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Abstract. Let R be a noncommutative prime ring of characteristic different from 2 with
Utumi quotient ring U and extended centroid C, let F , G and H be three generalized
derivations of R, I an ideal of R and f(x1, . . . , xn) a multilinear polynomial over C which
is not central valued on R. If

F (f(r))G(f(r)) = H(f(r)2)

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:
(1) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and H(x) = xab for all

x ∈ R;
(2) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx for all x ∈ R,
with ab ∈ C;

(3) there exist b ∈ C and a ∈ U such that F (x) = ax, G(x) = bx and H(x) = abx for all
x ∈ R;

(4) f(x1, . . . , xn)
2 is central valued on R and one of the following conditions holds:

(a) there exist a, b, p, p′ ∈ U such that F (x) = ax, G(x) = xb and H(x) = px+ xp′

for all x ∈ R, with ab = p+ p′;
(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx and H(x) = px+ xp′

for all x ∈ R, with p+ p′ = ab ∈ C.

Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quo-
tient ring

MSC 2010 : 16W25, 16N60

1. Introduction

Throughout this paper R always denotes an associative prime ring with cen-

ter Z(R), extended centroid C, and U its Utumi quotient ring. The Lie commutator
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of x and y is denoted by [x, y] and defined by [x, y] = xy − yx for x, y ∈ R. An

additive mapping d : R → R is called a derivation if d(xy) = d(x)y+xd(y) holds for

all x, y ∈ R. An additive subgroup L of R is said to be a Lie ideal of R if [L,R] ⊆ L.

An additive mapping F : R → R is called a generalized derivation if there exists

a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. Ev-

idently, any derivation is a generalized derivation. Thus, the generalized derivation

covers both the concepts of derivation and left multiplier mapping. The left mul-

tiplier mapping means an additive mapping F : R → R such that F (xy) = F (x)y

holds for all x, y ∈ R. We denote by s4 the standard polynomial in four variables,

which is s4(x1, x2, x3, x4) =
∑

σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) where (−1)σ is +1 or −1

according to σ being an even or odd permutation in symmetric group S4.

Let S be a nonempty subset of R and F : R → R an additive mapping. Then

we say that F acts as a homomorphism or anti-homomorphism on S if F (xy) =

F (x)F (y) or F (xy) = F (y)F (x) holds for all x, y ∈ S, respectively. The additive

mapping F acts as a Jordan homomorphism on S if F (x2) = F (x)2 holds for all

x ∈ S.

A series of papers in literature studied the homomorphism or anti-homomorphism

of some specific type of additive mappings in prime and semiprime rings under certain

conditions (see [1], [2], [4], [5], [10], [17], [14], [19], [30], [31]).

In [10], De Filippis studied the following cases: (i) when the generalized deriva-

tion F acts as a Jordan homomorphism on a noncentral Lie ideal L of R, that is

F (x)F (x) = F (x2) for all x ∈ L, and (ii) F (x)F (x) = F (x2) for all x ∈ [I, I], where I

is a nonzero right ideal of a prime ring R.

It is natural to ask what happens, if we consider three generalized derivations

F,G,H : R → R such that F (x)G(x) = H(x2) for all x in a suitable subset of R.

Recently, Dhara, Rehman and Raza in [16] proved that if R is a prime ring of

characteristic not 2, L a nonzero square closed Lie ideal of R and F,G,H three

generalized derivations associated with derivations d(6= 0), δ(6= 0), h such that

F (u)G(v) ± H(uv) ∈ Z(R) for all u, v ∈ L or F (u)G(v) ± H(vu) ∈ Z(R) for all

u, v ∈ L, then L ⊆ Z(R).

In the present paper, our motive is to investigate the situation F (x)G(x) = H(x2)

for all x ∈ {f(x1, . . . , xn) : x1, . . . , xn ∈ I}, where I is a nonzero ideal of R and

f(x1, . . . , xn) is a multilinear polynomial over C. Note that in case F = G = H ,

Dhara, Huang and Pattanayak studied a more general situation in [15], that is,

F (x)n = F (xn) for all x ∈ {f(x1, . . . , xn) : x1, . . . , xn ∈ I}, where I is a nonzero

right ideal of R and f(x1, . . . , xn) is a multilinear polynomial over C.

More precisely, we prove the following theorem:
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Main theorem. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, let F,G and H be

three generalized derivations of R, I an ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. If

F (f(r))G(f(r)) = H(f(r)2)

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:

(1) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and H(x) = xab

for all x ∈ R;

(2) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx for all

x ∈ R, with ab ∈ C;

(3) there exist b ∈ C and a ∈ U such that F (x) = ax, G(x) = bx and H(x) = abx

for all x ∈ R;

(4) f(x1, . . . , xn)
2 is central valued on R and one of the following conditions holds:

(a) there exist a, b, p, p′ ∈ U such that F (x) = ax, G(x) = xb and H(x) =

px+ xp′ for all x ∈ R, with ab = p+ p′;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx and H(x) =

px+ xp′ for all x ∈ R, with p+ p′ = ab ∈ C.

Example 1.1. Let Z be the set of all integers. Consider a ring R =
{( x y

0 0

)

:

x, y ∈ Z
}

and a multilinear polynomial f(x, y) = xy which is not central valued

on R. We define maps F,G, d, g : R → R by G
( x y

0 0

)

=
( x 2y

0 0

)

, g
( x y

0 0

)

=
( 0 y

0 0

)

,

F
( x y

0 0

)

=
( x 3y

0 0

)

and d
( x y

0 0

)

=
( 0 2y

0 0

)

. Then F and G are generalized derivations

of R associated with derivations d and g, respectively. We see that

G(f(x, y))F (f(x, y)) = F (f(x, y)2)

for all x, y ∈ R.

As an immediate application of the main theorem, in particular, when H = 0, we

obtain the result of Carini, De Filippis and Scudo in [7]:

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, let F , G be two

nonzero generalized derivations of R, I an ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. If

F (f(r))G(f(r)) = 0

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:
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(1) there exist a, b ∈ U such that F (x) = xa, G(x) = bx for all x ∈ R, with ab = 0;

(2) f(x1, . . . , xn)
2 is central valued on R and there exist a, b ∈ U such that

F (x) = ax, G(x) = xb for all x ∈ R, with ab = 0.

In particular, when F = G in our Main theorem, we obtain Theorem 1 of De Fi-

lippis and Scudo in [12] as a special case.

Corollary 1.3. Let R be a noncommutative prime ring of characteristic differ-

ent from 2 with Utumi quotient ring U and extended centroid C, let F and H be

two generalized derivations of R, I an ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. If

F (f(r))2 = H(f(r)2)

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:

(1) there exists a ∈ C such that F (x) = ax, and H(x) = a2x for all x ∈ R;

(2) f(x1, . . . , xn)
2 is central valued on R and there exist a ∈ C, p, p′ ∈ U such that

F (x) = ax, and H(x) = px+ xp′ for all x ∈ R, with p+ p′ = a2.

In particular, when F = G = H , our Main theorem yields the following corollary

which is Corollary 2.3 in [15].

Corollary 1.4. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, let F be a generalized

derivation of R, I an ideal of R and f(x1, . . . , xn) a multilinear polynomial over C

which is not central valued on R. If

F (f(r))2 = F (f(r)2)

for all r = (r1, . . . , rn) ∈ In, then F (x) = x for all x ∈ R.

Another immediate corollary is obtained by taking F (x) = x for all x ∈ R, G = 2d

and H = d, where d is a derivation in our Main theorem, which gives the particular

case of the main result of Lee and Lee in [26]. Moreover, replacing multilinear

polynomial f(x1, . . . , xn) by x, the corollary gives the famous result of Posner in [29].

Corollary 1.5. Let R be a prime ring of characteristic different from 2 with

extended centroid C, let d be a nonzero derivation of R, I an ideal of R and

f(x1, . . . , xn) a multilinear polynomial over C. If [d(f(r)), f(r)] = 0 for all r =

(r1, . . . , rn) ∈ In, then f(x1, . . . , xn) is central valued on R.
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2. Main results

First we consider the inner generalized derivation cases. Let F (x) = ax + xc,

G(x) = bx+xq and H(x) = px+xp′ for all x ∈ R, for some a, b, c, p, q, p′ ∈ U . Then

F (f(r))G(f(r)) = H(f(r)2) for all x ∈ f(R) yields

(af(r) + f(r)c)(bf(r) + f(r)q) = pf(r)2 + f(r)2p′,

which gives

af(r)bf(r) + af(r)2q + f(r)c′f(r) + f(r)cf(r)q = pf(r)2 + f(r)2p′

for all r = (r1, . . . , rn) ∈ Rn, where c′ = cb. We investigate this generalized polyno-

mial identity in the prime ring.

We need the following known results:

Lemma 2.1 ([3], Lemma 1). Let R be a noncommutative prime ring, a, b ∈ U ,

let p(x1, . . . , xn) be any polynomial over C which is not an identity for R. If ap(r)−

p(r)b = 0 for all r = (r1, . . . , rn) ∈ Rn, then one of the following conditions holds:

(1) a = b ∈ C,

(2) a = b and p(x1, . . . , xn) is central valued on R,

(3) char(R) = 2 and R satisfies s4.

Lemma 2.2 ([3], Lemma 3). Let R be a noncommutative prime ring with Utumi

quotient ring U and extended centroid C, and let f(x1, . . . , xn) be a multilinear

polynomial over C which is not central valued on R. Suppose that there exist

a, b, c, q ∈ U such that (af(r) + f(r)b)f(r) − f(r)(cf(r) + f(r)q) = 0 for all r =

(r1, . . . , rn) ∈ Rn. Then one of the following conditions holds:

(1) a, q ∈ C and q − a = b − c = α ∈ C;

(2) f(x1, . . . , xn)
2 is central valued on R and there exists α ∈ C such that q − a =

b− c = α;

(3) char(R) = 2 and R satisfies s4.

In particular, from the above lemma, we have the following result:

Lemma 2.3. Let R be a noncommutative prime ring with Utumi quotient ring U

and extended centroid C, and let f(x1, . . . , xn) be a multilinear polynomial over C

which is not central valued on R. Suppose that there exist a, b, c ∈ U such that

f(r)af(r) + f(r)2b − cf(r)2 = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the

following conditions holds:
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(1) b, c ∈ C and c− b = a = α ∈ C;

(2) f(x1, . . . , xn)
2 is central valued on R and there exists α ∈ C such that c− b =

a = α;

(3) char(R) = 2 and R satisfies s4.

Lemma 2.4. Let R be a noncommutative prime ring with Utumi quotient ring U

and extended centroid C, and let f(x1, . . . , xn) be a multilinear polynomial over C

which is not central valued on R. Suppose that there exist a, b ∈ U such that

(af(r) + f(r)b)f(r) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the following

conditions holds:

(1) a, b ∈ C and a+ b = 0;

(2) char(R) = 2 and R satisfies s4.

Lemma 2.5. Let R be a noncommutative prime ring with Utumi quotient ring U

and extended centroid C, and let f(x1, . . . , xn) be a multilinear polynomial over C

which is not central valued on R. Suppose that there exist c, q ∈ U such that

f(r)(cf(r) + f(r)q) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the following

conditions holds:

(1) c, q ∈ C and q + c = 0;

(2) char(R) = 2 and R satisfies s4.

Lemma 2.6 ([11], Lemma 1). Let C be an infinite field and m > 2. If A1, . . . , Ak

are not scalar matrices in Mm(C) then there exists an invertible matrix P ∈ Mm(C)

such that all matrices PA1P
−1, . . . , PAkP

−1 have entries different from zero.

Proposition 2.7. Let R = Mm(C), m > 2, be the ring of all m × m matrices

over the infinite field C, f(x1, . . . , xn) a noncentral multilinear polynomial over C

and a, b, c, p, q, c′, p′ ∈ R. If

af(r)bf(r) + af(r)2q + f(r)c′f(r) + f(r)cf(r)q = pf(r)2 + f(r)2p′

for all r = (r1, . . . , rn) ∈ Rn, then either a or b and either c or q are central.

P r o o f. By our assumption R satisfies the generalized identity

(2.1) af(x1, . . . , xn)bf(x1, . . . , xn) + af(x1, . . . , xn)
2q

+ f(x1, . . . , xn)c
′f(x1, . . . , xn) + f(x1, . . . , xn)cf(x1, . . . , xn)q

= pf(x1, . . . , xn)
2 + f(x1, . . . , xn)

2p′.

We assume first that a /∈ Z(R) and b /∈ Z(R). Now we shall show that this case

leads to a contradiction.
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Since a /∈ Z(R) and b /∈ Z(R), by Lemma 2.6 there exists a C-automorphism ϕ

of Mm(C) such that a1 = ϕ(a), b1 = ϕ(b) have all nonzero entries. Clearly a1, b1,

c1 = ϕ(c), c′1 = ϕ(c′), q1 = ϕ(q), p1 = ϕ(p) and p′1 = ϕ(p′) must satisfy the condition

(2.2) a1f(x1, . . . , xn)b1f(x1, . . . , xn) + a1f(x1, . . . , xn)
2q1

+ f(x1, . . . , xn)c
′

1f(x1, . . . , xn) + f(x1, . . . , xn)c1f(x1, . . . , xn)q1

= p1f(x1, . . . , xn)
2 + f(x1, . . . , xn)

2p′1

for all x1, . . . , xn ∈ R.

Here ekl denotes the usual matrix unit with 1 in (k, l)-entry and zero elsewhere.

Since f(x1, . . . , xn) is not central, by [24] (see also [27]) there exist u1, . . . , un ∈

Mm(C) and 0 6= γ ∈ C such that f(u1, . . . , un) = γekl, with k 6= l. Moreover,

since the set {f(r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is invariant under the action of all

C-automorphisms of Mm(C) for any i 6= j there exist r1, . . . , rn ∈ Mm(C) such that

f(r1, . . . , rn) = γeij, where 0 6= γ ∈ C. Hence by (2.2) we have

(2.3) a1eijb1eij + eijc
′

1eij + eijc1eijq1 = 0

and then left multiplying by eij implies eija1eijb1eij = 0, which is a contradiction,

since a1 and b1 have all nonzero entries. Thus we conclude that either a or b are

central.

Similarly we can prove that c or q are central. �

Proposition 2.8. Let R = Mm(C), m > 2, be the ring of all matrices over the

field C with char(R) 6= 2, f(x1, . . . , xn) a noncentral multilinear polynomial over C

and a, b, c, p, q, c′, p′ ∈ R. If

af(r)bf(r) + af(r)2q + f(r)c′f(r) + f(r)cf(r)q = pf(r)2 + f(r)2p′

for all r = (r1, . . . , rn) ∈ Rn, then either a or b and either c or q are central.

P r o o f. If one assumes that C is infinite, then the conclusions follow by Propo-

sition 2.7.

Now let C be finite and let K be an infinite field which is an extension of the

field C. Let R = Mm(K) ∼= R ⊗C K. Notice that the multilinear polynomial

f(x1, . . . , xn) is central valued on R if and only if it is central valued on R. Consider

the generalized polynomial

(2.4) P (x1, . . . , xn) = af(x1, . . . , xn)bf(x1, . . . , xn) + af(x1, . . . , xn)
2q

+ f(x1, . . . , xn)c
′f(x1, . . . , xn) + f(x1, . . . , xn)cf(x1, . . . , xn)q

− (pf(x1, . . . , xn)
2 + f(x1, . . . , xn)

2p′) = 0

which is a generalized polynomial identity for R.
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Moreover, it is multi-homogeneous of multi-degree (2, . . . , 2) in the indeterminates

x1, . . . , xn.

Hence the complete linearization of P (x1, . . . , xn) is a multilinear generalized poly-

nomial Θ(x1, . . . , xn, y1, . . . , yn) in 2n indeterminates, moreover,

Θ(x1, . . . , xn, x1, . . . , xn) = 2nP (x1, . . . , xn).

Clearly the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized polyno-

mial identity for R and R too. Since char(C) 6= 2 we obtain P (r1, . . . , rn) = 0 for all

r1, . . . , rn ∈ R and then the conclusion follows from Proposition 2.7. �

Lemma 2.9. Let R be a noncommutative prime ring of char(R) 6= 2, a, b, c,

c′ ∈ U , let p(x1, . . . , xn) be any polynomial over C which is not an identity for R. If

ap(r) + p(r)b + cp(r)c′ = 0 for all r = (r1, . . . , rn) ∈ Rn, then one of the following

conditions holds:

(1) b, c′ ∈ C and a+ b+ cc′ = 0,

(2) a, c ∈ C and a+ b+ cc′ = 0,

(3) a+ b+ cc′ = 0 and p(x1, . . . , xn) is central valued on R.

P r o o f. If p(x1, . . . , xn) is central valued on R, then our assumption ap(r) +

p(r)b + cp(r)c′ = 0 yields (a + b + cc′)p(r) = 0 for all r = (r1, . . . , rn) ∈ Rn. Since

p(r1, . . . , rn) is nonzero valued on R, a + b + cc′ = 0 and hence we obtain our

conclusion (3).

If c′ ∈ C, then by assumption we have (a + cc′)p(r) + p(r)b = 0 for all r =

(r1, . . . , rn) ∈ Rn. By Lemma 2.1, we have one of the following conditions: (1) a +

cc′ = −b ∈ C, which is our conclusion (1); (2) a + cc′ = −b and p(r1, . . . , rn) is

central valued on R, which is our conclusion (3).

If c ∈ C, then by assumption we have ap(r) + p(r)(b + cc′) = 0 for all r =

(r1, . . . , rn) ∈ Rn. By Lemma 2.1, we have one of the following conditions: (1) b +

cc′ = −a ∈ C, which is our conclusion (2); (2) b + cc′ = −a and p(r1, . . . , rn) is

central valued on R, which is our conclusion (3).

Next, we assume that p(x1, . . . , xn) is not central valued on R and c, c′ /∈ C. Let

G be the additive subgroup of R generated by the set S = {p(x1, . . . , xn) : x1, . . .,

xn ∈ R}. Then S 6= {0}, since p(x1, . . . , xn) is nonzero valued on R. By our

assumption we get ax + xb + cxc′ = 0 for any x ∈ G. By [8], either G ⊆ Z(R)

or char(R) = 2 and R satisfies s4, except when G contains a noncentral Lie ideal

L of R. Since p(x1, . . . , xn) is not central valued on R, the first case cannot occur.

Moreover, since char(R) 6= 2, we have only the case that G contains a noncentral Lie

ideal L of R. By [6], Lemma 1, there exists a noncentral two sided ideal I of R such

that [I, R] ⊆ L. In particular, a[x1, x2] + [x1, x2]b+ c[x1, x2]c
′ = 0 for all x1, x2 ∈ I.
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By [9], a[x1, x2] + [x1, x2]b + c[x1, x2]c
′ = 0 is a generalized polynomial identity for

R and for U .

Since c and c′ are not in C, the generalized polynomial identity (GPI) a[x1, x2] +

[x1, x2]b + c[x1, x2]c
′ = 0 is nontrivial GPI for U and U ⊗C C. Since both U and

U ⊗C C are centrally closed (see [18]), we may replace R by U or U ⊗C C according

as C is finite or infinite. Thus we may assume that R is centrally closed over C

which is either finite or algebraically closed. By Martindale’s theorem in [28], R is

a primitive ring having a nonzero socle Soc(R) with C as the associated division ring.

In light of Jacobson’s theorem in [20], page 75, R is isomorphic to a dense ring of

linear transformations on some vector space V over C. Since R is not commutative,

dimC V > 2. If dimC V = n, then by density of R we have R ∼= Mn(C), n > 2.

Replacing [x1, x2] = [eii, eij ] = eij , we have 0 = aeij + eijb + ceijc
′. Left and right

multiplying by eij , we have 0 = cjic
′

jieij . This implies cjic
′

ji = 0. Then by the same

argument as before Proposition 2.7 and Proposition 2.8, we conclude that either

c ∈ C or c′ ∈ C, a contradiction. Assume now that V is infinite dimensional over C.

Then for any e = e2 ∈ Soc(R) we have eRe ∼= Mk(C) with k = dimC V e. Since

c /∈ C and c′ /∈ C, c and c′ do not centralize the nonzero ideal Soc(R) of R, so

ch0 6= h0c and c′h1 6= h1c
′ for some h0, h1 ∈ Soc(R). By Litoff’s theorem in [22],

page 280, there exists an idempotent e ∈ Soc(R) such that h0, h1, h0c, ch0, h1c
′,

c′h1 are all in eRe. We have eRe ∼= Mk(C) where k = dimC V e. Since R satisfies

GPI e(a[ex1e, ex2e] + [ex1e, ex2e]b + c[ex1e, ex2e]c
′)e = 0, the subring eRe satisfies

the GPI eae[x1, x2] + [x1, x2]ebe + ece[x1, x2]ec
′e = 0. Then by the above finite

dimensional case, we conclude that either ece ∈ Z(eRe) or ec′e ∈ Z(eRe). Then

ch0 = ech0 = eceh0 = h0ece = h0ce = h0c

and

c′h1 = ec′h1 = ec′eh1 = h1ec
′e = h1c

′e = h1c
′.

Both the cases lead to contradiction. �

Lemma 2.10. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C, and let f(x1, . . . , xn)

be a multilinear polynomial over C which is not central valued on R. If F,G and H

are three inner generalized derivations of R such that

F (f(r))G(f(r)) = H(f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following conditions holds:

(1) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and H(x) = xab

for all x ∈ R;
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(2) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx for all

x ∈ R, with ab ∈ C;

(3) there exist b ∈ C and a ∈ U such that F (x) = ax, G(x) = bx and H(x) = abx

for all x ∈ R;

(4) f(x1, . . . , xn)
2 is central valued on R and one of the following conditions holds:

(a) there exist a, b, p, p′ ∈ U such that F (x) = ax, G(x) = xb and H(x) =

px+ xp′ for all x ∈ R, with ab = p+ p′;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx and H(x) =

px+ xp′ for all x ∈ R, with p+ p′ = ab ∈ C.

P r o o f. Since F , G and H are three inner generalized derivations of R, we

assume that F (x) = ax+ xc, G(x) = bx+ xq and H(x) = px+ xp′ for all x ∈ R for

some a, b, c, p, q, p′ ∈ U . Then by hypothesis we have

(2.5) Ψ(x1, . . . , xn) = af(x1, . . . , xn)bf(x1, . . . , xn) + af(x1, . . . , xn)
2q

+ f(x1, . . . , xn)cbf(x1, . . . , xn) + f(x1, . . . , xn)cf(x1, . . . , xn)q

− (pf(x1, . . . , xn)
2 + f(x1, . . . , xn)

2p′) = 0

for all x1, . . . , xn ∈ R. Since R and U satisfy the same generalized polynomial

identities (see [9]), U satisfies Ψ(x1, . . . , xn) = 0. Suppose that Ψ(x1, . . . , xn) is

a trivial GPI for U . Let T = U ∗C C{x1, x2, . . . , xn}, the free product of U and

C{x1, . . . , xn}, be the free C-algebra in noncommuting indeterminates x1, x2, . . . , xn.

Then, Ψ(x1, . . . , xn) is the zero element in T = U ∗C C{x1, . . . , xn}. This implies

that {p, a, 1} is linearly dependent over C. Let αp + βa + γ = 0. If α = 0, then

β 6= 0, and hence a ∈ C. If α 6= 0, then p = λa + µ for some λ, µ ∈ C. In this case

our identity reduces to

(2.6) af(x1, . . . , xn)bf(x1, . . . , xn) + af(x1, . . . , xn)
2q

+ f(x1, . . . , xn)cbf(x1, . . . , xn) + f(x1, . . . , xn)cf(x1, . . . , xn)q

− ((λa + µ)f(x1, . . . , xn)
2 + f(x1, . . . , xn)

2p′) = 0.

If a /∈ C, then

(2.7) af(x1, . . . , xn)bf(x1, . . . , xn) + af(x1, . . . , xn)
2q − λaf(x1, . . . , xn)

2 = 0,

that is

(2.8) af(x1, . . . , xn)(bf(x1, . . . , xn) + f(x1, . . . , xn)q − λf(x1, . . . , xn)) = 0.

This implies b ∈ C. Thus we conclude that either a ∈ C or b ∈ C.
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Similarly, we can prove that either c ∈ C or q ∈ C.

Next suppose that Ψ(x1, . . . , xn) is a nontrivial GPI for U . In case C is infinite, we

have Ψ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U ⊗C C, where C is the algebraic closure

of C. Since both U and U⊗CC are prime and centrally closed [18], (see Theorems 2.5

and 3.5), we may replace R by U or U ⊗C C according to C being finite or infinite.

Then R is centrally closed over C and Ψ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R. By

Martindale’s theorem in [28], R is then a primitive ring with a nonzero socle soc(R)

and with C as its associated division ring. Then, by Jacobson’s theorem (see [20],

page 75), R is isomorphic to a dense ring of linear transformations of a vector space V

over C. Assume first that V is finite dimensional over C, that is, dimC V = m. By

density of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is not central valued on R,

R must be noncommutative and so m > 2. In this case, by Proposition 2.8, we get

that a or b and c or q are in C. If V is infinite dimensional over C, then for any

e2 = e ∈ soc(R) we have eRe ∼= Mt(C) with t = dimC V e. We want to show that in

this case also a or b and c or q are in C. To prove this, let none of a and b and none

of c and q be in C. Then a, b, c and q do not centralize the nonzero ideal soc(R).

Hence there exist h1, h2, h3, h4 ∈ soc(R) such that [a, h1] 6= 0, [b, h2] 6= 0, [c, h3] 6= 0

and [q, h4] 6= 0. By Litoff’s theorem [22], page 280, there exists an idempotent

e ∈ soc(R) such that ah1, h1a, bh2, h2b, ch3, h3c, qh4, h4q, h1, h2, h3, h4 ∈ eRe. We

have eRe ∼= Mk(C) with k = dimC V e. Since R satisfies the generalized identity

(2.9) e{af(ex1e, . . . , exne)bf(ex1e, . . . , exne) + af(ex1e, . . . , exne)
2q

+ f(ex1e, . . . , exne)cbf(ex1e, . . . , exne)

+ f(ex1e, . . . , exne)cf(ex1e, . . . , exne)q

− (pf(ex1e, . . . , exne)
2 + f(ex1e, . . . , exne)

2p′)}e = 0

the subring eRe satisfies

(2.10) eaef(x1, . . . , xn)ebef(x1, . . . , xn) + eaef(x1, . . . , xn)
2eqe

+ f(x1, . . . , xn)ecbef(x1, . . . , xn) + f(x1, . . . , xn)ecef(x1, . . . , xn)eqe

− (epef(x1, . . . , xn)
2 + f(x1, . . . , xn)

2ep′e) = 0.

Then by Proposition 2.8, either eae or ebe and either ece or eqe are central elements

of eRe. Thus ah1 = (eae)h1 = h1eae = h1a or bh2 = (ebe)h2 = h2(ebe) = h2b and

ch3 = (ece)h3 = h3(ece) = h3c or qh4 = (eqe)h4 = h4eqe = h4q, a contradiction.

Thus up to now, we have proved that a or b and c or q are in C. Thus we have

the following four cases:

Case I : a, c ∈ C. In this case, (2.5) reduces to

(2.11) f(r)abf(r) + f(r)2aq + f(r)cbf(r) + f(r)2cq − (pf(r)2 + f(r)2p′) = 0
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that is

(2.12) f(r)(ab + cb)f(r) + f(r)2(aq + cq − p′)− pf(r)2 = 0

for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 2.3, we have any one of the following

cases:

⊲ aq+ cq− p′, p ∈ C and p− (aq+ cq− p′) = ab+ cb = α ∈ C. Thus in this case we

have a, c, p ∈ C, (a + c)b ∈ C and p + p′ = (a + c)(q + b). Since F 6= 0, we have

0 6= a+ c ∈ C. Hence (a+ c)b ∈ C implies b ∈ C. Thus we have F (x) = (a+ c)x,

G(x) = x(b+ q) and H(x) = x(p+ p′) = x(a+ c)(q+ b) for all x ∈ R, which is our

conclusion (1).

⊲ f(x1, . . . , xn)
2 is central valued on R and there exists α ∈ C such that p− (aq +

cq − p′) = ab + cb = α. In this case we have a, c ∈ C, (a + c)b ∈ C and p + p′ =

(a + c)(q + b). Since F 6= 0, we have 0 6= a+ c ∈ C. Hence (a + c)b ∈ C implies

b ∈ C. Hence F (x) = (a+ c)x, G(x) = x(b+ q) and H(x) = px+xp′ for all x ∈ R,

which is our conclusion 4 (a).

Case II : a, q ∈ C. In this case, (2.5) reduces to

(2.13) f(r)(ab + cb+ cq + aq)f(r) − (pf(r)2 + f(r)2p′) = 0

for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 2.3, we have any one of the following

cases:

⊲ p, p′ ∈ C and p + p′ = ab + cb + cq + aq = α ∈ C. Thus in this case we have

a, q, p, p′ ∈ C, with p + p′ = (a + c)(b + q) ∈ C. Hence F (x) = x(a + c), G(x) =

(b + q)x and H(x) = (p + p′)x = (a + c)(b + q)x for all x ∈ R, which is our

conclusion (2).

⊲ f(x1, . . . , xn)
2 is central valued on R and there exists α ∈ C such that p+p′ = ab+

cb+cq+aq = α ∈ C. In this case we have a, q ∈ C, with p+p′ = (a+c)(b+q) ∈ C.

Hence F (x) = x(a+ c), G(x) = (b+ q)x and H(x) = px+ xp′ for all x ∈ R, which

is our conclusion 4 (b).

Case III : b, c ∈ C. In this case, (2.5) reduces to

(2.14) (ab+ bc− p)f(r)2 + af(r)2q + f(r)2(cq − p′) = 0

for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 2.9, we have any one of the following

three cases:

⊲ q, cq − p′ ∈ C and ab + bc − p + aq + cq − p′ = 0. Thus in this case we have

b, c, q, p′ ∈ C and (a+ c)(b+ q) = p+ p′. Hence F (x) = (a+ c)x, G(x) = (b+ q)x

and H(x) = (p+ p′)x = (a+ c)(b + q)x for all x ∈ R, which gives conclusion (3).
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⊲ a, ab+bc−p ∈ C and ab+bc−p+aq+cq−p′ = 0. In this case we have a, b, c, p ∈ C

and (a + c)(b + q) = p + p′. In this case F (x) = (a + c)x, G(x) = x(b + q) and

H(x) = x(p+ p′) = x(a+ c)(b + q) for all x ∈ R. This gives conclusion (1).

⊲ f(x1, . . . , xn)
2 is central valued on R and ab+ bc− p+ aq + cq − p′ = 0. Thus in

this case we have b, c ∈ C and (a + c)(b + q) = p + p′. Hence F (x) = (a + c)x,

G(x) = x(b + q) and H(x) = px+ xp′ for all x ∈ R. This gives conclusion 4 (a).

Case IV : b, q ∈ C. In this case, (2.5) reduces to

(2.15) (ab+ aq − p)f(r)2 + f(r)(cb + cq)f(r) − f(r)2p′ = 0

for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 2.3, we have any one of the following

cases:

⊲ ab + aq − p, p′ ∈ C with p′ − (ab + aq − p) = cb + cq ∈ C. In this case we have

b, q, p′ ∈ C and p+ p′ = (a+ c)(b+ q). Since G 6= 0, we have 0 6= b+ q ∈ C. Hence

cb+ cq = c(b+ q) ∈ C implies c ∈ C. Thus F (x) = (a+ c)x, G(x) = (b+ q)x and

H(x) = (p+ p′)x = (a+ c)(b + q)x for all x ∈ R, which is our conclusion (3).

⊲ f(x1, . . . , xn)
2 is central valued on R and there exists α ∈ C such that p′ − (ab +

aq−p) = cb+cq = α. In this case, we have b, q, (b+q)c ∈ C and p+p′ = (a+c)(b+q).

Since G 6= 0, we have 0 6= b + q ∈ C. Hence (b + q)c ∈ C implies c ∈ C. Thus

F (x) = (a+ c)x, G(x) = x(b+ q) and H(x) = px+ xp′ for all x ∈ R, which is our

conclusion 4 (a). �

Lemma 2.11. Let R be a noncommutative prime ring of characteristic different

from 2 with Utumi quotient ring U and extended centroid C. Let F , G be two

generalized derivations of R, H an inner generalized derivation of R, I an ideal

of R and f(x1, . . . , xn) a multilinear polynomial over C which is not central valued

on R. If

F (f(r))G(f(r)) = H(f(r)2)

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:

(1) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and H(x) = xab

for all x ∈ R;

(2) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx for all

x ∈ R, with ab ∈ C;

(3) there exist b ∈ C and a ∈ U such that F (x) = ax, G(x) = bx and H(x) = abx

for all x ∈ R;

(4) f(x1, . . . , xn)
2 is central valued on R and one of the following conditions holds:

(a) there exist a, b, p, p′ ∈ U such that F (x) = ax, G(x) = xb and H(x) =

px+ xp′ for all x ∈ R, with and ab = p+ p′;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx and H(x) =

px+ xp′ for all x ∈ R, with p+ p′ = ab ∈ C.
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P r o o f. Since H is an inner generalized derivation of R, let H(x) = cx + xc′

for all x ∈ R and for some c, c′ ∈ U . In view of [25], Theorem 3, we may assume

that there exist a, b ∈ U and derivations d, δ of U such that F (x) = ax + d(x) and

G(x) = bx+ δ(x). Since R and U satisfy the same generalized polynomial identities

(see [9]) as well as the same differential identities (see [24]), we may assume that

(2.16) (af(r) + d(f(r)))(bf(r) + δ(f(r))) = cf(r)2 + f(r)2c′

for all r = (r1, . . . , rn) ∈ Un, where d, δ are two derivations on U .

If both F and G are inner generalized derivations of R, then by Lemma 2.10, we

obtain our conclusions. Thus we assume that not both of F and G are inner. Then

d and δ cannot be both inner derivations of U . Now we consider the following two

cases:

Case I : Assume that d and δ are C-dependent modulo inner derivations of U , say

αd+ βδ = adq, where α, β ∈ C, q ∈ U and adq(x) = [q, x] for all x ∈ U .

Subcase i : Let α 6= 0.

Then d(x) = λδ(x) + [p, x] for all x ∈ U , where λ = −βα−1 and p = α−1q.

Then δ cannot be inner derivation of U . From (2.16), we obtain

(2.17) (af(r) + λδ(f(r)) + [p, f(r)])(bf(r) + δ(f(r))) = cf(r)2 + f(r)2c′

for all r = (r1, . . . , rn) ∈ Un, that is, U satisfies

(2.18)

(

af(r1, . . . , rn) + λf δ(r1, . . . , rn)

+ λ
∑

i

f(r1, . . . , δ(ri), . . . , rn) + [p, f(r1, . . . , rn)]

)

×

(

bf(r1, . . . , rn) + f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , δ(ri), . . . , rn)

)

= cf(r1, . . . , rn)
2 + f(r1, . . . , rn)

2c′,

where f δ(r1, . . . , rn) is the polynomial obtained from f(r1, . . . , rn) by replacing each

of the coefficients ασ by δ(ασ) and then we have δ(f(r1, . . . , rn)) = f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , δ(ri), . . . , rn). By Kharchenko’s theorem, see [21], we have that U satis-
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fies

(2.19)

(

af(r1, . . . , rn) + λf δ(r1, . . . , rn)

+ λ
∑

i

f(r1, . . . , yi, . . . , rn) + [p, f(r1, . . . , rn)]

)

×

(

bf(r1, . . . , rn) + f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

)

= cf(r1, . . . , rn)
2 + f(r1, . . . , rn)

2c′.

In particular, for r1 = 0 we have that U satisfies

(2.20) λf(y1, . . . , rn)
2 = 0.

This implies λ = 0 or U satisfies f(r1, . . . , rn)
2 = 0. In the latter case U satisfies

the polynomial identity f(r1, . . . , rn)
2 = 0 and hence there exists a field E such that

U ⊆ Mk(E) and U andMk(E) satisfy the same polynomial identities [23], Lemma 1.

Then again by [27], Corollary 5, f(r1, . . . , rn) is an identity for Mk(E) and so for U ,

a contradiction. Hence we conclude that λ = 0. Thus from (2.19), U satisfies the

blended component

(2.21) (af(r1, . . . , rn) + [p, f(r1, . . . , rn)])
∑

i

f(r1, . . . , yi, . . . , rn) = 0.

In particular, for y1 = r1 and y2 = . . . = yn = 0 we have that U satisfies

(2.22) (af(r1, . . . , rn) + [p, f(r1, . . . , rn)])f(r1, . . . , rn) = 0.

By Lemma 2.4, this yields that p ∈ C and a = 0, implying F = 0, a contradiction.

Subcase ii : Let α = 0.

Then δ(x) = [q′, x] for all x ∈ U , where q′ = β−1q. Since δ is inner, d cannot be

an inner derivation. From (2.16), we obtain

(2.23) (af(r) + d(f(r)))(bf(r) + [q′, f(r)]) = cf(r)2 + f(r)2c′

for all r = (r1, . . . , rn) ∈ Un.

Since d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑

i

f(r1, . . . , d(ri), . . . , rn), by Kharchen-

ko’s theorem, see [21], we can replace d(f(r1, . . . , rn)) by f
d(r1, . . . , rn)+

∑

i

f(r1, . . . ,

yi, . . . , rn) in (2.23) and then U satisfies the blended component

(2.24)
∑

i

f(r1, . . . , yi, . . . , rn)(bf(r1, . . . , rn) + [q′, f(r1, . . . , rn)]) = 0
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and so in particular

(2.25) f(r1, . . . , rn)(bf(r1, . . . , rn) + [q′, f(r1, . . . , rn)]) = 0.

By Lemma 2.5, this yields q′ ∈ C and b = 0, implying G = 0, a contradiction.

Case II : Assume next that d and δ are C-independent modulo inner derivations

of U .

Then applying Kharchenko’s theorem from [21], we have from (2.16) that U sat-

isfies the blended component

(2.26)
∑

i

f(r1, . . . , yi, . . . , rn)
∑

i

f(r1, . . . , ti, . . . , rn) = 0.

This gives f(r1, . . . , rn)
2 = 0, implying f(r1, . . . , rn) = 0 as above, a contradiction.

�

Lemma 2.12. Let R be a prime ring of characteristic different from 2 with Utumi

quotient ring U and extended centroid C, let F , G, H be three generalized derivations

of R, I an ideal of R and f(x1, . . . , xn) a multilinear polynomial over C which is not

central valued on R. If F is the inner generalized derivation of R such that

F (f(r))G(f(r)) = H(f(r)2)

for all r = (r1, . . . , rn) ∈ In, then one of the following conditions holds:

(1) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and H(x) = xab

for all x ∈ R;

(2) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx for all

x ∈ R, with ab ∈ C;

(3) there exist b ∈ C and a ∈ U such that F (x) = ax, G(x) = bx and H(x) = abx

for all x ∈ R;

(4) f(x1, . . . , xn)
2 is central valued on R and one of the following conditions holds:

(a) there exist a, b, p, p′ ∈ U such that F (x) = ax, G(x) = xb and H(x) =

px+ xp′ for all x ∈ R, with ab = p+ p′;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx and H(x) =

px+ xp′ for all x ∈ R, with p+ p′ = ab ∈ C.

P r o o f. Since F is inner, let F (x) = ax + xa′ for all x ∈ R for some a, a′ ∈ U .

In view of [25], Theorem 3, we may assume that there exist b, c ∈ U and derivations

δ, h of U such that G(x) = bx+ δ(x) and H(x) = cx+ h(x). Since R and U satisfy
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the same generalized polynomial identities (see [9]) as well as the same differential

identities (see [24]), we may assume that

(2.27) (af(r) + f(r)a′)(bf(r) + δ(f(r))) = cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)

for all r = (r1, . . . , rn) ∈ Un, where d, δ are two derivations on U .

If H is inner, then the result follows by Lemma 2.11. So we assume that H is not

the inner generalized derivation of U . Now we consider the following two cases:

Case I : Assume that h and δ are C-dependent modulo inner derivations of U , say

αδ+βh = adq, where α, β ∈ C, q ∈ U and adq(x) = [q, x] for all x ∈ U . If α = 0, then

β cannot be equal to zero, implying that h is the inner derivation, a contradiction.

Thus α 6= 0.

Then δ(x) = λh(x) + [p, x] for all x ∈ U , where λ = −βα−1 and p = α−1q.

From (2.27) we obtain

(2.28) (af(r) + f(r)a′)(bf(r) + λh(f(r)) + [p, f(r)])

= cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)

for all r = (r1, . . . , rn) ∈ Un, that is, U satisfies

(2.29) (af(r1, . . . , rn) + f(r1, . . . , rn)a
′)

(

bf(r1, . . . , rn) + λfh(r1, . . . , rn)

+ λ
∑

i

f(r1, . . . , h(ri), . . . , rn) + [p, f(r1, . . . , rn)]

)

= cf(r1, . . . , rn)
2

+ f(r1, . . . , rn)

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , h(ri), . . . , rn)

)

+

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , h(ri), . . . , rn)

)

f(r1, . . . , rn),

where fh(r1, . . . , rn) is the polynomial obtained from f(r1, . . . , rn) by replacing each

of the coefficients ασ by h(ασ) and then we have h(f(r1, . . . , rn)) = fh(r1, . . . , rn) +
∑

i

f(r1, . . . , h(ri), . . . , rn). By Kharchenko’s theorem, see [21], we have that U sat-
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isfies

(2.30) (af(r1, . . . , rn) + f(r1, . . . , rn)a
′)

(

bf(r1, . . . , rn) + λfh(r1, . . . , rn)

+ λ
∑

i

f(r1, . . . , yi, . . . , rn) + [p, f(r1, . . . , rn)]

)

= cf(r1, . . . , rn)
2

+ f(r1, . . . , rn)

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

)

+

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

)

f(r1, . . . , rn).

In particular, U satisfies the blended component

(2.31) (af(r1, . . . , rn) + f(r1, . . . , rn)a
′)λ

∑

i

f(r1, . . . , yi, . . . , rn)

= f(r1, . . . , rn)
∑

i

f(r1, . . . , yi, . . . , rn)

+
∑

i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn).

In particular, for y1 = r1 and y2 = . . . = yn = 0 we have

(2.32) λ(af(r) + f(r)a′)f(r) = 2f(r)2,

that is,

(2.33)
(

(λa− 2)f(r) + f(r)λa′
)

f(r) = 0

for all r = (r1, . . . , rn) ∈ Un. By Lemma 2.4, this gives λa′ ∈ C and λa+λa′−2 = 0.

Then (2.31) gives

(2.34) 2f(r1, . . . , rn)
∑

i

f(r1, . . . , yi, . . . , rn)

= f(r1, . . . , rn)
∑

i

f(r1, . . . , yi, . . . , rn)

+
∑

i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn),

that is

(2.35)

[

∑

i

f(r1, . . . , yi, . . . , rn), f(r1, . . . , rn)

]

= 0.

Then by [13], Lemma 1.2, f(x1, . . . , xn) is central valued, a contradiction.
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Case II : Assume now that h and δ are C-independent modulo inner derivations

of U .

Then applying Kharchenko’s theorem [21], we have from (2.27) that U satisfies

(2.36) (af(r1, . . . , rn) + f(r1, . . . , rn)a
′)

(

bf(r1, . . . , rn)

+ f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

)

= cf(r1, . . . , rn)
2

+ f(r1, . . . , rn)

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn)

)

+

(

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn)

)

f(r1, . . . , rn).

In particular, U satisfies the blended component

(2.37) 0 = f(r1, . . . , rn)
∑

i

f(r1, . . . , ti, . . . , rn)

+
∑

i

f(r1, . . . , ti, . . . , rn)f(r1, . . . , rn).

This gives 2f(r1, . . . , rn)
2 = 0, implying f(r1, . . . , rn) = 0 as before, a contradiction.

�

P r o o f of Main theorem. If F = 0 or G = 0, then by hypothesis H(f(r)2) = 0,

which yields H(f(r))f(r) + f(r)d(f(r)) = 0 for all r = (r1, . . . , rn) ∈ In, where d is

a derivation associated with H . Then by [3], Theorem 1, we have f(x1, . . . , xn)
2 is

central valued on R and H is an inner derivation of R, which is our conclusion (4).

So, we assume that F 6= 0 and G 6= 0.

In [25], Theorem 3, Lee proved that every generalized derivation g on a dense right

ideal of R can be uniquely extended to a generalized derivation of U and thus can

be assumed to be defined on the whole U in the form g(x) = ax + d(x) for some

a ∈ U where d is a derivation of U . In light of this, we may assume that there exist

a, b, c ∈ U and derivations d, δ, h of U such that F (x) = ax+ d(x), G(x) = bx+ δ(x)

and H(x) = cx + h(x). Since I, R and U satisfy the same generalized polynomial

identities (see [9]) as well as the same differential identities (see [24]), without loss of

generality, to prove our results, we may assume (af(r)+ d(f(r)))(bf(r)+ δ(f(r))) =

cf(r)2 + h(f(r)2) for all r = (r1, . . . , rn) ∈ Un, where d, δ, h are three derivations

on U .
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If F or H is an inner generalized derivation of R, then by Lemma 2.11 and

Lemma 2.12 we obtain our conclusions. Thus we assume that F and H are not

inner. Hence

(2.38) {af(r) + d(f(r))}{bf(r) + δ(f(r))} = cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)

for all r = (r1, . . . , rn) ∈ Un. Then neither d nor h can be inner derivations of U .

Now we consider the following two cases:

Case 1 : Let d and δ be C-dependent modulo inner derivations of U , i.e., αd+βδ =

adp′ . Then β 6= 0, otherwise d is inner, a contradiction. Hence δ = λd + adq, where

λ = −β−1α and q = β−1p′. Hence (2.38) becomes

(2.39) {af(r) + d(f(r))}{bf(r) + λd(f(r)) + [q, f(r)]}

= cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)

for all r = (r1, . . . , rn) ∈ Un. Now we have the following two subcases:

Subcase i : Let d and h be C-dependent modulo inner derivations of U .

Then there exist α1, α2 ∈ C such that α1d+ α2h = adq′ . Since both d and h are

outer derivations of U , α1 6= 0, α2 6= 0. Then d = µh+ adc′ , where µ = −α2α
−1
1 and

c′ = q′α−1
1 . Then (2.39) gives

(2.40) {af(r) + µh(f(r)) + [c′, f(r)]}{bf(r) + λµh(f(r)) + [λc′ + q, f(r)]}

= cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)

for all r = (r1, . . . , rn) ∈ Un. Since h is an outer derivation, by Kharchenko’s

theorem, see [21], we can replace h(f(r1, . . . , rn)) by fh(r1, . . . , rn) +
∑

i

f(r1, . . . ,

yi, . . . , rn) in (2.40) and then in particular for r1 = 0, U satisfies

(2.41) λµ2f(y1, . . . , rn)
2 = 0.

This implies that either λ = 0 or µ = 0, since f(r1, . . . , rn) 6= 0 for all r1, . . . , rn ∈ U .

Now µ = 0 gives d is inner, a contradiction. Hence λ = 0 and thus (2.40) gives

(2.42) {af(r) + µh(f(r)) + [c′, f(r)]}{bf(r) + [q, f(r)]}

= cf(r)2 + f(r)h(f(r)) + h(f(r))f(r)
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for all r = (r1, . . . , rn) ∈ Un. Then again by Kharchenko’s theorem, see [21], U sat-

isfies the blended component

(2.43)

{

µ
∑

i

f(r1, . . . , yi, . . . , rn)

}

{bf(r1, . . . , rn) + [q, f(r1, . . . , rn)]}

= f(r1, . . . , rn)
∑

i

f(r1, . . . , yi, . . . , rn)

+
∑

i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn).

In particular, for y1 = r1 and y2 = . . . = yn = 0, we have that U satisfies

(2.44) µf(r1, . . . , rn){bf(r1, . . . , rn) + [q, f(r1, . . . , rn)]} = 2f(r1, . . . , rn)
2,

that is

(2.45) f(r1, . . . , rn)(µ(b+ q)f(r1, . . . , rn)− f(r1, . . . , rn)(2 + µq)) = 0.

Then by Lemma 2.5, 2+µq ∈ C and µ(b+ q)− (2+µq) = 0, that is, µb, µq ∈ C and

µb = 2. Then (2.43) gives

(2.46)

[

∑

i

f(r1, . . . , yi, . . . , rn), f(r1, . . . , rn)

]

= 0.

Then by [13], Lemma 1.2, f(x1, . . . , xn) is central valued, a contradiction.

Subcase ii : Let d and h be C-independent modulo inner derivations of U .

Then applying Khrachenko’s theorem, see [21], to (2.39), we can replace

d(f(r1, . . . , rn)) by fd(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn) and h(f(r1, . . . , rn)) by

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn) and then U satisfies blended components

0 = f(r1, . . . , rn)
∑

i

f(r1, . . . , ti, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn)f(r1, . . . , rn).

In particular, this yields 0 = 2f(r1, . . . , rn)
2, which implies f(r1, . . . , rn) = 0 for all

r1, . . . , rn ∈ U , a contradiction.

Case 2 : Let d and δ be C-independent modulo inner derivations of U .

Subcase i : Let d, δ and h be C-dependent modulo inner derivations of U .

In this case there exist α1, α2, α3 ∈ C such that α1d + α2δ + α3h = ada′ . Then

α3 6= 0, otherwise d and δ would be C-dependent modulo inner derivation of U ,
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a contradiction. Then we can write h = β1d + β2δ + ada′′ for some β1, β2 ∈ C and

a′′ ∈ U . Then (2.38) becomes

(2.47) {af(r1, . . . , rn) + d(f(r1, . . . , rn))}{bf(r1, . . . , rn) + δ(f(r1, . . . , rn))}

= cf(r1, . . . , rn)
2 + f(r1, . . . , rn){β1d(f(r1, . . . , rn)) + β2δ(f(r1, . . . , rn))

+ [a′′, f(r1, . . . , rn)]}+ {β1d(f(r1, . . . , rn))

+ β2δ(f(r1, . . . , rn)) + [a′′, f(r1, . . . , rn)]}f(r1, . . . , rn).

Since d and δ are C-independent modulo inner derivations of U , by Kharchenko’s

theorem, see [21], U satisfies

(2.48)

{

af(r1, . . . , rn) + fd(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

}

×

{

bf(r1, . . . , rn) + f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn)

}

= cf(r1, . . . , rn)
2 + f(r1, . . . , rn)

{

β1f
d(r1, . . . , rn)

+ β1

∑

i

f(r1, . . . , yi, . . . , rn) + β2f
δ(r1, . . . , rn)

+ β2

∑

i

f(r1, . . . , ti, . . . , rn) + [a′′, f(r1, . . . , rn)]

}

+

{

β1f
d(r1, . . . , rn) + β1

∑

i

f(r1, . . . , yi, . . . , rn)

+ β2f
δ(r1, . . . , rn) + β2

∑

i

f(r1, . . . , ti, . . . , rn)

+ [a′′, f(r1, . . . , rn)]

}

f(r1, . . . , rn).

In particular, for r1 = 0, U satisfies

(2.49) f(y1, . . . , rn)f(t1, . . . , rn) = 0.

This gives f(r1, . . . , rn)
2 = 0, implying f(r1, . . . , rn) = 0, a contradiction.

Subcase ii : Let d, δ and h be C-independent modulo inner derivations of U .
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Then from (2.38), by Kharchenko’s theorem [21], U satisfies

(2.50)

{

af(r1, . . . , rn) + fd(r1, . . . , rn) +
∑

i

f(r1, . . . , yi, . . . , rn)

}

×

{

bf(r1, . . . , rn) + f δ(r1, . . . , rn) +
∑

i

f(r1, . . . , ti, . . . , rn)

}

= cf(r1, . . . , rn)
2

+ f(r1, . . . , rn)

{

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , zi, . . . , rn)

}

+

{

fh(r1, . . . , rn) +
∑

i

f(r1, . . . , zi, . . . , rn)

}

f(r1, . . . , rn).

In particular, U satisfies the blended component

(2.51) f(y1, . . . , rn)f(t1, . . . , rn) = 0,

implying f(r1, . . . , rn)
2 = 0 and so f(r1, . . . , rn) = 0 as before, a contradiction. �

In particular, when F,G and H all are derivations, we have the following result:

Corollary 2.13. Let R be a noncommutative prime ring of characteristic different

from 2 with extended centroid C, let D1, D2 and D3 be three derivations of R, I

an ideal of R and f(x1, . . . , xn) a multilinear polynomial over C which is not central

valued on R. If

D1(f(r))D2(f(r)) = D3(f(r)
2)

for all r = (r1, . . . , rn) ∈ In, then D1 = D2 = 0, f(r1, . . . , rn)
2 is central valued on R

and there exists p ∈ U such that D3(x) = [p, x] for all x ∈ R.
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