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Hölder continuity of bounded generalized

solutions for some degenerated quasilinear

elliptic equations with natural growth terms

Salvatore Bonafede

Abstract. We prove the local Hölder continuity of bounded generalized solutions
of the Dirichlet problem associated to the equation

m∑

i=1

∂

∂xi

ai(x, u,∇u) − c0|u|
p−2u = f(x, u,∇u),

assuming that the principal part of the equation satisfies the following degenerate
ellipticity condition

λ(|u|)
m∑

i=1

ai(x, u, η)ηi ≥ ν(x)|η|p,

and the lower-order term f has a natural growth with respect to ∇u.

Keywords: elliptic equations; weight function; regularity of solutions

Classification: 35J15, 35J70, 35B65

1. Introduction

Consider the equation

(1.1)

m∑

i=1

∂

∂xi
ai(x, u,∇u) − c0|u|

p−2u = f(x, u,∇u) in Ω,

where Ω is a bounded open set of R
m, m ≥ 2, c0 is a positive constant, ∇u is

the gradient of unknown function u and f is a nonlinear function which has the
growth of rate p, 1 < p < m, with respect to the gradient ∇u. We shall suppose
that the following degenerate ellipticity condition is satisfied:

(1.2) λ(|u|)

m∑

i=1

ai(x, u, η)ηi ≥ ν(x)|η|p,

where η = (η1, η2, . . . , ηm) ∈ R
m, |η| = (η2

1 + · · · + η2
m)1/2, and ν : Ω → (0,∞),

λ : [0,∞) → [1,∞) are functions with properties to be specified later on.
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In the present article, we prove the local Hölder continuity in Ω of every
bounded generalized solution of equation (1.1) under the condition (1.2). We
want to emphasize that the study of the quasilinear equations where the lower-
order term has natural p-growth deserves special attention because to obtain the
existence of the solutions, if 1 < p ≤ m, it is not possible to directly apply
the standard theory of the pseudomonotone operators; moreover, the solution in
general is unbounded. In this regard, we refer, for instance, to [1], [8], [20].

Existence and L∞-estimates of bounded solutions for quasilinear elliptic equa-
tions with natural growth of lower-order terms, in nondegenerate case, were es-
tablished, for instance, in [2], [3], [7], [29], [30], [31], and the Hölder continuity on
compact subsets of Ω of solutions was proved in [19, Chapter IX, Section 2], [32].
Similar results for elliptic equations and variational inequalities without the natu-
ral growth were obtained in [23], [25], [26] for the nondegenerate case, and also in
[15]–[18], [22], [27], [28] for the degenerate case. We also mention the articles [10],
[33] where the linear case is studied with weights belonging to Muckenhoupt’s
class.

Assuming the degenerate ellipticity condition (1.2), Drábek and Nicolosi in [9]
obtained the existence of bounded generalized solutions of equation (1.1) estab-
lishing more general results than those obtained from Boccardo, Murat and Puel
in [2], [3]. On the related topic and in degenerate-case, we also refer to [4]–[6] and
[12], [13]. The results obtained in [9] are the starting point for this research.

The present paper is organized as follows. In Section 2 we formulate the hy-
potheses, we state our problem and the main results. Section 3 consists of prelim-
inary lemmas which are sufficient in the proof of our main results. In Section 4
we prove local Hölder continuity of solutions of Dirichlet problem associated to
equation (1.1). For the proof, we use an analogue of Moser’s method (see [21])
proposed in [25] and modified in [32] for equations with natural growth terms. In
Section 5 we give examples where all our assumptions are satisfied.

2. Hypotheses and formulation of the main results

We shall suppose that R
m, m ≥ 2, is the m-dimensional euclidean space with

elements x = (x1, x2, . . . , xm). Let Ω be an open bounded nonempty subset
of R

m.
Let p be a real number such that 1 < p < m.

Hypothesis 2.1. Let ν : Ω → (0,∞) be a measurable function such that

ν(x) ∈ L1
loc(Ω),

( 1

ν(x)

)1/(p−1)

∈ L1
loc(Ω).

We denote W 1,p(ν,Ω) as the set of all functions u ∈ Lp(Ω) having for every
i = 1, . . . ,m the weak derivative ∂u/∂xi with the property ν|∂u/∂xi|

p ∈ L1(Ω).
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The space W 1,p(ν,Ω) is a Banach space with respect to the norm

‖u‖1,p =

[ ∫

Ω

(|u|p + ν|∇u|p) dx

]1/p

.

The space W̊ 1,p(ν,Ω) is the closure of C∞
0 (Ω) inW 1,p(ν,Ω). PutW =W̊ 1,p(ν,Ω)∩

L∞(Ω).

Hypothesis 2.2. We assume that

1

ν(x)
∈ Ls(Ω)

with s > max(1/(p− 1),m/p).
We set p̃ = mp/(m− p+m/s). Then, we have W 1,p(ν,Ω) ⊂ Lp̃(Ω) and there

exists ĉ > 0 depending only on m, p, s, and Ω such that for every u ∈ W̊ 1,p(ν,Ω)

(∫

Ω

|u|p̃ dx

)1/p̃

≤ ĉ

(∫

suppu

(1

ν

)s

dx

)1/(ps)(∫

Ω

m∑

i=1

ν
∣∣∣
∂u

∂xi

∣∣∣
p

dx

)1/p

.

In this connection see, for instance, [13] and [22].

Hypothesis 2.3. The functions f(x, u, η), ai(x, u, η), i = 1, 2, . . . ,m, are Cara-
théodory functions in Ω × R × R

m, i.e., measurable with respect to x for every
(u, η) ∈ R × R

m and continuous with respect to (u, η) for almost every x ∈ Ω.

Hypothesis 2.4. There exist a number σ and a function f∗(x) such that

max
(
0,

2 − p

2

)
< σ < 1, f∗ ∈ L1(Ω)

and

(2.1) |f(x, u, η)| ≤ λ(|u|)[f∗(x) + |u|p−1+σ + (ν1/p(x)|η|)p−1+σ + ν(x)|η|p]

holds for almost every x ∈ Ω and for all real numbers u, η1, η2, . . . , ηm.

Hypothesis 2.5. There exist a nonnegative number c1 < c0 and a function
f0(x) ∈ L∞(Ω) such that for almost all x ∈ Ω and for all real numbers u, η1,
η2, . . . , ηm the inequality

(2.2) u f(x, u, η) + c1|u|
p + λ(|u|)ν(x)|η|p + f0(x) ≥ 0

holds.

Hypothesis 2.6. There exists a function a∗ ∈ Lp/(p−1)(Ω) such that for almost
every x ∈ Ω and for any real numbers u, η1, η2, . . . , ηm the inequality
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(2.3)
|ai(x, u, η)|

ν1/p(x)
≤ λ(|u|)[a∗(x) + |u|p−1 + ν(p−1)/p(x)|η|p−1]

holds.

Hypothesis 2.7. The condition (1.2) is satisfied for almost every x ∈ Ω and
for all real numbers u, η1, η2, . . . , ηm; the function λ = λ(z) is monotone and
non-decreasing.

Hypothesis 2.8. For almost all x ∈ Ω and for every real u, η1, η2, . . . , ηm,
τ1, τ2, . . . , τm the inequality

m∑

i=1

[ai(x, u, η) − ai(x, u, τ)](ηi − τi) ≥ 0

holds while the inequality holds if and only if η 6= τ .

Assumptions 2.1–2.4, 2.6 and 2.7 provide the correctness of the following defi-
nition.

Definition. A generalized solution of equation (1.1) is a function u ∈ W such
that for every function w ∈ W ,

(2.4)

∫

Ω

{ m∑

i=1

ai(x, u,∇u)
∂w

∂xi
+ c0|u|

p−2uw + f(x, u,∇u)w

}
dx = 0.

Note that if in addition to Assumptions 2.1–2.4, 2.6 and 2.7 they hold Assump-
tions 2.5 and 2.8, then there exists a generalized solution of equation (1.1). This
follows from Theorem 2.1 of [9].

We will need the following further hypotheses on weight function.

Hypothesis 2.9. There exists a real number t > ms/(ps−m) such that

ν(x) ∈ Lt(Ω).

For every y ∈ R
m and R > 0 we denote

BR(y) = {x ∈ R
m : |x− y| < R};

when not important, or clear from the context, we shall omit denoting the center
as follows: BR = BR(y).

Hypothesis 2.10. There exists c > 0 such that for every y ∈ Ω and R > 0 with
BR(y) ⊂ Ω the following inequality holds

{
R−m

∫

BR(y)

(1

ν

)s

dx

}1/s{
R−m

∫

BR(y)

νt dx

}1/t

≤ c.
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As for Hypotheses 2.9 and 2.10 see, for example, [5]. Such kind of assumptions
on weight function, introduced in [22], [27], [28], have been used in recent articles,
see, for example, [16] and [18].

The main result of the present paper is a theorem on the local Hölder continuity
of any generalized solution u ∈ W of equation (1.1). More precisely, we prove the
following

Theorem 2.11. Assume that Hypotheses 2.1–2.4, 2.6, 2.7, 2.9 and 2.10 are satis-

fied with the functions |a∗|p/(p−1), f∗ belonging to Lτ (Ω) with τ > ms/(ps−m).
Let u ∈ W be a generalized solution of equation (1.1) and M = ‖u‖L∞(Ω).

Then there exist positive constants C and σ′ such that for every open set Ω′,

Ω′ ⊂ Ω and every x′, x′′ ∈ Ω′

|u(x′) − u(x′′)| ≤ C[dist(Ω′, ∂Ω)]−σ′

|x′ − x′′|σ
′

,

where σ′ = σ′(data) < 1, C = C(data) and data = (m, p, τ, t, s,M, λ(z),
‖f∗‖Lτ (Ω), ‖|a

∗|p/(p−1)‖Lτ (Ω), σ,meas Ω).

3. Auxiliary results

Lemma 3.1. Let f ∈W 1,q(BR), q ≥ 1. Suppose there exist a measurable subset

G ⊂ BR and positive constants C′ and C′′ such that

measG ≥ C′Rm, max
G

|f | ≤ C′′.

Then
∫

BR

|f |q dx ≤ CR q

( m∑

i=1

∫

BR

∣∣∣
∂f

∂xi

∣∣∣
q

dx+Rm−q

)
,

where C is a positive constant depending only on m, q, C′, C′′.

The proof of this lemma is given in [24, Chapter 1, Section 2, Lemma 4].
The following lemma is due to John and Nirenberg (see [14], and see also [11,

Theorem 7.21]).

Lemma 3.2. Let f ∈ W 1,1(O) where O is a convex domain in R
m. Suppose

there exists a positive constant K such that

m∑

i=1

∫

O∩B̺

∣∣∣
∂f

∂xi

∣∣∣dx ≤ K̺m−1 for all balls B̺.

Then there exist positive constants σ0 and C depending only on m such that
∫

O

exp
( σ
K

|f − (f)O|
)

dx ≤ C(diamO)m,

where σ = σ0(measO)(diamO)−m, (f)O = 1
measO

∫
O f dx.
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The following result is discussed in [11, Lemma 8.23] (see also [19, Lemma 4.8]).

Lemma 3.3. Let ω be a non-decreasing function on an interval (0, R0] satisfying

for all R ≤ R0 the inequality

ω(ϑR) ≤ θω(R) + ϕ(R),

where ϕ is also non-decreasing function and 0 < ϑ, θ < 1. Then for any δ ∈ (0, 1)
and R ≤ R0 we have

ω(R) ≤ C
(( R

R0

)ǫ

ω(R0) + ϕ(RδR1−δ
0 )

)
,

where C = C(ϑ, θ) and ǫ = ǫ(ϑ, θ, δ) are positive constants.

4. Proof of Theorem 2.11

Suppose that Hypotheses 2.1–2.4, 2.6, 2.7, 2.9 and 2.10 hold with the functions
|a∗|p/(p−1), f∗ ∈ Lτ (Ω), τ > ms/(ps−m). Let u ∈ W be a generalized solution
of equation (1.1). We set M = ‖u‖∞, thus

(4.1) |u| ≤M <∞ on Ω.

By di, i = 1, 2, . . . , we denote positive constants depending only on data.
Furthermore, let Ω′ be an arbitrary open subset of Ω such that Ω′ ⊂ Ω and

d = dist(Ω′, ∂Ω). We fix x0 ∈ Ω′. For every R ∈
(
0,min{1, d/4}

)
, we set

ω1(R) = min
BR(x0)

u, ω2(R) = max
BR(x0)

u, ω(R) = ω2(R) − ω1(R).

Here the symbols min and max of course stands for essential infimum and supre-

mum.
We fix a positive number r such that

(4.2) r = 1 −
m

pt⋆
−
m

ps
,

where t⋆ = min(τ, t).
For every R ∈ (0,min{1, d/4}), we shall establish the inequality

(4.3) ω(R) ≤ αω(2R) +Rr

with a constant α ∈ (0, 1) depending only on data. This inequality and Lemma 3.3
imply the validity of Theorem 2.11.

To prove (4.3), we fix R such that 0 < R < min{1, d/4}. If ω(2R) < Rr, then
inequality (4.3) is evident. Therefore, we shall suppose that

(4.4) ω(2R) ≥ Rr.
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We shall also assume that

(4.5) measG(R) ≥
1

2
measB3R/2(x0),

where G(R) = {x ∈ B3R/2(x0) : u(x) ≤ (ω1(2R) + ω2(2R))/2}.
Let F1 : Ω → R be the function such that

F1 =

{
2eω(2R)

ω2(2R)−u+Rr in B2R(x0),

e in Ω \B2R(x0).

Due to (4.4) we have F1 ≥ e in Ω.
Now, we need some integral estimates of solution u.

Lemma 4.1. Let B̺ ⊂ Ω and let ζ ∈ C∞
0 (Ω) be a function such that

(4.6) ζ = 0 in Ω \B̺ and 0 ≤ ζ ≤ 1.

Then there exist positive constants d1, d2 such that

(4.7)

∫

B̺

ν|∇u|p ζp dx ≤ d1̺
m(τ−1)/τ + d2 max

B̺

|∇ζ|p
( ∫

B̺

νt dx

)1/t

̺m(t−1)/t.

Proof: For every x ∈ Ω we set v1(x) = eλ1u(x)ζp(x) where

(4.8) λ1 = 3λ2(M).

Simple calculations show that v1 ∈ W̊ 1,p(ν,Ω)∩L∞(Ω) and the following assertion
holds:

(a) for every i = 1, 2, . . . ,m,

∂v1
∂xi

= λ1e
λ1uζp ∂u

∂xi
+ peλ1uζp−1 ∂ζ

∂xi
a.e. in Ω.

Since v1 ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω), by virtue of (2.4), we have

∫

Ω

{ m∑

i=1

ai(x, u,∇u)
∂v1
∂xi

+ c0|u|
p−2uv1 + f(x, u,∇u)v1

}
dx = 0.

From this equality, using (1.2), (2.1), (4.8) and assertion (a), we deduce that

(4.9) λ(M)

∫

B̺

ν|∇u|peλ1uζp dx ≤ I̺ + eλ1M

∫

B̺

g⋆(x) dx,
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where

I̺ = p

m∑

i=1

∫

B̺

|ai(x, u,∇u)|
∣∣∣
∂ζ

∂xi

∣∣∣eλ1uζp−1 dx,

g⋆(x) = c0M
p−1 + 2λ(M)[|f∗(x)| +Mp−1+σ + 1].

Let us obtain suitable estimate for the first addend in the right-hand side of (4.9).
Estimate of I̺. Using the Young’s inequality with the exponents p/(p−1) and p,
(2.3), (4.1) and (4.6), we obtain

(4.10)

I̺ ≤
λ(M)

2

∫

B̺

ν|∇u|peλ1uζp dx

+ d3e
λ1M

∫

B̺

g1(x) dx + d4e
λ1M

∫

B̺

ν|∇ζ|p dx,

where

g1(x) = 41/(p−1)(λ(M))p/(p−1)[ |a∗(x)|p/(p−1) +Mp].

From (4.9), (4.10) it follows that

(4.11)
λ(M)

2

∫

B̺

ν|∇u|peλ1uζp dx ≤ d5

∫

B̺

(g⋆ + g1) dx+ d6

∫

B̺

ν|∇ζ|p dx.

By Hölder’s inequality and the inequality τ > ms/(ps−m) we have

∫

B̺

(g⋆ + g1) dx ≤ ‖g⋆ + g1‖τ |B̺|
(τ−1)/τ ≤ d7̺

m(τ−1)/τ .

Moreover

∫

B̺

ν|∇ζ|p dx ≤ d8 max
B̺

|∇ζ|p̺m(t−1)/t

(∫

B̺

νt dx

)1/t

.

The last two inequalities and (4.11) imply inequality (4.7).
The lemma is proved. �

Lemma 4.2. Let B̺ ⊂ B2R(x0) and let ζ ∈ C∞
0 (Ω) be a function such that

condition (4.6) is satisfied. Then there exist positive constants d9, d10, d11 such

that

∫

B̺

ν|∇u|p ζp dx

(ω2(2R) − u+Rr)p
≤ d9̺

m−p+m/s + d10 max
B̺

|∇ζ|p
(∫

B̺

νt dx

)1/t

(4.12)

× ̺m(t−1)/t + d11̺
m(τ−1)/τ .
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Proof: For every x ∈ B2R(x0), we set U(x) = ω2(2R) − u(x) +Rr,

v2(x) =

{
ζp(x)[U(x)]1−p if x ∈ B2R(x0),

0 if x ∈ Ω \B2R(x0).

Simple calculations show that

v2 ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω)

and the following assertion holds:

(b) for every i = 1, 2, . . . ,m

∂v2
∂xi

= pU1−pζp−1 ∂ζ

∂xi
+ (p− 1)U−pζp ∂u

∂xi
a.e. in B2R.

Putting the function v2 into (2.4) instead of w and using (1.2), (2.1), (4.1) and
assertion (b), we obtain

(4.13)
1

λ(M)

∫

B̺

ν|∇u|p U−pζp dx ≤ I2,̺ + I3,̺ +
(2M + 1)

p− 1

∫

B̺

g⋆U−p dx,

where

I2,̺ = p

m∑

i=1

∫

B̺

|ai(x, u,∇u)|
∣∣∣
∂ζ

∂xi

∣∣∣U1−pζp−1 dx,

I3,̺ =
2λ(M)

p− 1

∫

B̺

ν|∇u|p U1−pζp dx.

Let us obtain suitable estimates for I2,̺, I3,̺.
Estimate of I2,̺. Using the Young’s inequality with the exponents p/(p−1) and p,
(2.3), (4.1) and (4.6), we obtain

I2,̺ ≤
1

4λ(M)

∫

B̺

ν|∇u|p U−pζp dx(4.14)

+ d12

∫

B̺

g1U
−p dx+ d13 max

B̺

|∇ζ|p
(∫

B̺

νt dx

)1/t

̺m(t−1)/t.

Estimate of I3,̺. We use (4.1), the Young’s inequality, (4.6) and (4.7) to obtain

I3,̺ ≤
1

4λ(M)

∫

B̺

ν|∇u|p U−pζp dx(4.15)

+ d14̺
m(τ−1)/τ + d15 max

B̺

|∇ζ|p
(∫

B̺

νt dx

)1/t

̺m(t−1)/t.
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Collecting (4.13), (4.14) and (4.15), we get

(4.16)
1

2λ(M)

∫

B̺

ν|∇u|p U−pζp dx ≤ d14̺
m(τ−1)/τ

+ d16 max
B̺

|∇ζ|p
(∫

B̺

νt dx

)1/t

̺m(t−1)/t + d17

∫

B̺

gU−p dx

where g = g⋆ + g1.
By Hölder’s inequality, U ≥ Rr and ̺/2 < R < 1, we have

∫

B̺

gU−p dx ≤ ‖g‖τ

(∫

B̺

U−pτ/(τ−1) dx

)(τ−1)/τ

≤ d18

(2

̺

)rp

̺m(τ−1)/τ .

From last inequality, taking into account relation (4.2), we get

(4.17)

∫

B̺

gU−p dx ≤ d19̺
m−p+m/s.

Inequalities (4.16) and (4.17) imply inequality (4.12). The lemma is proved. �

Define in Ω the function v0 = lnF1 .
Let us prove that v0 satisfies some integral inequalities.

Lemma 4.3. Let r0 = sp/(s+ 1). Then, there exist positive constants d20, d21,

d22, d23 such that

(4.18)

∫

B3R/2(x0)

vr0

0 dx ≤ d20R
m +Rr0

{[
d21

∥∥∥
1

ν

∥∥∥
Ls(Ω)

+ d22

]
Rm−p+m/s

+ d23

∥∥∥
1

ν

∥∥∥
Ls(Ω)

Rm(τ−1)/τ
}s/(s+1)

.

Proof: We choose a function ζ1 ∈ C∞
0 (Ω) such that

0 ≤ ζ1 ≤ 1 in Ω, ζ1 = 1 in B3R/2(x0), ζ1 = 0 in Ω \B7R/4(x0),
∣∣∣
∂ζ1
∂xi

∣∣∣ ≤ K1R
−1 for i = 1, 2, . . . ,m,

where K1 is an absolute constant, not depending on R. By definition of v0 it
results 1 ≤ v0 ≤ 1+ln4 on G(R); moreover from (4.5) it follows that measG(R) ≥
d24R

m.
Hence from Lemma 3.1 we find that:

(4.19)

∫

B3R/2(x0)

vr0

0 dx ≤ d25R
m + d25R

∫

B3R/2(x0)

{ m∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
}
U−1vr0−1

0 dx.
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By means of Young inequality we get

(4.20) d25R

∫

B3R/2(x0)

{ m∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
}
U−1vr0−1

0 dx

≤
1

r0
(d25R)r0

∫

B3R/2(x0)

{ m∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
}r0

U−r0 dx+
r0 − 1

r0

∫

B3R/2(x0)

vr0

0 dx.

From (4.19) and (4.20) we have:

(4.21)

∫

B3R/2(x0)

vr0

0 dx ≤ r0d26R
m + d27R

r0

∫

B3R/2(x0)

m∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
r0

U−r0 dx.

Using Hölder inequality with p/r0 and (1 − r0/p)
−1 = (s+ 1) and the definition

of the function ζ1 we obtain

∫

B3R/2(x0)

m∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
r0

U−r0 dx ≤ d28

( ∫

B7R/4(x0)

(1

ν

)s

dx

)1/(s+1)

×

( ∫

B7R/4(x0)

ν|∇u|p ζp
1U

−p dx

)s/(s+1)

.

Finally, we acquire inequality (4.18) from (4.21) estimating the last integral of
previous inequality by Lemma 4.2 and taking into account that from the Hypo-
thesis 2.10 we have

{∫

B7R/4(x0)

(1

ν

)s

dx

}1/s{∫

B7R/4(x0)

νt dx

}1/t

≤ d29R
m(1/s+1/t).

The lemma is proved. �

Lemma 4.4. For every κ ≥ 1 there is a positive constant c = c(data, κ) such

that limκ→∞ c(data, κ) = ∞ and

(4.22)

∫

B3R/2(x0)

vκ
0 dx ≤ cRm.

Proof: At first, we estimate from above the integral average

(v0)B3R/2(x0) =
1

measB3R/2(x0)

∫

B3R/2(x0)

v0 dx

by a constant depending only on data.
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Using Hölder’s inequality and Lemma 4.3 we get

(v0)B3R/2(x0) ≤ d30R
−m/r0

(∫

B3R/2(x0)

vr0

0 dx

)1/r0

(4.23)

≤ d30R
−m/r0 [d31R

m/r0 + d32R(d33R
m−p+m/s

+ d34R
m(τ−1)/τ )1/p] ≤ d35.

Next, let B2̺ ⊂ B2R(x0), and let ζ2 ∈ C∞
0 (Ω) be a function such that

0 ≤ ζ2 ≤ 1 in Ω, ζ2 = 1 in B̺, ζ2 = 0 in Ω \B2̺,
∣∣∣
∂ζ2
∂xi

∣∣∣ ≤ K2̺
−1 for i = 1, 2, . . . ,m,

where K2 is an absolute constant, not depending on ̺. Using Hölder’s inequality,
Lemma 4.2, Hypothesis 2.10, the properties of the function ζ2 and that τ >
ms/(ps−m), s > 1/(p− 1), we derive that

m∑

i=1

∫

B̺

∣∣∣
∂v0
∂xi

∣∣∣dx ≤ d36

(∫

B̺

ν−1/(p−1) dx

)(p−1)/p

×

(∫

B2̺

ν|∇u|p ζp
2U

−p dx

)1/p

≤ d37̺
m−1.

Hence, by Lemma 3.2, we have

(4.24)

∫

B3R/2(x0)

exp(d38| v0 − (v0)B3R/2
|) dx ≤ d39R

m.

Now let κ ≥ 1. Then inequalities (4.23) and (4.24) imply (4.22).
The lemma is proved. �

Lemma 4.5. There is a positive constant c3 = c3(data) such that

(4.25) ‖v0‖L∞(BR(x0)) ≤ c3.

Proof: We proceed the proof in four steps.
Step 1. We fix a function ψ0 ∈ C∞

0 (R) such that

0 ≤ ψ0 ≤ 1 on R, ψ = 1 in [−1, 1], ψ = 0 in R \ (−3/2, 3/2).

For any x ∈ Ω we set ψ(x) = ψ0(|x − x0|/R),

ṽ(x) =

{
[v0(x)]

kψt(x)[U(x)]1−p if x ∈ B2R(x0),

0 if x ∈ Ω \B2R(x0),
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where U = ω2(2R) − u+Rr,

k ≥ k := max{p, 2(6M + 1)λ2(M)},(4.26)

t > p.(4.27)

Simple calculations show that

ṽ ∈ W̊ 1,p(ν,Ω) ∩ L∞(Ω)

and the following assertion holds:

(c) for every i = 1, 2, . . . ,m,

∣∣∣
∂ṽ

∂xi
− z

∂u

∂xi

∣∣∣ ≤
d40tv

k
0ψ

t−1

RUp−1
a.e. in Ω,

where z = [(p − 1)vk
0 + kvk−1

0 ]ψtU−p and d40 > 0 depends only on
maxR |ψ′

0|.

Putting the function ṽ into (2.4) instead of w and using (1.2), (2.1), and asser-
tion (c), we obtain

(p− 1)

λ(M)

∫

B2R(x0)

ν|∇u|p U−pvk
0ψ

t dx(4.28)

+
k

λ(M)

∫

B2R(x0)

ν|∇u|p U−pvk−1
0 ψt dx

≤ 2λ(M)

∫

B2R(x0)

ν|∇u|p U1−pvk
0ψ

t dx

+

∫

B2R(x0)

g⋆vk
0ψ

tU1−p dx+ I,

where g⋆(x) was defined in Lemma 4.1 and

(4.29) I =
d40t

R

m∑

i=1

∫

B2R(x0)

|ai(x, u,∇u)|U
1−pvk

0ψ
t−1 dx.

Step 2. We show that the first term in the right-hand side of inequality (4.28) is
absorbed by the second term in its left-hand side. For this we need the inequality

(4.30) Uv0 ≤ 6M + 1 a.e. in B2R(x0).

To prove it, we consider the function

χ(s) = (s+Rr) ln
2ω(2R)

s+Rr
, s ∈ [0, ω(2R)].
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According to (4.4) and to the elementary inequality ln b < b, b > 0, we obtain
that for every s ∈ [0, ω(2R)]

0 ≤ χ(s) ≤ 2ω(2R) ≤ 4M.

Now inequality (4.30) follows from the relations R ≤ 1 and

Uv0 = ω2(2R) − u+Rr + χ(ω2(2R) − u) a.e. in B2R(x0).

Using (4.30), the first term on the right-hand side of inequality (4.28) is esti-
mated in the following way

2λ(M)

∫

B2R(x0)

ν|∇u|p U1−pvk
0ψ

t dx(4.31)

≤ 2(6M + 1)λ(M)

∫

B2R(x0)

ν|∇u|p U−pvk−1
0 ψt dx.

Now (4.26), (4.28) and (4.31) imply the inequality

(p− 1)

λ(M)

∫

B2R(x0)

ν|∇u|p U−pvk
0ψ

t dx(4.32)

≤ (2M + 1)

∫

B2R(x0)

g⋆vk
0ψ

tU−p dx+ I .

Step 3. Let us estimate from above the quantity I, which is defined by (4.29).
We use (2.3) and Young’s inequality

|yz| ≤ ε|y|p/(p−1) + ε1−p|z|p,

where

y = |ai(x, u,∇u)|U
1−pψ(p−1)t/p(ν(x))−1/p, i = 1, 2, . . . ,m,

z = t ψ(t−p)/pν(x)1/p/R,

and ε is an appropriate positive number, to obtain

I ≤
(p− 1)

2λ(M)

∫

B2R(x0)

ν|∇u|p U−pvk
0ψ

t dx(4.33)

+ d41

∫

B2R(x0)

g1v
k
0ψ

tU−p dx+
d42t

p

Rp

∫

B2R(x0)

ν vk
0ψ

t−p dx,

where g1(x) was defined in Lemma 4.1.



Hölder continuity of bounded generalized solutions 59

From (4.32) and (4.33), for every k ≥ k and t > p, it follows that

(4.34)

∫

B2R(x0)

ν|∇u|p U−pvk
0ψ

t dx ≤ d43t
p

∫

B2R(x0)

ψ1v
k
0ψ

t−p dx,

where ψ1(x) = R−rp[g1(x) + g⋆(x)] + ν(x)R−p.
It results

(∫

B2R(x0)

ψt⋆
1 dx

)1/t⋆

≤ R−p

(∫

B2R(x0)

νt⋆ dx

)1/t⋆

(4.35)

+R−rp‖g1 + g⋆‖Lt⋆ (Ω).

Now, we fix arbitrary k ≥ kp̃/p and t > p̃ and let

z1 = v
k/p̃
0 ψt/p̃.

We have z1 ∈ W̊ 1,p(ν,Ω) and for every i = 1, 2, . . . ,m,

∫

Ω

ν
∣∣∣
∂z1
∂xi

∣∣∣
p

dx ≤ d44k
p

∫

B2R(x0)

ν
∣∣∣
∂u

∂xi

∣∣∣
p

v
kp/p̃
0 U−pψtp/p̃ dx

+ d45t
p

∫

B2R(x0)

ψ1v
kp/p̃
0 ψtp/p̃−p dx.

From last inequality and (4.34) we obtain

∫

Ω

ν
∣∣∣
∂z1
∂xi

∣∣∣
p

dx ≤ d46k
ptp

∫

B2R(x0)

ψ1v
kp/p̃
0 ψ(t/p̃−1)p dx.

Estimating integral to second term of last inequality by Hölder’s inequality
with the exponents t⋆ and t⋆/(t⋆ − 1), we obtain that for every k ≥ kp̃/p and
t > p̃ the following inequality holds:

∫

Ω

ν
∣∣∣
∂z1
∂xi

∣∣∣
p

dx ≤ d46k
ptp

(∫

B2R(x0)

ψt⋆
1 dx

)1/t⋆

(4.36)

×

(∫

B2R(x0)

v
kpt⋆/(p̃(t⋆−1))
0 ψtpt⋆/(p̃(t⋆−1))−pt⋆/(t⋆−1) dx

)(t⋆−1)/t⋆

.

Step 4. We set

H(k, t) =

∫

B2R(x0)

vk
0ψ

t dx, k ∈ R, t > 0,

θ =
p̃(t⋆ − 1)

pt⋆
, m̃ =

pt⋆
t⋆ − 1

.
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Due to Hypothesis 2.2. we have

(4.37) H(k, t) ≤ ĉp̃
[∫

B2R(x0)

(1

ν

)s

dx

]p̃/(ps)[∫

Ω

m∑

i=1

ν
∣∣∣
∂z1
∂xi

∣∣∣
p

dx

]p̃/p

.

From (4.36) and (4.37) it follows that

H(k, t) ≤ d47(k + t)2p̃

{[ ∫

B2R(x0)

(1

ν

)s

dx

]1/s[ ∫

B2R(x0)

ψt⋆
1 dx

]1/t⋆
}p̃/p

(4.38)

×
[
H

(k
θ
,
t

θ
− m̃

)]θ
.

Using (4.35), (4.2) and Hypothesis 2.10, we obtain

(4.39)

[∫

B2R(x0)

(1

ν

)s

dx

]1/s[∫

B2R(x0)

ψt⋆
1 dx

]1/t⋆

≤ d48R
−p+m/s+m/t⋆ .

Note that due to the definition of p̃ and θ we have

(4.40)
(
p−

m

s
−
m

t⋆

) p̃
p

= m(θ − 1).

From (4.38), (4.39) and (4.40) we get

(4.41) H(k, t) ≤ d49(k + t)2p̃R−m(θ−1)
[
H

(k
θ
,
t

θ
− m̃

)]θ

for every k ≥ kp̃/p and t > p̃.

We choose a number i0 ∈ N such that θi0 > kp̃/p and set

ki = θi0+i, ti =
m̃θ

θ − 1
(θi0+i − 1), i = 0, 1, 2, . . .

Then (4.41) and the inequality θ > 1 imply that for every i = 1, 2, . . .,

[H(ki, ti)]
1/ki ≤ [d50R

−mH(k0, t0)]
1/θi0

.

By Lemma 4.4 we have

H(k0, t0) ≤

∫

B3R/2(x0)

vθi0

0 dx ≤ d51R
m.

From the last two inequalities it follows that

‖v0‖L∞(BR(x0)) = lim
i→∞

(∫

BR(x0)

vki
0 dx

)1/ki

≤ lim sup
i→∞

[H(ki, ti)]
1/ki ≤ c3.

The lemma is proved. �
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Inequality (4.25) implies (4.3). Recall that we proved (4.3) under assump-
tion (4.5). If (4.5) is not true, we take instead of F1 the function F2 = 2eω(2R)×
(u− ω1(2R) +Rr)−1 in B2R(x0), and F2 = e in Ω \ B2R(x0), and arguing as
above, we establish (4.3) again. Hence according to Lemma 3.3, the assertions of
Theorem 2.11 are true.

Remark. The technique used to prove the local Hölder continuity for bounded
generalized solutions of the Dirichlet problem associated with equation (1.1), as-
suming the degenerate ellipticity condition (1.2), can be repeated for bounded
generalized solutions of equation (1.1) with the following boundary Neumann
condition:

m∑

i=1

ai(x, u,∇u) cos(~n, xi) + c2|u|
p−2u+ F (x, u) = 0, c2 > 0, x ∈ ∂Ω,

where ∂Ω is locally Lipschitz boundary and ~n = ~n(x) is the outwardly directed
(relative to Ω) unit vector normal to ∂Ω at every point x ∈ ∂Ω (see [6] for
the Existence theorem in such case). So, we can prove that every function u ∈
W 1,p(ν,Ω) ∩ L∞(Ω) satisfying

∫

Ω

{ m∑

i=1

ai(x, u,∇u)
∂w

∂xi
+ c0|u|

p−2uw + f(x, u,∇u)w

}
dx

+

∫

∂Ω

{c2|u|
p−2uw + F (x, u)w} ds = 0

for any w ∈W 1,p(ν,Ω) ∩ L∞(Ω), it is locally Hölder continuous in Ω.

5. Examples

Example 5.1. Let Ω ⊂ R
m be an open bounded set. Suppose for simplicity that

0 ∈ ∂Ω and, additionally, we assume that

p >
m

2
, m ≥ 4.

Let 0 < γ < (m/2)(p−m/2)(3m/2 − p)−1, and let ν : Ω → (0,∞) be defined by

ν(x) = |x|γ .

Let s be such that

m

p−m/2
< s < 1 +

m

2γ
.
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It results m/p < s < m/γ, then the function ν satisfies Hypotheses 2.1 and 2.2.
Moreover, it is easy to verify that

|x|2γ ∈ A1+1/s−1 (Muckenhoupt’s class)

then, Hypotheses 2.9 and 2.10 hold with t = 2.
Consider the following boundary value problem

− div
( |x|γ

1 + |u|
|∇u|p−2∇u

)
+ u{|u|p−2 + e|u||x|γ |∇u|p} = g(x) in Ω,(5.1)

u = 0 on ∂Ω,(5.2)

where g(x) ∈ L∞(Ω).
In this case we have:

ai(x, u,∇u) =
|x|γ

1 + |u|
|∇u|p−2 ∂u

∂xi
, i = 1, 2, . . . ,m,

f(x, u,∇u) = ue|u||x|γ |∇u|p −
1

2
u|u|p−2 − g(x), c0 =

3

2
.

If we put λ(|u|) = (1 + |u|)e|u|, it is possible to verify all the Hypotheses
2.3–2.8. To verify (2.1), for example, it will be sufficient to note that the function
|u|p−2/e−|u| is bounded from above by ((p− 2)/e)p−2 in ]−∞,∞[ .

Hence, boundary value problem (5.1), (5.2) has at least one weak solution in
the sense (2.4), i.e., there exists at least one u ∈W such that

∫

Ω

|x|γ

1 + |u|
|∇u|p−2∇u∇w dx+

∫

Ω

u{|u|p−2 + e|u||x|γ |∇u|p}w dx =

∫

Ω

g(x)w dx

holds for every w ∈W .
Moreover, from Theorem 2.11, u is locally Hölder continuous in Ω.

Example 5.2. Let Ω ⊂ R
m be an open bounded set and let g ∈ L∞(Ω). Put

ν(x) = 1 in Ω and consider boundary value problem

− div
( 1

1 + |u|p
|∇u|p−2∇u

)
+ eu − |u|p + |∇u|p = g(x) in Ω,

u = 0 on ∂Ω.

In this case we have:

ai(x, u,∇u) =
1

1 + |u|p
|∇u|p−2 ∂u

∂xi
, i = 1, 2, . . . ,m,

f(x, u,∇u) = eu − |u|p − u|u|p−2 + |∇u|p − g(x), c0 = 1,

and λ(|u|) = e|u|
p

. All Hypotheses 2.1–2.8 are satisfied. It may be worth noting
that the function u(eu − |u|p − u|u|p−2) has minimum (negative) in R. Hence
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every functions u ∈W satisfying
∫

Ω

1

1 + |u|p
|∇u|p−2∇u∇w dx+

∫

Ω

{eu − |u|p + |∇u|p}w dx =

∫

Ω

g(x)w dx

for every w ∈ W is locally Hölder continuous in Ω.
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