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Statistical convergence of sequences

of functions with values in semi-uniform spaces

Dimitrios N. Georgiou∗, Athanasios C. Megaritis, Selma Özçağ

Abstract. We study several kinds of statistical convergence of sequences of func-
tions with values in semi-uniform spaces. Particularly, we generalize to statistical
convergence the classical results of C. Arzelà, Dini and P. S. Alexandroff, as well
as their statistical versions studied in [Caserta A., Di Maio G., Kočinac L. D.R.,
Statistical convergence in function spaces,. Abstr. Appl. Anal. 2011, Art. ID
420419, 11 pp.] and [Caserta A., Kočinac L.D.R., On statistical exhaustiveness,
Appl. Math. Lett. 25 (2012), no. 10, 1447–1451].

Keywords: statistical convergence; semi-uniform space; sequence; function; con-
tinuity

Classification: 54E15, 54A20, 40A30, 40A35

1. Introduction

In [17] Morita defines a generalization for uniform structures using the covering
concept of Tukey [22]. Subsequently many researchers have dealt with this issue.
On the other hand, classical results about sequences and nets of functions have
been extended from metric to uniform and generalized uniform spaces (see, for
example, [4], [10], [13], [15]).

The concept of convergence of a sequence has been extended to statistical
convergence by Fast [11], Fridy [12], Šalát [19], Schoenberg [20], Steinhaus [21],
and Zygmund [23]. This convergence has many applications in mathematical
analysis (see, for instance, [14]). In recent years, a lot of papers have been written
on sequences of real functions and functions between metric spaces by using the
idea of statistical convergence (see [3], [7], [8], [16]).

In this paper, we present and investigate the quasi uniform, Alexandroff, almost
uniform and Dini statistical convergence for a sequence (fn)n∈N of functions of
an arbitrary topological space X into a semi-uniform space Y . Particularly, the
continuity of the limit of the sequence (fn)n∈N is studied. Since each uniform
space is a semi-uniform space, the results of the paper remain valid in the case
that Y is a uniform space.

The rest of this paper is organized as follows. Sections 2 and 3 contain prelim-
inaries and basic concepts, respectively. In Section 4 we give the quasi uniform
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and Alexandroff statistical convergence for sequences of functions with values
in semi-uniform spaces and we present modifications of the results of Arzelà [2]
(see also [6]) and Alexandroff [1] (a survey on these results can be found in [5]).
In Section 5 we present the almost uniform statistical convergence and define the
notion of st-equicontinuous family of functions. Finally, the concept of Dini sta-
tistical convergence of a sequence of functions with values in a semi-uniform space
is investigated in Section 6.

2. Preliminaries

First, we recall some of the basic concepts related to the uniform spaces. There
are several ways to approach the theory of uniform spaces. Here we use Tukey
description of a uniform space in terms of covers [22]. For more details we refer
the reader to [9], [13], [18].

The power set of a set Y is denoted by P(Y ). Let Y be a set and let y ∈ Y ,
B ⊆ Y , and A,B ⊆ P(Y ). We use the following terminology and notations.

(1) The family A is called a cover of Y if
⋃

{A ⊆ Y : A ∈ A} = Y .
(2) The family A is called a refinement of B if for each A ∈ A there exists B ∈ B

such that A ⊆ B. In this case we write A ≺ B.
(3) A∨ B = {A ∪ B : A ∈ A, B ∈ B}.
(4) A∧ B = {A ∩ B : A ∈ A, B ∈ B}.
(5) St(B,A) =

⋃

{A ∈ A : A ∩ B 6= ∅}.
(6) St(y,A) = St({y},A) =

⋃

{A ∈ A : y ∈ A}.
(7) Stn+1(B,A) = Stn(St(B,A),A), n = 1, 2, . . . .

Let Φ be a nonempty family of covers of a set Y and A,B ∈ Φ.

(1) The family B is called a star-refinement of A if {St(B,B) : B ∈ B} ≺ A.
(2) The family B is called a local star-refinement of A in Φ if for each B ∈ B

there exist AB ∈ Φ and A ∈ A such that St(B,AB) ⊆ A.

Definition 2.1 ([18]). A uniformity on a set Y is a nonempty family Φ of covers
of Y satisfying the following properties.

(Φ1) If A1,A2 ∈ Φ, then there exists B ∈ Φ such that B ≺ A1 ∧ A2.
(Φ2) If A ∈ Φ and B is a cover of Y such that A ≺ B, then B ∈ Φ.
(Φ3) For each A ∈ Φ there exists B ∈ Φ which is a star-refinement of A.

Definition 2.2 ([18]). A semi-uniformity on a set Y is a nonempty family Φ
of covers of Y satisfying conditions (Φ1) and (Φ2) from Definition 2.1 and the
following:

(Φ4) For each A ∈ Φ there exists B ∈ Φ which is a local star-refinement of A
in Φ.

A semi-uniform space is a pair (Y, Φ) consisting of a set Y and a semi-uniformity
Φ on the set Y .
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For every semi-uniform space (Y, Φ) the semi-uniform topology τΦ on Y is the
family of all subsets O of Y such that for each y ∈ O there is A ∈ Φ such that
St(y,A) ⊆ O.

A mapping f of a topological space X into a semi-uniform space (Y, Φ) is called
continuous at x0 ∈ X if for each A ∈ Φ there exists an open neighbourhood Ox0

of x0 such that f(Ox0
) ⊆ St(f(x0),A). The mapping f is called continuous if it

is continuous at every point of X .

Now, we recall the notion of asymptotic density (see, for instance, [14]). By N

we denote the set of positive integers.

Let K ⊆ N. For every n ∈ N we set δn(K) = {k ∈ K : k ≤ n}. The asymptotic

density δ(K) of K is equal to

lim
n→∞

|δn(K)|

n

whenever this limit exists. A set K ⊆ N is said to be statistically dense if
δ(K) = 1. The family F = {K ⊆ N : δ(K) = 1} is a proper filter on N, that
is the following conditions hold.

(1) F 6= ∅.
(2) ∅ /∈ F .
(3) If A ∈ F and A ⊆ B, then B ∈ F .
(4) If A, B ∈ F , then A ∩ B ∈ F .

The following is a summary of some properties of asymptotic density.

(1) 0 ≤ δ(K) ≤ 1.
(2) δ(N) = 1.
(3) For every x ∈ [0, 1] there exists a subset Kx of N such that δ(Kx) = x.
(4) If K is a finite subset of N, then δ(K) = 0.
(5) If K1 ⊆ K2, then δ(K1) ≤ δ(K2), provided that both densities exist.
(6) If δ(K) exists, then δ(N \ K) = 1 − δ(K).
(7) The even integers have asymptotic density 1/2, as do the odd integers.
(8) The prime numbers have asymptotic density 0.

3. Basic concepts

The concept of statistical convergence for sequences of functions between met-
ric spaces was investigated in [7] and [8]. Here we deal with sequences of func-
tions with values in semi-uniform spaces. In what follows we consider a sequence
(fn)n∈N of functions of a topological space X into a semi-uniform space (Y, Φ).

Definition 3.1. The sequence (fn)n∈N is said to statistically converge pointwise

to f on X if for every x ∈ X and for every A ∈ Φ there exists a statistically
dense set K ⊆ N such that for every n ∈ K we have fn(x) ∈ St(f(x),A). In this

case we write (fn)n∈N

st
−→ f . We shall say that the sequence (fn)n∈N statistically

converges pointwise on X if there is a function f such that (fn)n∈N

st
−→ f .
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Definition 3.2. The sequence (fn)n∈N is said to statistically converge uniformly

to f on X if for every A ∈ Φ there exists a statistically dense set K ⊆ N such
that for every x ∈ X and for every n ∈ K we have fn(x) ∈ St(f(x),A). In this

case we write (fn)n∈N

st-u
−−→ f . We shall say that the sequence (fn)n∈N statistically

converges uniformly on X if there is a function f such that (fn)n∈N

st-u
−−→ f .

In what follows we will use frequently the following facts:

Fact 3.3. Let (Y, Φ) be a semi-uniform space and A ∈ Φ. The following state-
ments are true.

(1) If Y1 ⊆ Y , then Y1 ⊆ St(Y1,A).
(2) If Y1 ⊆ Y2 ⊆ Y , then St(Y1,A) ⊆ St(Y2,A).
(3) If y ∈ St(x,A), then St(y,A) ⊆ St2(x,A).
(4) If y ∈ Y and B ≺ A, then St(y,B) ⊆ St(y,A).

Proof: (1) Let y ∈ Y1. Since A is a cover of Y , there exists A ∈ A such that
y ∈ A. Hence, Y1 ∩ A 6= ∅ and, therefore, y ∈ A ⊆ St(Y1,A).

(2) Let y ∈ St(Y1,A). Then, there exists A ∈ A such that y ∈ A and Y1∩A 6= ∅.
Since Y1 ⊆ Y2, we have Y2 ∩ A 6= ∅. Therefore, y ∈ St(Y2,A).

(3) This follows by statement (2) for Y1 = {y} and Y2 = St(x,A).
(4) Let z ∈ St(y,B). Then, there exists B ∈ B such that y, z ∈ B. Since

B ≺ A, there exists A ∈ A such that B ⊆ A. Therefore, y, z ∈ A and, hence
z ∈ St(y,A). �

Lemma 3.4. Let (Y, Φ) be a semi-uniform space, A ∈ Φ and y0 ∈ Y . Then,

there exists B ∈ Φ such that St3(y0,B) ⊆ St(y0,A).

Proof: Let A1, A2, and A3 be local star-refinements of A, A1, and A2 in Φ,
respectively. Since A3 is a cover of Y , there exists A3 ∈ A3 such that y0 ∈ A3.
We have successively:

(i) There exist B3 ∈ Φ and A2 ∈ A2 such that St(A3,B3) ⊆ A2. Hence,
y0 ∈ A2.

(ii) There exist B2 ∈ Φ and A1 ∈ A1 such that St(A2,B2) ⊆ A1. Hence,
y0 ∈ A1.

(iii) There exist B1 ∈ Φ and A ∈ A such that St(A1,B1) ⊆ A. Hence, y0 ∈ A.

Let B4 ∈ Φ such that B4 ≺ B1 ∧ B2 and let B ∈ Φ such that B ≺ B4 ∧ B3.
Therefore, B ≺ B1 ∧ B2 ∧ B3. We prove that St3(y0,B) ⊆ St(y0,A).

First, we prove that

St3(y0,B) ⊆ St(St(St(A3,B3),B2),B1),

where

St(St(St(A3,B3),B2),B1) =
⋃

{B1 ∈ B1 : B1 ∩ St(St(A3,B3),B2) 6= ∅}

=
⋃

{B1 ∈ B1 : B1 ∩ B2 6= ∅ for some B2 ∈ B2 with B2 ∩ St(A3,B3) 6= ∅}.
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Let us have

y ∈ St3(y0,B) = St(St(St(y0,B),B),B) =
⋃

{B ∈ B : B ∩ St(St(y0,B),B) 6= ∅}

=
⋃

{B ∈ B : B ∩ B′ 6= ∅ for some B′ ∈ B with B′ ∩ St(y0,B) 6= ∅}.

Then, there exists B ∈ B such that y ∈ B and B ∩ B′ 6= ∅ for some B′ ∈ B
with B′ ∩ St(y0,B) 6= ∅. Therefore, there exists B′′ ∈ B such that y0 ∈ B′′ and
B′∩B′′ 6= ∅. Since B ≺ B1∧B2∧B3, there exist B1, B

′
1, B

′′
1 ∈ B1, B2, B

′
2, B

′′
2 ∈ B2,

B3, B
′
3, B

′′
3 ∈ B3 such that

B ⊆ B1 ∩ B2 ∩ B3, B′ ⊆ B′
1 ∩ B′

2 ∩ B′
3, B′′ ⊆ B′′

1 ∩ B′′
2 ∩ B′′

3 .

Since y ∈ B, we have y ∈ B1. Moreover, B1 ∩ B′
2 6= ∅. It suffices to prove

that B′
2 ∩ St(A3,B3) 6= ∅. Indeed, we have y0 ∈ B′′

3 and y0 ∈ A3. Hence,
B′′

3 ⊆ St(A3,B3). Since B′
2 ∩ B′′

3 6= ∅, we have B′
2 ∩ St(A3,B3) 6= ∅. Thus,

y ∈ St(St(St(A3,B3),B2),B1).
Now, we prove that St3(y0,B) ⊆ St(y0,A). Indeed, we have

St3(y0,B) ⊆ St(St(St(A3,B3),B2),B1) ⊆ St(St(A2,B2),B1) ⊆ St(A1,B1) ⊆ A.

Since y0 ∈ A, we have A ⊆ St(y0,A). Therefore, St3(y0,B) ⊆ St(y0,A). �

Proposition 3.5. If (fn)n∈N

st-u
−−→ f and the functions fn, n ∈ N are continuous,

then the function f is continuous.

Proof: Suppose that (fn)n∈N

st-u
−−→ f and let x0 ∈ X . We prove that f is

continuous at x0. Let A ∈ Φ. By Lemma 3.4 there exists B ∈ Φ such that

St3(f(x0),B) ⊆ St(f(x0),A).

Since (fn)n∈N

st-u
−−→ f , there exists a statistically dense set K ⊆ N such that for

every x ∈ X and for every n ∈ K we have fn(x) ∈ St(f(x),B). Let n0 ∈ K.
Then,

fn0
(x0) ∈ St(f(x0),B).(1)

Since fn0
is continuous at x0, there exists an open neighbourhood Ox0

of x0 such
that fn0

(x) ∈ St(fn0
(x0),B), for every x ∈ Ox0

. Let x ∈ Ox0
. Then,

fn0
(x) ∈ St(fn0

(x0),B)(2)

and

fn0
(x) ∈ St(f(x),B).(3)
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Therefore, using successively the relations (1), (2), and (3), we have

f(x) ∈ St(fn0
(x),B) ⊆ St(St(fn0

(x0),B),B)

⊆ St(St(St(f(x0),B),B),B)

= St3(f(x0),B)

and the continuity of f is proved. �

4. Quasi uniform and Alexandroff statistical convergence

In this section we introduce the notions of quasi uniform and Alexandroff sta-
tistical convergence for sequences of functions with values in semi-uniform spaces
and then we generalize the classical theorems of C. Arzelà [2] (see also [6]) and
P. S. Alexandroff [1].

In [7], a statistical version of the quasi uniform convergence of sequences of
functions between metric spaces was defined. An analogous definition can be
given for sequences of functions with values in semi-uniform spaces.

Definition 4.1. The sequence (fn)n∈N is said to statistically converge quasi uni-

formly to f on X if (fn)n∈N

st
−→ f and for every A ∈ Φ and for every statistically

dense set K ⊆ N, there exists a finite subset {n1, . . . , nr} of K such that for each
x ∈ X at least one of the following relations holds:

fni
(x) ∈ St(f(x),A), i = 1, . . . , r.

In this case we write (fn)n∈N

st-qu
−−−→ f . We shall say that the sequence (fn)n∈N

statistically converges quasi uniformly on X if there is a function f such that

(fn)n∈N

st-qu
−−−→ f .

Lemma 4.2 ([18, Proposition 1.11]). Let (Y, Φ) be a semi-uniform space, A ∈ Φ,

and y0 ∈ Y . Then, there exists B ∈ Φ such that St2(y0,B) ⊆ St(y0,A).

Proof: It is similar to the proof of Lemma 3.4. �

Lemma 4.3. Let (Y, Φ) be a semi-uniform space and A ∈ Φ. Then, there exists

an open cover O of Y in the semi-uniform topology τΦ such that O ∈ Φ and

O ≺ A.

Proof: We set O = {IntΦ(A) : A ∈ A}, where

IntΦ(A) = {y ∈ Y : there exists B ∈ Φ such that St(y,B) ⊆ A}.

First, we prove that O ∈ Φ. Let B ∈ Φ be a local star-refinement of A in Φ.
Then, for every B ∈ B there exist E ∈ Φ and A ∈ A such that St(B, E) ⊆ A. This
shows that B ⊆ IntΦ(A). Hence, B ≺ O and, therefore, O ∈ Φ.

Now, we prove that O is an open cover of Y . Let A ∈ A. We prove that
IntΦ(A) is an open subset of Y . Let y ∈ IntΦ(A). It suffices to prove that there
exists B ∈ Φ such that St(y,B) ⊆ IntΦ(A). Since y ∈ IntΦ(A), there exists
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B1 ∈ Φ such that St(y,B1) ⊆ A. By Lemma 4.2 there exists B ∈ Φ such that
St2(y,B) ⊆ St(y,B1). Let z ∈ St(y,B). Then, we have

St(z,B) ⊆ St2(y,B) ⊆ St(y,B1) ⊆ A.

Hence, z ∈ IntΦ(A) and, therefore, St(y,B) ⊆ IntΦ(A). �

Lemma 4.4. Let f and g be two continuous functions of a topological space X
into a semi-uniform space (Y, Φ). The following statements are true.

(1) The function m : X → (Y × Y, τΦ × τΦ) defined by m(x) = (f(x), g(x)), for

every x ∈ X is continuous.

(2) If O ∈ Φ is an open cover of Y in the semi-uniform topology τΦ, then the

set M = {x ∈ X : f(x) ∈ St(g(x),O)} is open.

Proof: (1) Let x ∈ X and let St(f(x),A) × St(g(x),B), where A,B ∈ Φ, be an
open neighbourhood of m(x). Since f is continuous at x, there exists an open
neighbourhood Ox of x such that

f(Ox) ⊆ St(f(x),A).

Since g is continuous at x, there exists an open neighbourhood O′
x of x such that

g(O′
x) ⊆ St(g(x),B).

We consider the open neighbourhood of x:

O′′
x = Ox ∩ O′

x.

Then, we have

m(O′′
x) ⊆ f(Ox) × g(O′

x) ⊆ St(f(x),A) × St(g(x),B).

(2) Let O ∈ Φ be an open cover of Y in the semi-uniform topology τΦ. It
suffices to prove that

M = m−1

(

⋃

O∈O

(O × O)

)

.

Let x ∈ M . Then, f(x) ∈ St(g(x),O). Therefore, there exits Ox ∈ O such that
f(x), g(x) ∈ Ox. Hence,

m(x) = (f(x), g(x)) ∈ Ox × Ox ⊆
⋃

O∈O

(O × O).

Thus, M ⊆ m−1
(
⋃

O∈O
(O × O)

)

.

Conversely, let x ∈ m−1
(
⋃

O∈O
(O × O)

)

. Then,

m(x) = (f(x), g(x)) ∈
⋃

O∈O

(O × O).
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Hence, there exits Ox ∈ O such that f(x), g(x) ∈ Ox which means f(x) ∈
St(g(x),O). Thus, x ∈ M and m−1

(
⋃

O∈O
(O × O)

)

⊆ M . �

Lemma 4.5. Let f be a continuous function of a topological space X into a semi-

uniform space (Y, Φ) and x0 ∈ X . The following statements are true.

(1) The function m : X → (Y ×Y, τΦ × τΦ) defined by m(x) = (f(x), f(x0)), for

every x ∈ X is continuous.

(2) If O ∈ Φ is an open cover of Y in the semi-uniform topology τΦ, then the

set M = {x ∈ X : f(x) ∈ St(f(x0),O)} is open.

Proof: It is similar to the proof of Lemma 4.4. �

In [7] (see Theorem 3.3) and [8] (see Theorem 4.8) some characterizations of the
continuity of statistical pointwise limit for sequences of functions between metric
spaces were given. Similar results are true for sequences of functions with values
in semi-uniform spaces.

Theorem 4.6. Let (fn)n∈N be a sequence of continuous functions of a topological

space X into a semi-uniform space (Y, Φ). If the sequence (fn)n∈N statistically

converges pointwise to a continuous limit, then the statistical convergence is quasi

uniform on every compact subset of X . Conversely, if the sequence (fn)n∈N sta-

tistically converges quasi uniformly on a subset of X , then the limit is continuous

on this subset.

Proof: Suppose that (fn)n∈N statistically converges pointwise to a continuous
function f . Let C be compact subset of X , A ∈ Φ, and let K ⊆ N be a statistically
dense set. By Lemma 4.3 there exists an open cover O of Y in the semi-uniform

topology τΦ such that O ∈ Φ and O ≺ A. Let c ∈ C. Since (fn)n∈N

st
−→ f , there

exists a statistically dense set Kc ⊆ N such that for every n ∈ Kc,

fn(c) ∈ St(f(c),O).

Choose nc ∈ Kc ∩ K and set

Oc = {x ∈ X : fnc
(x) ∈ St(f(x),O)}.

Since fnc
and f are continuous, by Lemma 4.4, Oc is an open set containing c.

Thus, the family

{Oc ∩ C : c ∈ C}

is an open cover of C. By compactness of C, there are c1, . . . , cr ∈ C such that

C =

r
⋃

i=1

Oci
∩ C.

The set {nc1
, . . . , ncr

} is a finite subset of K such that for each x ∈ C at least
one of the following relations holds:

fnci
(x) ∈ St(f(x),O), i = 1, . . . , r.
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Since O ≺ A, for each x ∈ C it holds that fnci
(x) ∈ St(f(x),A) for at least one

i = 1, . . . , r. Thus, (fn)n∈N

st-qu
−−−→ f on C.

Conversely, suppose that (fn)n∈N statistically converges quasi uniformly to f
on a subset X ′ of X . Let x0 ∈ X ′. We prove that f is continuous at x0. Let
A ∈ Φ. By Lemma 3.4 there exists B ∈ Φ such that St3(f(x0),B) ⊆ St(f(x0),A).
By Lemma 4.3 there exists an open cover O of Y in the semi-uniform topology
τΦ such that O ∈ Φ and O ≺ B. Let

K0 = {n ∈ N : fn(x0) ∈ St(f(x0),O)}.

Since (fn)n∈N

st
−→ f , there exists a statistically dense set K ⊆ N such that for

every n ∈ K we have

fn(x0) ∈ St(f(x0),O).

Hence, K ⊆ K0 and, therefore K0 is a statistically dense set. By assumption,
there exists a finite subset {n1, . . . , nr} of K0 such that for each x ∈ X ′ at least
one of the following relations holds:

(4) fni
(x) ∈ St(f(x),O), i = 1, . . . , r.

Since {n1, . . . , nr} ⊆ K0, by the definition of K0, we have

(5) fni
(x0) ∈ St(f(x0),O), i = 1, . . . , r.

Let

(6) Oi = {x ∈ X : fni
(x) ∈ St(fni

(x0),O)}, i = 1, . . . , r.

Since the functions fni
, i = 1, . . . , r are continuous, by Lemma 4.5, the sets Oi,

i = 1, . . . , r are open in X and contain x0. We consider the set

Ox0
= X ′ ∩

r
⋂

i=1

Oi.

Then, Ox0
is open in X ′ and contains the point x0. Let x ∈ Ox0

. Using relations
(4), (5), and (6), for proper choice of i, we obtain

f(x) ∈ St3(f(x0),O) ⊆ St3(f(x0),B) ⊆ St(f(x0),A).

Thus, f(Ox0
) ⊆ St(f(x0),A). We conclude that f is continuous at x0 completing

the proof of the theorem. �

In [8] (see also [7, Definition 3.1]), a statistical version of the Alexandroff
convergence of sequences of functions between metric spaces was defined. An
analogous definition can be given for sequences of functions with values in semi-
uniform spaces.
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Definition 4.7. The sequence (fn)n∈N is said to statistically converge Alexandroff

to f on X if (fn)n∈N

st
−→ f and for every A ∈ Φ and for every statistically dense

set K ⊆ N, there exist an open cover U = {On : n ∈ N} of X and an infinite set
M = {k1, k2, . . . , kn, . . .} ⊆ K such that for every n ∈ N and for each x ∈ On

we have fkn
(x) ∈ St(f(x),A). In this case we write (fn)n∈N

st-Al
−−−→ f . We shall

say that the sequence (fn)n∈N statistically converges Alexandroff on X if there is

a function f such that (fn)n∈N

st-Al
−−−→ f .

The next theorem is a generalization of [8, Theorem 4.8] to sequences of func-
tions with values in semi-uniform spaces.

Theorem 4.8. Let (fn)n∈N be a sequence of continuous functions of a topological

space X into a semi-uniform space (Y, Φ) and suppose that (fn)n∈N statistically

converges pointwise to f on X . Then, the statistical convergence is Alexandroff

if and only if f is continuous.

Proof: Suppose that f is continuous. We prove that (fn)n∈N

st-Al
−−−→ f . Let

A ∈ Φ and let K ⊆ N be a statistically dense set. By Lemma 4.3 there exists an
open cover O of Y in the semi-uniform topology τΦ such that O ∈ Φ and O ≺ A.

Since (fn)n∈N

st
−→ f , for every x ∈ X there exists a statistically dense set Nx ⊆ N

such that for every n ∈ Nx we have fn(x) ∈ St(f(x),O). Let N =
⋃

x∈X
Nx. We

consider the set

M = K ∩ N = {k1, k2, . . . , kn, . . .} ⊆ K.

Moreover, for each n ∈ N we set

On = {x ∈ X : fkn
(x) ∈ St(f(x),O)}.

Since fkn
and f are continuous, by Lemma 4.4, On is an open set. We prove that

the family U = {On : n ∈ N} is an open cover of X . Indeed, let x ∈ X . Then,
there exists n ∈ N such that kn ∈ K ∩ Nx. Hence, fkn

(x) ∈ St(f(x),O) and,
therefore, x ∈ On. For every n ∈ N and for each x ∈ On we have

fkn
(x) ∈ St(f(x),O) ⊆ St(f(x),A).

Conversely, suppose that (fn)n∈N statistically converges Alexandroff to f on X .
Let x0 ∈ X . We prove that f is continuous at x0. Let A ∈ Φ. By Lemma 3.4
there exists B ∈ Φ such that St3(f(x0),B) ⊆ St(f(x0),A). Let K be an arbitrary
statistically dense subset of N. By assumption, there exist an open cover

U = {On : n ∈ N}

of X and an infinite set

M = {k1, k2, . . . , kn, . . .} ⊆ K

such that for every n ∈ N and for each x ∈ On we have fkn
(x) ∈ St(f(x),B). Let

n0 ∈ N such that x0 ∈ On0
. Since the function fkn0

is continuous at x0, there
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exists an open neighbourhood Ox0
of x0 such that

fkn0
(x) ∈ St(fkn0

(x0),B) for every x ∈ Ox0
.

We set Hx0
= On0

∩Ox0
. Then, the set Hx0

is an open neighbourhood of x0. We
prove that f(Hx0

) ⊆ St(f(x0),A). For every x ∈ Hx0
we have

fkn0
(x0) ∈ St(f(x0),B), fkn0

(x) ∈ St(f(x),B), fkn0
(x) ∈ St(fkn0

(x0),B)

and, therefore,

f(x) ∈ St3(f(x0),B) ⊆ St(f(x0),A).

We conclude that the function f is continuous at x0 completing the proof of the
theorem. �

5. Almost uniform statistical convergence

The following definition is the statistical version of the almost uniform conver-
gence of sequences of functions with values in semi-uniform spaces (see [4], [10]).

Definition 5.1. The sequence (fn)n∈N is said to statistically converge almost

uniformly to f on X if for every x ∈ X and for every A ∈ Φ there exist a statis-
tically dense set K ⊆ N and an open neighbourhood Ox of x such that for every
n ∈ K and for every t ∈ Ox we have fn(t) ∈ St(f(t),A). In this case we write

(fn)n∈N

st-au
−−−→ f . We shall say that the sequence (fn)n∈N statistically converges

almost uniformly on X if there is a function f such that (fn)n∈N

st-au
−−−→ f .

Theorem 5.2. Let (fn)n∈N be a sequence of continuous functions of a topological

space X into a semi-uniform space (Y, Φ). If (fn)n∈N

st-au
−−−→ f , then the function

f is continuous.

Proof: Suppose that (fn)n∈N statistically converges almost uniformly to a func-
tion f . We prove that f is continuous. Let x ∈ X and A ∈ Φ. By Lemma 3.4
there exists B ∈ Φ such that

St3(f(x),B) ⊆ St(f(x),A).

Since (fn)n∈N

st-au
−−−→ f , there exist a statistically dense set K ⊆ N and an open

neighbourhood Ox of x such that for every n ∈ K and for every t ∈ Ox we have
fn(t) ∈ St(f(t),B). Let n0 ∈ K. Then,

fn0
(x) ∈ St(f(x),B).

Since the function fn0
is continuous at x, there exists an open neighbourhood O′

x

of x such that fn0
(t) ∈ St(fn0

(x),B), for all t ∈ O′
x. We consider the set

Hx = Ox ∩ O′
x.
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Then, Hx is an open neighbourhood of x. For every t ∈ Hx we have

fn0
(t) ∈ St(f(t),B).

Therefore,

f(t) ∈ St(fn0
(t),B) ⊆ St(St(fn0

(x),B),B)

⊆ St(St(St(f(x),B),B),B)

= St3(f(x),B)

and the continuity of f is proved. �

Definition 5.3. Let (fn)n∈N be a sequence of functions of a topological space
X into a semi-uniform space (Y, Φ). The family {fn : n ∈ N} is called st-

equicontinuous at a point x0 of X if for every A ∈ Φ there exists a statistically
dense set K ⊆ N and an open neighbourhood Ox0

of x0 such that

fn(x) ∈ St(fn(x0),A) for all n ∈ K and for all x ∈ Ox0
.

The family {fn : n ∈ N} is called st-equicontinuous if it is equicontinuous at each
point of X .

Theorem 5.4. Let (fn)n∈N be a sequence of continuous functions of a topological

space X with values in a semi-uniform space (Y, Φ) such that the family {fn : n ∈

N} is st-equicontinuous. If (fn)n∈N

st
−→ f , where f is a continuous function, then

the statistical convergence is almost uniform.

Proof: Suppose that (fn)n∈N statistically converges pointwise to a continuous
function f . Let x ∈ X and A ∈ Φ. By Lemma 3.4 there exists B ∈ Φ such that

St3(f(x),B) ⊆ St(f(x),A).

Since (fn)n∈N

st
−→ f , there exists a statistically dense set Kx ⊆ N such that

fn(x) ∈ St(f(x),B) for every n ∈ Kx.

By the st-equicontinuity of the family {fn : n ∈ N} at the point x, there exist
a statistically dense set K ′

x and an open neighbourhood Ox of x such that

fn(t) ∈ St(fn(x),B) for all n ∈ K ′
x and for all t ∈ Ox.

Since the function f is continuous at x, there exists an open neighbourhood O′
x

of x such that

f(t) ∈ St(f(x),B) for all t ∈ O′
x.

We consider the set

Hx = Ox ∩ O′
x.
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Then, Hx is an open neighbourhood of x. We set

K = Kx ∩ K ′
x.

For every n ∈ K and for every t ∈ Hx we have

fn(t) ∈ St(fn(x),B) ⊆ St(St(f(x),B),B)

⊆ St(St(St(f(t),B),B),B)

= St3(f(t),B).

Thus, the sequence (fn)n∈N statistically converges almost uniformly to f . �

6. Dini statistical convergence

In [7], a statistical version of the Dini convergence of sequences of functions
between metric spaces was defined. An analogous definition can be given for
sequences of functions with values in semi-uniform spaces.

Definition 6.1. The sequence (fn)n∈N is said to statistically converge Dini to

f on X if (fn)n∈N

st
−→ f and for every A ∈ Φ and for every statistically dense

set K ⊆ N, there exists an infinite set M = {k1, k2, . . .} ⊆ K such that for each
x ∈ X and each n ∈ N we have fkn

(x) ∈ St(f(x),A). In this case we write

(fn)n∈N

st-Di
−−−→ f . We shall say that sequence (fn)n∈N statistically converges Dini

on X if there is a function f such that (fn)n∈N

st-Di
−−−→ f .

The next theorem is a generalization of [7, Theorem 3.5] to sequences of func-
tions with values in semi-uniform spaces.

Theorem 6.2. Let (fn)n∈N be a sequence of continuous functions of a topo-

logical space X into a semi-uniform space (Y, Φ). If (fn)n∈N

st-Di
−−−→ f and the

functions fn, n ∈ N are continuous, then the function f is continuous.

Proof: Suppose that (fn)n∈N

st-Di
−−−→ f and let x0 ∈ X . We prove that f is

continuous at x0. Let A ∈ Φ. By Lemma 3.4 there exists B ∈ Φ such that

St3(f(x0),B) ⊆ St(f(x0),A).

Since (fn)n∈N

st
−→ f , there exists a statistically dense set K ⊆ N such that for

every n ∈ K we have

fn(x0) ∈ St(f(x0),B).(7)

Since (fn)n∈N

st-Di
−−−→ f , there exists an infinite set KA = {k1, k2, . . .} ⊆ K such

that for each x ∈ X and each n ∈ N we have fkn
(x) ∈ St(f(x),B). Let n0 ∈ N.

Since kn0
∈ K, by relation (7) we have

fkn0
(x0) ∈ St(f(x0),B).(8)
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Since fkn0
is continuous at x0, there exists an open neighbourhood Ox0

of x0 such

that fkn0
(x) ∈ St(fkn0

(x0),B), for every x ∈ Ox0
. Let x ∈ Ox0

. Then,

fkn0
(x) ∈ St(fkn0

(x0),B)(9)

and

fkn0
(x) ∈ St(f(x),B).(10)

Therefore, using successively the relations (8), (9), and (10), we have

f(x) ∈ St(fkn0
(x),B) ⊆ St(St(fkn0

(x0),B),B)

⊆ St(St(St(f(x0),B),B),B)

= St3(f(x0),B)

and the continuity of f is proved. �
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tions: a survey from Arzelà’s theorem (1883) to the present, Proceedings ICTA2011, Is-
lamabad, Pakistan, July 4–10, 2011; Cambridge Scientific Publishers, 2012, pp. 75–103.

[6] Caserta A., Di Maio G., Holá L’., Arzelà’s theorem and strong uniform convergence on
bornologies, J. Math. Anal. Appl. 371 (2010), no. 1, 384–392.
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