F (t, x)‖V 6 C(t)(1 + ‖x‖V ), x ∈ V, t ∈ [0, T ]

for a function C ∈ L1([0, T ]).
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P r o o f of Theorem 4.1. Fix x ∈ V and show that the mapping

(K(y))(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F (r, y(r)) dr

is continuous from C([0, T ];V ) into C([0, T ];V ) and that K is a contraction mapping.

Take y ∈ C([0, T ];V ) and t, s ∈ [0, T ]. Then

‖(K(y))(t) − (K(y))(s)‖V 6 ‖UY (t, 0)x− UY (s, 0)x‖V

+

∥∥∥∥
∫ t

0

UY (t, r)F (r, y(r)) dr −

∫ s

0

UY (s, r)F (r, y(r)) dr

∥∥∥∥
V

= I1 + I2.

Note that due to (3.2) and by the continuity of trajectories of {BH
t , t ∈ [0, T ]}

(4.4) sup
t∈[0,T ]

‖SB(B
H
t (ω))‖L(V ) 6MB exp{ωB‖B

H(ω)‖C([0,T ])} 6 CB(ω),

sup
s,t∈[0,T ]

‖SB(B
H
t (ω)−BH

s (ω))‖L(V )

6MB exp{2ωB‖B
H(ω)‖C([0,T ])} 6 CB(ω)

hold for some constant 0 < CB(ω) <∞ depending on ω ∈ Ω.

The strong continuity of SB and U(·, 0) on V yields

I1 = ‖UY (t, 0)x− UY (s, 0)x‖V

6 ‖(SB(B
H
t )− SB(B

H
s ))U(t, 0)x‖V + ‖SB(B

H
s )(U(t, 0)− U(s, 0))x‖V

6 ‖(SB(B
H
t )− SB(B

H
s ))U(t, 0)x‖V + CB(ω)‖(U(t, 0)− U(s, 0))x‖V −→

s→t
0.

Now, let t > s. Then

I2 =

∥∥∥∥
∫ t

0

UY (t, r)F (r, y(r)) dr −

∫ s

0

UY (s, r)F (r, y(r)) dr

∥∥∥∥
V

6

∥∥∥∥
∫ s

0

(UY (t, r) − UY (s, r))F (r, y(r)) dr

∥∥∥∥
V

+

∥∥∥∥
∫ t

s

UY (t, r)F (r, y(r)) dr

∥∥∥∥
V

= J1 + J2.

Using (4.4), (3.4), and (4.3), we obtain

J2 =

∥∥∥∥
∫ t

s

UY (t, r)F (r, y(r)) dr

∥∥∥∥
V

6

∫ t

s

CU‖SB(B
H
t −BH

r )‖L(V )‖F (r, y(r))‖V dr

6 CUCB(ω)(1 + ‖y‖C([0,T ];V ))

∫ t

s

C(r) dr → 0

as s→ t− or t→ s+.
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Also

J1 =

∥∥∥∥
∫ s

0

(UY (t, r) − UY (s, r))F (r, y(r)) dr

∥∥∥∥
V

6

∥∥∥∥
∫ s

0

(SB(B
H
t −BH

r )− SB(B
H
s −BH

r ))U(t− r, 0)F (r, y(r)) dr

∥∥∥∥
V

+

∥∥∥∥
∫ s

0

SB(B
H
s −BH

r )(U(t− r, 0)− U(s− r, 0))F (r, y(r)) dr

∥∥∥∥
V

= K1 +K2.

Since for any fixed 0 6 r 6 s

‖(U(t− r, 0)− U(s− r, 0))F (r, y(r))‖V → 0

as s→ t− or t→ s+ and by (3.4)

‖(U(t− r, 0)− U(s− r, 0))F (r, y(r))‖V 6 2CU‖F (r, y(r))‖V

6 2CU (1 + ‖y‖C([0,T ];V ))C(r) ∈ L1([0, T ]),

the convergence

K2 =

∥∥∥∥
∫ s

0

SB(B
H
s −BH

r )(U(t− r, 0)− U(s− r, 0))F (r, y(r)) dr

∥∥∥∥
V

6 CB(ω)

∫ s

0

‖(U(t− r, 0)− U(s− r, 0))F (r, y(r))‖V dr → 0

is obtained as s → t− or t → s+ by the Lebesgue dominated convergence theorem.

Note that the set

K :=

{
y ∈ V ; ∃ 0 6 s1 6 t1 6 T, y =

∫ s1

0

SB(−B
H
r )U(t1 − r, 0)F (r, y(r)) dr

}

is compact (being a continuous image of a compact set) and

lim
t→s

sup
z∈K

‖(SB(B
H
t )− SB(B

H
s ))z‖V = 0.

Therefore,

K1 =

∥∥∥∥
∫ s

0

(SB(B
H
t −BH

r )− SB(B
H
s −BH

r ))U(t− r, 0)F (r, y(r)) dr

∥∥∥∥
V

=

∥∥∥∥(SB(B
H
t )− SB(B

H
s ))

∫ s

0

SB(−B
H
r )U(t− r, 0)F (r, y(r)) dr

∥∥∥∥
V

6 sup
z∈K

‖(SB(B
H
t )− SB(B

H
s ))z‖V → 0
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as s→ t− or t→ s+. Thus

‖(K(y))(t) − (K(y))(s)‖V → 0

as s → t− or t → s+ and the function t 7→ (K(y))(t) is continuous on the interval

[0, T ] for any y ∈ C([0, T ];V ).

For any y1, y2 ∈ C([0, T ];V ), t ∈ [0, T ] and T > 0 small enough there exists

a constant 0 < LT (ω) < 1 such that

‖(K(y1))(t)− (K(y2))(t)‖V =

∥∥∥∥
∫ t

0

UY (t, r)(F (r, y1(r)) − F (r, y2(r))) dr

∥∥∥∥
V

6 CB(ω)CU

∫ t

0

‖(F (r, y1(r)) − F (r, y2(r)))‖V dr

6 CB(ω)CU‖y1 − y2‖C([0,T ];V )

∫ T

0

L̄(r) dr 6 LT (ω)‖y1 − y2‖C([0,T ];V )

holds so that K is a contraction mapping. Hence, by the Banach fixed-point theorem

there exists a unique solution to the equation (4.2) for T small enough. Applying

standard methods a unique continuous solution to (4.2) for any T > 0 can be ob-

tained. �

Consider an equation with a nonlinear perturbation of the drift part

(4.5) dXt = AXt dt+ F (t,Xt) dt+BXt dB
H
t ,

X0 = x ∈ V.

Definition 4.3. A (B([0, T ])⊗F)-measurable process {Xt, t ∈ [0, T ]} is a weak

solution to the equation (4.5) if for any y ∈ D∗

〈Xt, y〉V = 〈x, y〉V +

∫ t

0

〈Xr, A
∗y〉V dr

+

∫ t

0

〈F (r,Xr), y〉V dr +

∫ t

0

〈Xr, B
∗y〉V dBH

r P-a.s.

for all t ∈ [0, T ], where the integrals have to be well-defined.

R em a r k 4.4. In the Wiener case H = 1/2 the solution to the equation (4.2) is

called the mild solution to the equation

dXt = AXt dt+ F (t,Xt) dt+BXt dWt,

X0 = x ∈ V.

In this case, Bonaccorsi ([3]) has shown that the solution to the equation (4.2) is

also a weak solution to the above equation. This in general is not true for the

equation (4.5) as is shown in a simple counterexample below.
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E x am p l e 4.5. Consider a one-dimensional equation

(4.6) dXt = aXt dt+ bXt dB
H
t , X0 = 1,

where a, b ∈ R are nonzero constants. Note that the equation (4.6) takes the form

(4.5) with F (t, x) = ax, A = 0, B = bI, and x0 = 1.

The solution to the equation (4.6) is given by the formula

Xt = exp{bBH
t − 1

2b
2t2H + at}, t ∈ [0, T ],

(applying Theorem 3.4 with the choice V = R, A = aI, B = bI, s = 0 and x = 1)

and the random evolution system corresponding to the above choice of coefficients is

UY (t, s) = SB(B
H
t −BH

s )U(t− s, 0)

= exp{b(BH
t −BH

s )− 1
2b

2(t− s)2H}, 0 6 s 6 t 6 T.

It is now easy to compute that the solution {Xt, t ∈ [0, T ]} does not satisfy the mild

formula

(4.7) y(t) = UY (t, 0) +

∫ t

0

UY (t, r)F (r, y(r)) dr.

Note that if we define the system {UY (t, s), 0 6 s 6 t 6 T } as

UY (t, s) = SB(B
H
t −BH

s )U(t, s)

= exp{b(BH
t −BH

s )− 1
2b

2(t2H − s2H)}, 0 6 s 6 t 6 T,

the above mild formula holds if UY is replaced by UY .

R em a r k 4.6. Let the assumptions of Theorem 3.4 be satisfied. Then the sys-

tem {UY (t, s), 0 6 s 6 t 6 T } defined as

(4.8) UY (t, s)x = SB(B
H
t −BH

s )U(t, s)x, x ∈ V, 0 6 s 6 t 6 T,

is a weak solution to the equation

dYt = A(t)Yt dt+H((t− s)2H−1 − t2H−1)B2Yt dt+BYt dB
H
t , t > s,

Ys = x.

This result can be obtained in the same way as Theorem 3.4. The system {UY (t, s),

0 6 s 6 t 6 T } defined in Example 4.5 is a particular case of (4.8). Moreover, this

system has the composition property.
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It is easy to verify the fact that {UY (t, s), 0 6 s 6 t 6 T } does not possess the

composition property, which means that the equation (3.1) does not define a cocycle

in the usual way. On the other hand, in [2] it has been proved (for the case of stochas-

tic equation with homogeneous right-hand side and bilinear fractional noise) that the

cocycle property does hold in the case when stochastic integration in Stratonovich

sense is considered.

Also, it is interesting to note that if the state space V is finite-dimensional (and un-

der our commutativity assumption) the evolution system {UY (t, s), 0 6 s 6 t 6 T }

may be expressed as the Wick exponential

UY (t, s) = exp⋄{A(t− s) +B(BH
t −BH

s )}

and it is easy to verify that it satisfies the evolution property with respect to the

Wick multiplication

UY (t, s) = UY (t, u) ⋄ UY (u, s), 0 6 s 6 u 6 t.

In infinite dimensions (and in particular for unbounded B) the problem seems to be

more complex, since the explicit form of {U(t, s), 0 6 s 6 t 6 T } is not available (in

fact, to show the existence of strong evolution operators is much more complicated

than for one-parameter semigroups) and working with Wick compositions of such

systems may not be easy in general.

Similarly, to derive the “appropriate” mild formula for the semilinear equa-

tion (4.5) would have to take into account the Wick correction (for deeper insight to

these questions in one-dimensional case see [12], [13]).

The natural question is whether there is a chance to obtain a weak solution as the

unique solution to the equation (4.2). The affirmative answer is given by the next

theorem but only under the restrictive assumption on F that it does not depend on

the space variable.

Theorem 4.7. Assume that the measurable function F : [0, T ] → V is affine and

that ‖F‖V ∈ L2([0, T ]). Then the unique continuous solution {Xt, t ∈ [0, T ]} to the

equation

(4.9) XM
t = UY (t, 0)x+

∫ t

0

UY (t, r)F (r) dr

stated in Theorem 4.1 is a weak solution to the equation

(4.10) dXt = AXt dt+ F (t) dt+BXt dB
H
t ,

X0 = x ∈ V.
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The main idea of the proof is to use the standard and stochastic Fubini theorems

for the Skorokhod integral stated in [11], Lemma 2.10, or [15], Exercise 3.2.8.

Lemma 4.8. Consider a random field {u(t, x), t ∈ [0, T ], x ∈ G}, where G ⊂ R

is a bounded set, such that

(i)W u ∈ L2(Ω× [0, T ]×G),

(ii)W u(·, x) ∈ Dom δW for a.e. x ∈ G,

(iii)W E
[∫

G

(∫ T

0
u(t, x) dWt

)2
dx

]
<∞.

Then the process
{∫

G u(t, x) dx, t ∈ [0, T ]
}
∈ Dom δW and

∫ T

0

(∫

G

u(t, x) dx

)
dWt =

∫

G

(∫ T

0

u(t, x) dWt

)
dx.

Due to the relationship between Skorokhod integral with respect to Wiener process

and fractional Brownian motion (see (2.6) or [16] for more detailes) (ii)W, (iii)W are

equivalent to

(ii)H uH(·, x) ∈ Dom δH for a.e. x ∈ G,

(iii)H E
[∫

G

(∫ T

0
uH(t, x) dBH

t

)2
dx

]
<∞,

respectively, where uH(t, x) = (K∗
H)−1(u(·, x))(t), t ∈ [0, T ]. The conclusion of

Lemma 4.8 can be reformulated in the following way. The process

{∫

G

uH(t, x) dx, t ∈ [0, T ]

}
∈ Dom δH

and ∫ T

0

(∫

G

uH(t, x) dx

)
dBH

t =

∫

G

(∫ T

0

uH(t, x) dBH
t

)
dx.

The proof of Theorem 4.7 is based on the following lemma.

Lemma 4.9. The equalities

(4.11)

∫ t

0

∫ r

0

〈UY (r, v)F (v), A
∗ζ〉V dv dr =

∫ t

0

∫ t

v

〈UY (r, v)F (v), A
∗ζ〉V dr dv

and

∫ t

0

∫ r

0

〈UY (r, v)F (v), B
∗ζ〉V dv dBH

r =

∫ t

0

∫ t

v

〈UY (r, v)F (v), B
∗ζ〉V dBH

r dv

hold P-a.s. for any t ∈ [0, T ] and fixed ζ ∈ D∗.
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P r o o f. It is necessary to verify the assumptions of the standard and stochastic

Fubini theorems.

Notice that the Fernique theorem (see e.g. [8]) yields that there exists a random

variable CBH (ω) such that CBH ∈ Lq(Ω) for any q ∈ [1,∞) and l > 0, and

(4.12) MB exp{lωB‖B
H(ω)‖C([0,T ])} 6 CBH (ω), ω ∈ Ω.

Since by (4.12) and (3.4)

∫ t

0

∫ r

0

|〈UY (r, v)F (v), A
∗ζ〉V | dv dr 6

∫ T

0

∫ T

0

CBH (ω)CU‖F (v)‖V ‖A
∗ζ‖V dv dr

6 K(ω)

∫ T

0

‖F (v)‖V dv <∞

for a.e. ω ∈ Ω, (4.11) follows by the standard Fubini theorem.

Denote

uH(r, s) = 〈UY (r, s)F (s), B
∗ζ〉V , 0 6 s 6 r 6 t,

u(r, s) = (K∗
HuH(·, s))(r), 0 6 s 6 r 6 t,

and verify that (i)W, (ii)H and (iii)H hold for the corresponding processes. First show

that u ∈ L2([0, t]2 × Ω). Using (2.2),

E

[∫ t

0

∫ t

0

u2(r, s) dr ds

]
6 KeE

[∫ t

0

∫ t

0

u2H(r, s) dr ds

]

6 KeE

[∫ t

0

∫ t

0

(CBH (ω)CU‖F (s)‖V ‖B
∗ζ‖V )

2 dr ds

]
<∞,

and (i)W follows. To prove (ii)H it sufficies to show (in view of (2.3)) that uH(·, s) ∈

D
1,2
H (|H|) for a.e. s ∈ [0, t], which is true whenever

(4.13) max
{

sup
r∈[0,t]

E[u2H(r, s)], sup
r∈[0,t]

sup
v∈[0,t]

E[(DH
v uH(r, s))2]

}
<∞

for a.e. s ∈ [0, t]. Since

DH
v uH(r, s) = 〈UY (r, s)F (s), (B

∗)2ζ〉V I(s,r](v),

the inequalities

sup
r∈[0,t]

sup
v∈[0,t]

E[(DH
v uH(r, s))2]

6 sup
r∈[0,t]

E[(CBH (ω)CU‖F (s)‖V ‖(B
∗)2ζ‖V )

2] = K‖F (s)‖2V <∞
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and

sup
r∈[0,t]

E[u2H(r, s)] 6 E[(CBH (ω)CU‖F (s)‖V ‖B
∗ζ‖V )

2] 6 K‖F (s)‖2V <∞

hold for a.e. s ∈ [0, t], which completes the proof of (4.13).

Finally, applying the estimate on the Skorokhod integral (2.4) and the previous

part of the proof of (4.13) we conclude that

E

[∫ t

0

(∫ t

0

uH(r, s) dBH
r

)2

ds

]
=

∫ t

0

E

[(∫ t

0

uH(r, s) dBH
r

)2]
ds

6 CH,2

∫ t

0

(E[‖uH(·, s)‖2L2([0,t])] + E[‖DHuH(·, s)‖2L2([0,t]2)]) ds

6 CH,2

∫ t

0

(t+ t2)K‖F (s)‖2V ds <∞

holds and (iii)H follows. �

P r o o f of Theorem 4.7. Fix ζ ∈ D∗. Since {Xt, t ∈ [0, T ]} satisfies (4.9) and

{UY (t, s)x, s 6 t 6 T } is a weak solution to the equation (4.1),

∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r =

∫ t

0

〈UY (r, 0)x,A
∗ζ〉V dr

+

∫ t

0

∫ r

0

〈UY (r, v)F (v), A
∗ζ〉V dv dr +

∫ t

0

〈UY (r, 0)x,B
∗ζ〉V dBH

r

+

∫ t

0

∫ r

0

〈UY (r, v)F (v), B
∗ζ〉V dv dBH

r

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V +

∫ t

0

∫ t

v

〈UY (r, v)F (v), A
∗ζ〉V dr dv

+

∫ t

0

∫ t

v

〈UY (r, v)F (v), B
∗ζ〉V dBH

r dv P-a.s.

holds for any t ∈ [0, T ], where in the last equality Lemma 4.9 is used.

Applying again that {UY (t, s)x, s 6 t 6 T } is a weak solution to the equation (4.1)

∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V +

∫ t

0

〈UY (t, v)F (v), ζ〉V dv −

∫ t

0

〈F (v), ζ〉V dv

= 〈Xt, ζ〉V − 〈x, ζ〉V −

∫ t

0

〈F (v), ζ〉V dv P-a.s.

is obtained for any t ∈ [0, T ] and the conclusion follows. �
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R em a r k 4.10. In view of Example 4.5, one can ask whether the solution to the

equation (4.2) is a weak one to some equation. A partial answer is given by the next

theorem the proof of which is similar to that of Theorem 4.7 (but more technical)

and is omitted.

Theorem 4.11. Let the assumptions of Theorem 4.1 hold and let {Xt, t ∈ [0, T ]}

be the solution to the equation (4.2) such that there exists a constant CX <∞,

(4.14) max
{

sup
t∈[0,T ]

E‖Xt‖
4
V , sup

t∈[0,T ]

sup
v∈[0,T ]

E‖DH
v Xt‖

4
V

}
6 CX .

In addition, let F be Fréchet differentiable with respect to the space variable for any

time t ∈ [0, T ]. Suppose that there exists a function C ∈ L4([0, T ]) such that

(4.15) max{‖F (t, x)‖V , ‖F
′
x(t, x)‖} 6 C(t), t ∈ [0, T ],

holds. Then {Xt, t ∈ [0, T ]} is a solution to the integral equation

Xt = x+

∫ t

0

AXr dr +

∫ t

0

F (r,Xr) dr +

∫ t

0

BXr dB
H
r

+

∫ t

0

αH

∫ T

0

∫ t

r

|v − w|2H−2BUY (v, r)F
′
x(r,Xr)D

H
wXr dv dw dr

in a weak sense, i.e. for any y ∈ D∗

〈Xt, y〉V = 〈x, y〉V +

∫ t

0

〈Xr, A
∗y〉V dr +

∫ t

0

〈F (r,Xr), y〉V dr +

∫ t

0

〈Xr, B
∗y〉V dBH

r

+

∫ t

0

αH

∫ T

0

∫ t

r

|v − w|2H−2〈UY (v, r)F
′
x(r,Xr)D

H
wXr, B

∗y〉V dv dw dr P-a.s.

holds for all t ∈ [0, T ].

R em a r k 4.12. The condition (4.14) implies that X ∈ D
1,4
H (|H|).

E x am p l e 4.13. Consider the stochastic parabolic equation of the second order

with the additional affine term in a drift part

∂u

∂t
(t, x) = (Lu(t, ·))(x) + f(t, x) + bu(t, x)

dBH

dt
,(4.16)

u(0, x) = x0(x), x ∈ O,

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂O,

24



where O ⊂ Rd is a bounded domain with the boundary of class C2, b ∈ R \ {0}, and

(Lu(t, ·))(x) = a0(x)u(t, x) +

d∑

i=1

ai(x)
∂u

∂xi
(t, x) +

d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(t, x)

is a strongly elliptic operator on O.

Suppose that the functions a0, ai, aij ∈ C∞(O) for i, j = 1, . . . , d. Let V = L2(O).

Assume that the mapping F : [0, T ] → V ; F (t) := f(t, ·), satisfies F ∈ L2([0, T ];V ).

Equation (4.16) can be rewritten in the form (4.10), where

(Au(t, ·))(x) = (Lu(t, ·))(x),

with Dom(A) = D = H2(O) ∩ H1
0 (O) and B = bI ∈ L(V ). The adjoint operator

A∗ has the same form as the operator A (possibly, with different coefficients), hence

Dom(A∗) = D. In this case the assumptions of Theorem 4.7 (including those of

Theorems 3.4 and 4.1) are satisfied, therefore the process {Xt, t ∈ [0, T ]} defined as

Xt = UY (t, 0)x0 +

∫ t

0

UY (t, r)F (r) dr

is a weak solution to the equation (4.16). Note that the process {UY (t, s), 0 6 s 6

t 6 T } defined in Theorem 3.4 has the form

UY (t, s) = exp{b(BH
t −BH

s )− 1
2b

2(t− s)2H}SL(t− s), 0 6 s 6 t 6 T,

where {SL(t), t ∈ [0, T ]} is the strongly continuous semigroup on V generated by

operator A.

Theorem 4.7 may serve as a useful tool for an analysis of the behaviour of the

weak solutions to (4.10). As an example a simple result on large time behaviour of

the solution to the equation

(4.17) dXt = (AXt + F (t)) dt+ bXt dB
H
t , t > 0,

X0 = x,

is provided, where A : Dom(A) ⊂ V → V is the generator of a strongly continuous

semigroup {SA(t), t > 0} and b ∈ R \ {0}.

It is easily seen that

UY (t, s) = exp{b(BH
t −BH

s )− 1
2b

2(t− s)2H}SA(t− s), 0 6 s 6 t <∞,
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and since there exist constants M > 0, ω ∈ R, such that

‖SA(t)‖L(V ) 6Meωt, t > 0,

the inequality

(4.18) ‖UY (t, s)‖L(V )

6M exp{b(BH
t −BH

s )− 1
2b

2(t− s)2H + ω(t− s)}, 0 6 s 6 t <∞,

is obtained.

Proposition 4.14. Assume that F ∈ L2([0, T ];V ). Then the solution {Xt, t > 0}

to the equation (4.17) satisfies

‖Xt‖V 6 y(t), t > 0, P-a.s.,

where y is a solution to the one-dimensional equation

(4.19) dy(t) = (ωy(t) + ‖F (t)‖V ) dt+ by(t) dBH
t , t > 0,

y(0) =M‖x‖V .

P r o o f. The proof easily follows from (4.9) and (4.18), because

(4.20) ‖Xt‖V 6M exp{bBH
t − 1

2b
2t2H + ωt}‖x‖V

+

∫ t

0

exp{b(BH
t −BH

s )− 1
2b

2(t− s)2H + ω(t− s)}M‖F (s)‖V ds

and by Theorem 4.7 the right-hand side of (4.20) is exactly the formula for the

solution to (4.19). �

Corollary 4.15. For each p > 1 there exists a constant cp > 0 depending only

on p such that

(4.21) E[‖Xt‖
p
V ] 6 cpM exp

{
1
2 (p

2 − p)b2t2H + pωt
}
‖x‖pV

+Mtp−1

∫ t

0

exp
{
1
2 (p

2 − p)b2(t− s)2H + pω(t− s)
}
‖F (s)‖pV ds, t > 0.

In particular, if F (t) ≡ F does not depend on t > 0, for each ε > 0 there exists

Cε > 0 such that

(4.22) E[‖Xt‖
p
V ] 6 Cε exp{(ĉ+ ε)t2H}, t > 0,

holds with ĉ = 1
2b

2(p2 − p).
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P r o o f. The inequality (4.21) easily follows from (4.20) if we take into account

that

E[exp{p(b(BH
t −BH

s )− 1
2b

2(t− s)2H + ω(t− s))}] = exp{ĉ(t− s)2H + pω(t− s)}

for all 0 6 s 6 t and apply the Hölder inequality to the second term on the right-

hand side of (4.20). The inequality (4.22) is an immediate consequence of (4.21). �

R em a r k 4.16. A simple one-dimensional example shows that the bound ĉ

in (4.22) is, in some sense, sharp. Take V = R, A = ω, F = 0, and x 6= 0. Then

|Xt|
p = |x|p exp{pωt− 1

2b
2pt2H + pbBH

t }, t > 0, p > 1,

hence for each ε > 0 there exists C̃ε > 0 such that

E[|Xt|
p
V ] = |x|p exp{ĉt2H + pωt} > C̃ε exp{(ĉ− ε)t2H}, t > 0.

It means that for p > 1 the pth moment of the solution to the linear equation may

be destabilized by adding bilinear fractional noise of the form bXtḂ
H
t , b 6= 0, even

if the original equation is stable (here ω < 0). It may be interesting to note that

from [4], Remark 3.7, applied to the same example it follows that the solution tends

to zero pathwise exponentially fast as t → ∞, even if the equation without noise is

not stable (i.e. ω > 0).

5. Uniqueness of mild solution

This section is devoted to the proof of the uniqueness of the mild solution to the

equation

(5.1) dXt = AXt dt+BXt dB
H
t , X0 = x,

on the interval [0, T ]. This result is used later in Section 6 to prove the uniqueness

of the weak solution to the perturbed equation. Let H > 1/2 and recall that SB is

a strongly continuous group generated by B and U is a strongly continuous evolution

system associated with operators A−Ht2H−1B2, t ∈ [0, T ].

Theorem 5.1. Let the conditions (A1), (A2), (AB) be satisfied and let B ∈ L(V ).

Then the process X = {Xt, t ∈ [0, T ]} given by

(5.2) Xt = SB(B
H
t )U(t, 0)x
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is a mild solution to the equation (5.1), i.e.

Xt = SA(t)x +

∫ t

0

SA(t− r)BXr dB
H
r P-a.s.

for all t ∈ [0, T ], where {SA(t), t > 0} is an analytic semigroup generated by A.

P r o o f. See [7]. �

Our aim is to show that X defined by (5.2) is a unique mild solution to (5.1).

The idea of the proof is to use the fractional Wiener chaos decomposition as in the

paper [18], where the result is proved in a one-dimensional case.

The construction of multiple fractional integrals and fractional Wiener chaos de-

composition that are used below are made only for real-valued random variables.

However, all remains true for Hilbert space-valued random variables (see e.g. [14]).

For simplicity the Hilbert space-valued notation is the same as the real-valued nota-

tion.

Let H⊗n denote the nth tensor product of H for any n > 2. Set H⊗1 ≡ H and

H⊗0 ≡ R or V , respectively.

Definition 5.2. Let n ∈ N. For f ∈ H⊗n symmetric the multiple fractional

integral of order n of f is defined as

IHn (f) = δnH(f),

where δnH is the multiple divergence operator (Skorokhod integral) of order n (for

the definition see e.g. [14]).

Note that δ1H ≡ δH .

As in the Wiener case the functions F ∈ L2(Ω;G,P) (where G denotes the σ-field

generated by {BH
t , t ∈ [0, T ]}) admit the unique fractional Wiener chaos decompo-

sition

F = E[F ] +

∞∑

n=1

IHn (fn),

where fn ∈ H⊗n are symmetric elements which are uniquely determined (see [14]

or [15]). Let

Hn = IHn (H⊗n)

be the fractional Wiener chaos of order n.

Theorem 5.3. Under the assumptions of Theorem 5.1 the mild solution

{Xt = SB(B
H
t )U(t, 0)x, t ∈ [0, T ]},

to the equation (5.1) is unique in Dom δH .

28



P r o o f. Clearly, X = {Xt, t ∈ [0, T ]} ∈ D
1,2
H (|H|) ⊂ Dom δH . Take another

mild solution Y = {Yt, t ∈ [0, T ]} ∈ Dom δH to the equation (5.1). Then the

processes X and Y satisfy

Xt = SA(t)x+

∫ t

0

SA(t− r)BXr dB
H
r ,

Yt = SA(t)x+

∫ t

0

SA(t− r)BYr dB
H
r ,

respectively. Define the process Z = {Zt, t ∈ [0, T ]} as

Zt = Xt − Yt, t ∈ [0, T ].

Let

Zt =
∞∑

n=0

In(zn(t, ·))

be the fractional Wiener chaos decomposition of process Z, where zn(t, ·) ∈ Hn+1

are the symmetric elements in the last n variables. Since

z0(t) = I0(z0(t)) = E[Zt] = E[Xt − Yt] = SA(t)x − SA(t)x = 0

for all t ∈ [0, T ], we get

Zt =
∞∑

n=1

In(zn(t, ·)).

The definition of Skorokhod integral via multiple integrals yields

∞∑

n=1

In(zn(t, ·)) = Zt =

∫ t

0

SA(t− r)BZr dB
H
r =

∫ t

0

∞∑

n=0

In(SA(t− r)Bzn(r, ·)) dB
H
r

=

∞∑

n=0

In+1(Sym(SA(t− ·)Bzn(·))) =

∞∑

n=1

In(Sym(SA(t− ·)Bzn−1(·))),

where Sym(f) denotes the symmetrization of f in all variables. From the uniqueness

of Wiener chaos expansion we obtain

zn(t, ·) = Sym(SA(t− ·)Bzn−1(·)), n > 1.

Since z0 ≡ 0, we obtain by induction that

z1 ≡ 0, z2 ≡ 0, . . . ,

hence Z ≡ 0 and the proof is completed. �
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6. Uniqueness of weak solution

LetM be the space of B([0, T ])⊗F -measurable processes Z : [0, T ]×Ω → V with

continuous trajectories such that

Z ∈ Dom δH and E sup
t∈[0,T ]

‖Zt‖
2
V <∞.

The aim is to show that a weak solution to the equation

(6.1) dXt = (AXt + F (t)) dt+BXt dB
H
t , X0 = x,

is unique in the space M. To this purpose the following version of integration by

parts formula is necessary.

Lemma 6.1. Let Y ∈ M be a weak solution to the equation

dYt = AYt dt+BYt dB
H
t , X0 = 0.

Then

(6.2) 〈Yt, ζ(t)〉V =

∫ t

0

〈Yr , A
∗ζ(r) + ζ′(r)〉V dr +

∫ t

0

〈Yr, B
∗ζ(r)〉V dBH

r

for any ζ ∈ C1([0, T ];D∗).

P r o o f. 1st step: Let ζ have the form

(6.3) ζ(t) = ϕ(t)ξ, ϕ ∈ C1([0, T ]), ξ ∈ D∗.

Let {tk, k = 0, . . . , n} be the partition of interval [0, t]. Then

(6.4) 〈Yt, ζ(t)〉V = ϕ(t)〈Yt, ξ〉V =
n−1∑

k=0

(ϕ(tk+1)〈Ytk+1
, ξ〉V − ϕ(tk)〈Ytk , ξ〉V )

=

n−1∑

k=0

(ϕ(tk+1)− ϕ(tk))〈Ytk+1
, ξ〉V

+

n−1∑

k=0

ϕ(tk)(〈Ytk+1
, ξ〉V − 〈Ytk , ξ〉V ) = S1 + S2.

Since

∣∣∣∣
n−1∑

k=0

(ϕ(tk+1)− ϕ(tk))〈Ytk+1
, ξ〉V

∣∣∣∣ 6 ‖ϕ‖C1([0,T ]) sup
r∈[0,T ]

‖Yr‖V

(n−1∑

k=0

(tk+1 − tk)

)
‖ξ‖V
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and

E

[
sup

r∈[0,T ]

‖Yr‖
2
V

]
<∞,

it follows that

S1 =
n−1∑

k=0

(ϕ(tk+1)− ϕ(tk))〈Ytk+1
, ξ〉V −→

n→∞

∫ t

0

ϕ′(r)〈Yr , ξ〉V dr in L2(Ω)

in virtue of the Lebesgue dominated convergence theorem. The second sum S2 can

be split into two summands

S2 =

n−1∑

k=0

ϕ(tk)

(∫ tk+1

tk

〈Yr, A
∗ξ〉V dr +

∫ tk+1

tk

〈Yr, B
∗ξ〉V dBH

r

)
= S21 + S22.

The first summand is

S21 =
n−1∑

k=0

ϕ(tk)

∫ tk+1

tk

〈Yr, A
∗ξ〉V dr −→

n→∞

∫ t

0

ϕ(r)〈Yr , A
∗ξ〉V dr in L2(Ω)

by the Lebesgue dominated convergence theorem, because

∣∣∣∣
n−1∑

k=0

ϕ(tk)

∫ tk+1

tk

〈Yr, A
∗ξ〉V dr

∣∣∣∣ 6 ‖ϕ‖C1([0,T ]) sup
r∈[0,T ]

‖Yr‖V ‖A
∗ξ‖V T.

Since Yt ∈ L2(Ω) satisfies (6.4), we conclude that

S22 =

n−1∑

k=0

ϕ(tk)

∫ tk+1

tk

〈Yr, B
∗ξ〉V dBH

r =

∫ t

0

n−1∑

k=0

ϕ(tk)I(tk,tk+1](r)〈Yr , B
∗ξ〉V dBH

r

converges to a random variable denoted by Y 1
t in L

2(Ω) as n → ∞. It remains

to show that Y 1
t =

∫ t

0
ϕ(r)〈Yr , B

∗ξ〉V dBH
r by using the closedness of Skorokhod

integral. Denote

Φn(r) =

n−1∑

k=0

ϕ(tk)I(tk,tk+1](r)〈Yr , B
∗ξ〉V , r ∈ [0, t], n ∈ N.

Then Φn ∈ Dom δH ,

Φn(r) −→
n→∞

ϕ(r)〈Yr , B
∗ξ〉V
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for any fixed r, ω, and

|Φn(r)| =

∣∣∣∣
n−1∑

k=0

ϕ(tk)I(tk ,tk+1](r)〈Yr , B
∗ξ〉V

∣∣∣∣

6 ‖ϕ‖C1([0,T ]) sup
r∈[0,T ]

‖Yr‖V ‖B
∗ξ‖V

n−1∑

k=0

I(tk,tk+1](r)

= ‖ϕ‖C1([0,T ]) sup
r∈[0,T ]

‖Yr‖V ‖B
∗ξ‖V .

By the Lebesgue dominated convergence theorem Φn ∈ L2(Ω;L2([0, t];V )) and

Φn −→
n→∞

ϕ〈Y,B∗ξ〉V in L2(Ω;L2([0, t];V )).

By the closedness of Skorokhod integral Y 1
t =

∫ t

0 ϕ(r)〈Yr , B
∗ξ〉V dBH

r and equal-

ity (6.2) holds for ζ of the form (6.3).

2nd step: Let ζ ∈ C1([0, T ];D∗). Then there exists a sequence {ζn, n ∈ N} ⊂

C1([0, T ];D∗) of elementary functions of the form (6.3) such that ζn −→
n→∞

ζ in

C1([0, T ];D∗). The aim is to pass to the limit in the equation

〈Yt, ζn(t)〉V =

∫ t

0

〈Yr, A
∗ζn(r) + ζ′(r)〉V dr +

∫ t

0

〈Yr, B
∗ζn(r)〉V dBH

r

in L2(Ω). Clearly,

|〈Yt, ζn(t)− ζ(t)〉V | 6 sup
r∈[0,T ]

‖Yr‖V ‖ζn − ζ‖C1([0,T ];D∗) −→
n→∞

0

and

E

[(∫ t

0

〈Yr, A
∗(ζn(r) − ζ(r)) + (ζ′n(r) − ζ′(r))〉V dr

)2]

6 E

[
sup

r∈[0,T ]

‖Yr‖
2
V

]
‖ζn − ζ‖2C1([0,T ];D∗)T

2 −→
n→∞

0,

thus
∫ t

0 〈Yr, B
∗ζn(r)〉V dBH

r −→
n→∞

Y 2
t in L2(Ω). By the closedness of Skorokhod in-

tegral, Y 2
t =

∫ t

0
〈Yr, B

∗ζ(r)〉V dBH
r , because

E

[ ∫ t

0

〈Yr, B
∗(ζn(r) − ζ(r))〉2V dr

]

6 E

[
sup

r∈[0,T ]

‖Yr‖
2
V

]
‖B∗‖2L(V )‖ζn − ζ‖2C1([0,T ];D∗)T −→

n→∞
0

and 〈Y,B∗ζn〉V ∈ Dom δH for any n ∈ N. �
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Now, we are able to prove the uniqueness result.

Theorem 6.2. Under the assumptions of Theorem 4.7 the solution to the equa-

tion (6.1) is unique in the spaceM.

P r o o f. Let XM be the solution to the equation

XM
t = UY (t, 0)x+

∫ t

0

UY (t, r)F (r) dr, t ∈ [0, T ],

which is also a weak one to (6.1) (Theorem 4.7), where

UY (t, s) = SB(B
H
t −BH

s )U(t− s, 0), s 6 t 6 T,

(for more details see (3.5)). Using the notation from Section 3,

‖UY (t, s)‖L(V ) 6MB exp{2ωB‖B
H‖C([0,T ])}CU , 0 6 s 6 t 6 T,

yields

E

[
sup

t∈[0,T ]

‖XM
t ‖2V

]
6 2C2

UM
2
B(‖x‖

2
V E exp{2ωB‖B

H‖C([0,T ])}

+ ‖F‖2L2([0,T ])TE exp{4ωB‖B
H‖C([0,T ])}) <∞,

by the Fernique Theorem. Therefore, XM ∈ M (the continuity of trajectories is

guaranteed by Theorem 4.1).

Take another weak solution X1 ∈ M to (6.1) and define

X := X1 −XM .

Then X is a weak solution to the equation

(6.5) dXt = AXt dt+BXt dB
H
t , X0 = 0.

Hence, applying Lemma 6.1 to 〈Xt, ξ〉V for any fixed ξ ∈ D∗ and ζ(s) = S∗
A(t−s)ξ,

s ∈ [0, t], we obtain

〈Xt, ξ〉V =

∫ t

0

〈Xr, A
∗S∗

A(t− r)ξ − S∗
A(t− r)A∗ξ〉V dr

+

∫ t

0

〈Xr, B
∗S∗

A(t− r)ξ〉V dBH
r

=

∫ t

0

〈SA(t− r)BXr, ξ〉V dBH
r =

〈∫ t

0

SA(t− r)BXr dB
H
r , ξ

〉

V

.
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Therefore,

Xt =

∫ t

0

SA(t− r)BXr dB
H
r , t ∈ [0, T ],

so X is also a mild solution to the equation (6.5) and by the uniqueness result in

Theorem 5.3 we have

Xt =

∫ t

0

SA(t− r)BXr dB
H
r = SB(B

H
t )U(t, 0)0 = 0,

hence X1 = XM . �

Corollary 6.3. The weak solution {SB(B
H
t )U(t, 0)x, t ∈ [0, T ]} to the equa-

tion (5.1) is unique inM.

In particular, the solution

Xt = exp{bBH
t − 1

2b
2t2H + at}x, t ∈ [0, T ],

to the one-dimensional equation

dXt = aXt dt+ bXt dB
H
t , X0 = x,

is unique inM.
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