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1. Introduction

A (connected) pseudo-Riemannian manifold (M, g) is said to be homogeneous if it

admits a group G of isometries, acting transitively on it. In this case, (M, g) can be

identified with (G/H, g), where H is the isotropy group at a fixed point ofM and g is

an invariant pseudo-Riemannian metric. A homogeneous pseudo-Riemannian mani-

fold (M, g) is reductive if it can be realized as a coset spaceM = G/H , such that the

Lie algebra g can be decomposed into a direct sum g = h⊕m, where m is an Ad(H)-

invariant subspace of g. It is well known that when H is connected, this condition

is equivalent to the algebraic condition [h,m] ⊆ m. All homogeneous Riemannian

manifolds are reductive, but there exist homogeneous pseudo-Riemannian manifolds

which do not admit any reductive decomposition. Full classification of these spaces,

up to isometry classes, have been done by Fels and Renner in [15]. They showed

that any non-reductive homogeneous pseudo-Riemannian four manifold is isometric

to one of 8 classes A1, . . . , A5, B1, . . .B3, which contain both Lorentzian and neutral

signature examples. Non-reductive homogeneous four-dimensional manifolds were

DOI: 10.21136/CMJ.2018.0502-16 475

http://dx.doi.org/10.21136/CMJ.2018.0502-16


studied from several aspects. For example, Ricci solitons and geometry of these

spaces were studied in [7] and [9], while Walker structures were considered in [10].

Harmonicity is a rich topic in differential geometry, analysis, theoretical physics

etc. This topic was initiated by harmonic functions, i.e., real C2 functions belonging

to the kernel of the Laplace operator, and then generalized to harmonic maps be-

tween (pseudo-)Riemannian manifolds, i.e., maps which satisfy the Euler-Lagrange

systems, and harmonic exterior forms, i.e., forms that are simultaneously closed

and co-closed. Today, harmonicity has been extended in several directions such as

harmonic morphisms (see [1]), harmonic (pseudo-)Riemannian metrics (see [11]),

harmonic sections (see [5], [12]), harmonic endomorphisms (see [2], [3]), harmonic

connections (see [2]) etc.

In this paper, we study four-dimensional non-reductive homogeneous manifolds

and completely classify invariant harmonic metrics in different classes of the spaces

under consideration. We then study harmonic metrics with respect to the lifted

metrics (i.e., Sasaki lifts, horizontal lifts and complete lifts) on the tangent bundle,

proving that an invariant metric ĝ being harmonic with respect to the invariant

metric g is equivalent to its Sasaki lift metric ĝS being harmonic with respect to gS

(respectively, horizontal lift ĝH with respect to gH and complete lift ĝC with respect

to gC).

The paper is organized in the following way. In Section 2 we report some basic

facts about harmonic functions and some related notation. We recall the classifica-

tion of four-dimensional non-reductive homogeneous spaces in Section 3. Section 4

is devoted to the study of non-reductive homogeneous spaces which are lifted to the

tangent bundle. Finally, invariant harmonic metrics with respect to the invariant

non-reductive homogeneous metrics and harmonic lifted metrics (Sasaki lifts, hori-

zontal lifts and complete lifts) with respect to the non-reductive homogeneous lifted

metrics is considered in the last section.

2. Preliminaries

To study harmonic structures (especially harmonic metrics) over pseudo-Riemann-

ian manifolds, we need to know some basic relevant facts. We recall some definitions

in [11], [13].

Definition 2.1. For a C2-map (M, g) → (N, h) between pseudo-Riemannian

manifolds (M, g) and (N, h),

(1) the Hilbert-Schmidt square norm on T ∗M ⊗ ϕ−1TN induced by g and h is

| dϕ|2 = trg(ϕ
∗h) = gijh( dϕ(Xi), dϕ(Xj)),
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where Xi is an arbitrary local frame on M. In this case, the energy density of ϕ

is defined by the identity

eϕ =
1

2
| dϕ|2;

(2) if D is a compact domain of M , the energy (integral) of ϕ on D is the real

number

E(ϕ;D) =

∫

D

e(ϕ)vg ,

where vg is the volume measure of g;

(3) if ϕ is an extremal of the energy functionals E(·, D), for all compact domains

D in M , ϕ is called a harmonic map between pseudo-Riemannian manifolds;

(4) if the second fundamental form ∇ϕ−1TN dϕ of ϕ is defined by

∇ϕ−1TN dϕ(X,Y ) = (∇ϕ−1TN
X dϕ)(Y )

= ∇N
dϕ(X) dϕ(Y )− dϕ(∇M

X Y ), ∀X,Y ∈ Γ(TM),

where ∇M and ∇N denote the Levi-Civita connections on (M, g) and (N, h),

the tension field τ(ϕ) is given by

τ(ϕ) = div( dϕ) = trg(∇
ϕ−1TN dϕ).

According to Eells and Sampson, the harmonicity condition can be described as

follows:

Theorem 2.1. Any smooth map ϕ : (M, g)→ (N, h) between pseudo-Riemannian

manifolds is harmonic if and only if

(2.1) τ(ϕ) = 0,

that is the following Euler-Lagrange system is satisfied:

(2.2) gij
( ∂2ϕα

∂xi∂xj
− Γk

ij

ϕα

∂xk
+ NΓα

αβ

∂ϕβ

∂xi
∂ϕσ

∂xj

)

= 0,

summing over i, j, k = 1, . . . ,m, β, σ = 1, . . . , n, for every α = 1, . . . , n.

Theorem 2.2 ([11]). Let (M, g) be a pseudo-Riemannian manifold. A pseudo-

Riemannian structure (i.e., tensor field) h is called harmonic with respect to g, if

and only if the identity map I : (M, g) → (M,h) is harmonic.

According to the above definition, we can study a pseudo-Riemannian metric h

which is harmonic with respect to the metric g on the pseudo-Riemannian mani-

fold (M, g).
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Theorem 2.3. Let (M, ga,b,c) be a four-dimensional Walker manifold of signa-

ture (2, 2). There exist adapted local coordinates (t, z, y, z) such that ga,b,c is de-

scribed as

ga,b,c = 2(dt dy + dxdz) + a dy2 + b dz2 + 2c dy dz,

where a, b, c are smooth functions of the variables (t, x, y, z) (for more information

see [6]).

Following the result of [4], a pseudo-Riemannian Walker metric ĝ
â,b̂,ĉ
is harmonic

with respect to ga,b,c if and only if the smooth functions a, b, c and â, b̂, ĉ satisfy

the following relation:

(2.3)























â = a+

∫

λy dx+ α(y, z, t),

b̂ = b+

∫

λx dy + β(y, z, t),

ĉ = c− λ(y, z, t)

for some local smooth functions α(y, z, t), β(x, z, t) and λ(x, y, z, t).

The Euler-Lagrange system of the identity map I : (M, g) → (M, ĝ) is expressed

by

(2.4) tr(G−1(Γ̂k − Γk)) = 0, k = 1, . . . , 4,

where G is the matrix of g, and Γk and Γ̂k are the matrices of the Christoffel symbols

of g and ĝ respectively. The relation (2.4) is a key point for the study of harmonic

metrics on various spaces. We study this problem on the non-reductive homogeneous

space of dimension four through the upcoming sections.

3. Four-dimensional non-reductive homogeneous spaces

Let M = G/H (with H connected) be a homogeneous space. We denote the Lie

algebra of G by g and the isotropy subalgebra by h, the factor space which identifies

with a subspace of g complementary to h is denoted by m = g/h. The pair (g, h)

uniquely defines the isotropy representation

ψ : h → gl(m), ψ(x)(y) = [x, y]m for all x ∈ g, y ∈ m.

Given a basis {h1, . . . , hr, u1, . . . , un} of g where {hj} and {ui} are bases of h and m,

respectively, a bilinear form on m is determined by the matrix g of its components

with respect to the basis {ui} and is invariant if and only if
tψ(x)◦g+g◦ψ(x) = 0 for
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all x ∈ g. Invariant pseudo-Riemannian metrics g on the homogeneous space M =

G/H are in a one-to-one correspondence with nondegenerate invariant symmetric

bilinear forms g on m, see [17].

The invariant metric g then uniquely defines its invariant linear Levi-Civita con-

nection, described in terms of the corresponding homomorphism of h-modules Λ:

g → gl(m), such that Λ(x)(ym) = [x, y]m for all x ∈ h, y ∈ g. Explicitly, one has

Λ(x)(ym) =
1
2 [x, y]m + v(x, y) for all x, y ∈ g,

where v : g× g → m is the h-invariant symmetric mapping uniquely determined by

(3.1) 2g(v(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m) for all x, y, z ∈ g.

Non-reductive homogeneous manifolds of dimension four were classified in [15], in

terms of the corresponding non-reductive Lie algebra presentations. This classifica-

tion contains 8 classes A1, . . . , A5, B1, . . . , B3. The classes A1, . . . , A3 contain both

Lorentzian and neutral examples, classes A4, A5 are just Lorentzian and B1, . . . , B3

are always of neutral signature. Also the description in coordinates system for the

invariant metrics on the spaces mentioned were obtained in [8].

We now recall these classifications here.

(A1) g = a1 is a decomposable 5-dimensional Lie algebra sl(2,R) ⊕ s(2), where

s(2) is the 2-dimensional solvable algebra. There exists a basis {e1, . . . , e5} of a1
such that the nonzero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4,

and the isotropy subalgebra is h = Span{h1 = e3 + e4}. So, we can take

m = Span{u1 = e1, u2 = e2, u3 = e5, u4 = e3 − e4}

and the invariant metrics in the local coordinates (x1, . . . , x4) are

g = (4bx22 + a) dx21 + 4bx2 dx1 dx2 − (4ax2x4 − 4cx2 + a) dx1 dx3(3.2)

+ 4ax2 dx1 dx4 + b dx22 − 2(ax4 − c) dx2 dx3 + 2a dx2 dx4 + d dx23

on the whole of R4, whenever a(a− 4d) 6= 0.

The metric g has Lorentzian signature (either (3,1) or (1,3)) if and only if a(a −

4d) < 0, and neutral signature when a(a− 4d) > 0.
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(A2) g = a2 is the decomposable 5-dimensional Lie algebra A5,30 of [18]. There

exists a basis {e1, . . . , e5} of a2 such that the nonzero products are

[e1, e5] = (α + 1)e2, [e2, e4] = e1, [e2, e5] = αe2,

[e3, e4] = e2, [e3, e5] = (α− 1)e3, [e4, e5] = e2

for any value of α ∈ R, and the isotropy is h = Span{h1 = e4}. Hence, we take

m = Span{u1 = e1, u2 = e2, u3 = e3, u4 = e5}

and the invariant metrics in the local coordinates (x1, . . . , x4) are

(3.3) g = −2ae2αx4 dx1 dx3+ae
2αx4 dx22+be

2(α−1)x4 dx23+2ce(α−1)x4 dx3 dx4+d dx
2
4

on the whole of R4, whenever ad 6= 0.

The metric g has Lorentzian signature when ad > 0 and neutral signature if and

only if ad < 0.

(A3) g = a3 is the decomposable 5-dimensional Lie algebra A5,37 or A5,36 of [18].

There exists a basis {e1, . . . , e5} of a3 such that the nonzero products are

[e1, e3] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −εe3, [e3, e4] = e3, [e3, e5] = e2,

with ε = 1 for A5,37 and ε = −1 for A5,36, and the isotropy is h = Span{h1 = e3}.

Thus, we take

m = Span{u1 = e1, u2 = e2, u3 = e4, u4 = e5}

and the invariant metrics in the local coordinates (x1, . . . , x4) are

(3.4) if ε = 1: g = 2ae2x3 dx1 dx4+ae
2x3 cos(x4)

2 dx22+ b dx
2
3+2c dx3dx4 +d dx

2
4,

on the open subset where cos(x4) 6= 0, whenever ab 6= 0;

(3.5)

if ε = −1: g = 2ae2x3 dx1 dx4 + ae2x3 cosh(x4)2 dx
2
2 + b dx23 + 2c dx3 dx4 + d dx24,

on the whole of R4, whenever ab 6= 0.

The metric g has Lorentzian signature if and only if ab > 0 and neutral signature

when ab < 0.
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(A4) g = a4 is the decomposable 6-dimensional Schroedinger Lie algebra sl(2,R)⋉

n(3), where n(3) is the 3-dimensional Heisenberg algebra. There exists a basis

{e1, . . . , e6} of a4, where the nonzero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5, [e4, e5] = e6,

and the isotropy is h = Span{h1 = e3}. Thus, we take

m = Span{u1 = e1, u2 = e2, u3 = e3 − e6, u4 = e4}

and the invariant metrics in the local coordinates (x1, . . . , x4) are

g =
(a

2
x24 + 4bx22 + a

)

dx21 + 4bx2 dx1 dx2 + ax2(4 + x24) dx1 dx3(3.6)

+ a(1 + 2x2x3)x4 dx1 dx4 + b dx22 +
a

2
(4 + x24) dx2 dx3

+ ax3x4 dx2 dx4 +
a

2
dx24

on the whole of R4, whenever a 6= 0.

(A5) g = a5 is the decomposable 7-dimensional Lie algebra sl(2,R) ⋉ A1
4,9, with

A1
4,9 as in [18]. It admits a basis {e1, . . . , e7} such that the nonzero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −e5, [e1, e6] = e6,

[e2, e3] = e1, [e2, e5] = e6, [e3, e6] = e5, [e4, e7] = 2e4,

[e5, e6] = e4, [e5, e7] = e5, [e6, e7] = e6.

The isotropy is h = Span{h1 = e1 + e7, h2 = e3 − e4, h3 = e5}. So, we take

m = Span{u1 = e1 − e7, u2 = e2, u3 = e3 + e4, u4 = e6},

and the invariant metrics in the local coordinates (x1, . . . , x4) are

g = −
ax4
4x2

dx1 dx2 +
a

4
dx1 dx4 +

a(2 + 2x4x1 + x23)

8x22
dx2 dx2(3.7)

−
ax3
4x2

dx2 dx3 −
ax1
4x2

dx2 dx4 +
a

8
dx23,

on the open subset where x2 6= 0.
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(B1) g = b1 is the decomposable 7-dimensional Lie algebra sl(2,R)⋉R
2 admitting

a basis {e1, . . . , e5}, where the nonzero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5,

and the isotropy is h = Span{h1 = e3}. Thus, we take

m = Span{u1 = e1, u2 = e2, u3 = e4, u4 = e5}

and the invariant metrics in the local coordinates (x1, . . . , x4) are

g = (d(x23 + 4x3x2x4 + 4x22x
2
4) + 4cx2x3 + 8cx22x4 + 2ax3 + 4bx22) dx

2
1(3.8)

+ 2(d(x3x4 + 2x2x
2
4) + 4cx2x4 + cx3 + 2bx2) dx1 dx2

+ 2(d(x3 + 2x2x4) + 2cx2 + a) dx1 dx3 + 4ax2 dx1 dx4

+ (dx24 + 2cx4 + b) dx22 + 2(dx4 + c) dx2 dx3 + 2a dx2 dx4 + d dx23

on the whole of R4, whenever 6= 0.

(B2) g = b2 is the 6-dimensional Schroedinger Lie algebra sl(2,R) ⋉ n(3), but

with isotropy h = Span{h1 = e3 − e6, h2 = e5}. Then we take

m = Span{u1 = e1, u2 = e2, u3 = e3 + e6, u4 = e4},

and the invariant metrics in the local coordinates (x1, . . . , x4) are

g =
(

a−
ax42
2

+ 4bx22

)

dx21 + 4bx2 dx1 dx2 − ax2(x
2
4 − 4) dx1 dx3(3.9)

− a(1 + 2x2x3)x4 dx1 dx4 + b dx22 −
1

2
a(x24 − 4) dx2 dx3

− ax3x4 dx2 dx4 −
1

2
a dx24

on the open subset where x4 6= 2, whenever a 6= 0.

(B3) g = b3 is the 6-dimensional Lie algebra (sl(2,R)⋉R
2)×R. It admits a basis

{u1, . . . , u4, h1 = u5, h2 = u6} such that h = Span{h1, h2},m = Span{u1, . . . , u4}

and the nonzero products are

[h1, u2] =u1, [h1, u3] = − u4, [h2, u2] = − 2h2,

[h2, u3] =− u2, [h2, u4] = u1, [u1, u2] = − u1,

[u1, u3] =u4, [u2, u3] = − 2u3, [u2, u4] = − u4.
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and the invariant metrics in the local coordinates (x1, . . . , x4) are

g = −2ae−x2x3 dx1 dx2 + 2ae−x2 dx1 dx3 + 2(2bx23 − ax4) dx
2
2(3.10)

− 4bx3 dx2 dx3 + 2a dx2 dx4 + b dx23

on the whole of R4, whenever a 6= 0.

4. Non-reductive homogeneous spaces lifted to the tangent bundle

In this section we study the tangent bundle of a non-reductive homogeneous space.

Let (M = G/H, g) be a non-reductive homogeneous manifold of dimension four, we

denote the Levi-Civita connection of the invariant metric g by∇. The tangent bundle

TM has the direct sum decomposition

(4.1) TTM = V TM ⊕HTM

into the vertical distribution V TM = ker dπ, where π is the natural projection of

TM ontoM , and HTM is the horizontal distribution defined by∇. For more details

concerning the geometry of the tangent bundle of a manifold see [16], [14], [19].

In the sequel, we get the local coordinates p = (x1, . . . , x4) on a non-reductive

homogeneous manifolds of dimension four (M = G/H, g) and the local coordinates

on TM are denoted by (p, u) = (x1, . . . , x4, y1, . . . , y4).

The adapted local frame field on TM is {δxi, ∂yj}i,j=1,...,4, where

(4.2) δxi = ∂xi − Γk
0i∂yk with Γk

0i = yhΓk
hi,

and Γk
hi(p) are the Christoffel symbols of the Levi-Civita connection ∇.

For any tensor field on the tangent bundle, we denote by i, j, k, h the indices

corresponding to the horizontal components and by i, j, k, h those corresponding to

the vertical ones. For an arbitrary vector field X = X i∂xi on M , by XV and XH

we denote the vertical and horizontal lifts of X respectively by

(4.3) XV = X i∂
yi , XH = X iδxi ,

with respect to the adapted local frame {δxi, ∂
yj , }i,j=1,...,4. Here we recall that the

Sasaki metric gS and the horizontal lift gH on TM for all vector fields X,Y ∈ Γ(TM)

are defined by (we refer to [2] for more details)

(4.4)



























gS(p,u)(X
H , Y H) = gp(X,Y ),

gS(p,u)(X
V , Y H) = 0,

{

gH(p,u)(X
H , Y H) = gH(p,u)(X

V , Y V ) = 0,

gH(p,u)(X
V , Y H) = gp(X,Y ),

gS(p,u)(X
V , Y V ) = gp(X,Y ),
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respectively, and the matrices with respect to the adapted frames respectively are

(4.5) SG =

(

G 0

0 G

)

, HG =

(

0 G

G 0

)

.

If we denote the Levi-Civita connection of gS by S∇, then the following relations are

valid (see [19] and references therein):











(S∇XHY H)(p,u) = (∇XY )H(p,u) −
1
2 (Rp(X,Y )u)V ,

(S∇XHY V )(p,u) = (∇XY )V(p,u) +
1
2 (Rp(u, Y )X)H ,

(S∇XV Y H)(p,u) =
1
2 (Rp(u,X)Y )H , (S∇XV Y V )(p,u) = 0,

for all vector fields X,Y ∈ Γ(TM). Clearly the non-vanishing components of S∇ are

SΓk
ij =

S Γk
ij
= Γk

ij ,
SΓk

ij
=

1

2
Rk

hijy
h,(4.6)

SΓk
ij
=

1

2
Rk

hijy
h, SΓk

ij = −
1

2
Rk

ijhy
h, i, j, k = 1, . . . , 4,

where R is the curvature tensor of (M, g) and R(∂xi , ∂xj )∂xh = Rk
ijh∂xk . Similarly,

if we denote the Levi-Civita connection of gH by H∇ then we have

{

(H∇XHY H)(p,u) = (H∇XHY V )(p,u) = (∇XY )H(p,u),

(H∇XV Y H)(p,u) = (H∇XV Y V )(p,u) = 0,

for all vector filed X,Y ∈ Γ(TM). By the above relations, the non-vanishing com-

ponents of the Levi-Civita connection H∇ are

(4.7) HΓk
ij =

H Γk
ij
= Γk

ij , i, j, k = 1, . . . , 4.

The Euler-Lagrange system of the identity map for a Sasaki metric gS and for the

horizontal lift metric gH is translated by replacing the corresponding components

for gS and gH by their Levi-Civita connections in the equation (2.4).

The evaluation map is an important object on TM . For each one-form ω on M ,

we can introduce a function ιω : TM → R which is called the evaluation map and

defined by ιω(p, u) = ωp(u). Specially, for each function f ∈ F(M), fC = ι(df) is

called the complete lift of the function f . The characterization of the vector fields

on TM will be done by these complete lift functions. In fact, X(fC) = Y (fC)

for all f ∈ F(M) if and only if X = Y , where X and Y are two arbitrary vector

fields on TM . For each vector field X on M , its complete lift XC is the vector field

on TM defined by XC(fC) = (Xf)C . Remarkably, we can characterize tensor fields
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on TM by their action on complete lifts of vector fields on M . Hence, if (M, g) is

a pseudo-Riemannian manifold, we can naturally equip the tangent bundle TM with

the complete lift metric, which is defined by:

(4.8) gC(XC , Y C) = g(X,Y )C .

A coordinate description of the complete lift metric is

(4.9) CG =

(

yk∂gij/∂x
k G

G 0

)

,

The complete lift metric is always of neutral signature (m,m). We refer to [19] for

more information on the geometry of the tangent bundle and the complete lift metric.

Remark 4.1. The complete lift gC is a pseudo-Riemannian metric of neutral

signature (m,m), m = dimM , whose properties have a nice correspondence with

those of (M, g). For instance, (M, g) is locally symmetric if and only if (TM, gC)

is so, (M, g) is a real space form if and only if (TM, gC) is locally conformally flat,

(M, g, J) is a complex space form if and only if (TM, gC , JC) is a Bochner-flat Kähler

manifold.

Now we have all arguments for the tangent bundle of a non-reductive homogeneous

four-manifold, endowed with the above lifted metrics.

5. Invariant harmonic metrics

Following the notation of Section 3, any invariant metric on a non-reductive ho-

mogeneous four manifold is described by some arbitrary coefficients a, b, . . .. In this

section, we take an arbitrary invariant metric ĝ, which is defined by arbitrary coef-

ficients â, b̂, . . ., and consider harmonicity of ĝ with respect to g.

5.1. Harmonicity of ĝ with respect to g.

Theorem 5.1. Let (M = G/H, g) be a non-reductive homogeneous manifold of

dimension four, equipped with an invariant metric g. In this case, the invariant

metric ĝ is harmonic with respect to g if and only if one of the following cases occurs

(1) (G/H, g) is of type A1 and câ = aĉ.

(2) (G/H, g) is of type A2 and one of the following cases occurs

(i) α = 0, câ = aĉ,

(ii) α = 1/4, ad̂ = dâ,

(iii) α = arbitary, câ = aĉ, dâ = ad̂.
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(3) (G/H, g) is of type A3, ε = ±1 and bâ = ab̂, bĉ = cb̂.

(4) (G/H, g) is of type A4, A5, B2 or B3.

(5) (G/H, g) is of type B1 and câ = aĉ, dâ = ad̂.

P r o o f. Let (G/H, g) be a non-reductive homogeneous manifold of dimen-

sion four and ĝ an arbitrary invariant metric which is harmonic with respect to

the invariant metric g. We give details of computations for case (A1), the other

cases could be treated in a similar way.

(A1) We refer to the invariant metric described in the equation (3.2), where a, b,

c, d are arbitrary real constants and a(a− 4d) 6= 0. Putting Λ[k] := (Γk
ij)i,j=1,...,4 for

all indices k = 1, . . . , 4, we find

Λ[1] =











−
32bdx2

2

a(a−4d) − 16bdx2

a(a−4d) − 2x2(ax4−c)
a

2x2

− 16bdx2

a(a−4d) − 8bd
a(a−4d) −ax4−c

a
1

− 2x2(ax4−c)
a

−ax4−c
a

0 0

2x2 1 0 0











,

Λ[2] =























64bdx3

2

a(a−4d)
a2

−4ad+32bdx2

2

a(a−4d)
(4ax2x4−4cx2+a)x2

a
−4x22

a2
−4ad+32bdx2

2

a(a−4d)
16bdx2

a(a−4d)
4ax2x4−4cx2+a

2a −2x2

(4ax2x4−4cx2+a)x2

a
4ax2x4−4cx2+a

2a 0 0

−4x22 −2x2 0 0























,

Λ[3] =









−
16bx2

2

a−4d − 8bx2

a−4d 0 0

− 8bx2

a−4d − 4b
a−4d 0 0

0 0 0 0

0 0 0 0









,

Λ[4] =











−4bx2(a−4d+4ax2x4−4cx2)
a(a−4d) − b(a−4d+8ax2x4−8cx2)

a(a−4d)
ax4−c−bx2

a
−1

−−4b(a−4d+8ax2x4−8cx2)
a(a−4d) − 4b(ax4−c)

a(a−4d) − b
2a 0

ax4−c−bx2

a
− b

2a 0 − 1
2

−1 0 − 1
2 0











.

Now, the invariant metric ĝ is

ĝ = (4b̂x22 + â) dx21 + 4b̂x2 dx1 dx2 − (4âx2x4 − 4ĉx2 + â) dx1 dx3

+ 4âx2 dx1 dx4 + b̂dx22 − 2(âx4 − ĉ) dx2 dx3 + 2âdx2 dx4 + d̂ dx23,

where â, . . . , d̂ are arbitrary real constants and â(â − 4d̂) 6= 0. Clearly the Levi-
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Civita components of ĝ are Λ̂[1], . . . , Λ̂[4], which are deduced by inserting respectively

â, . . . , d̂ instead of a, . . . , d in Λ[1], . . . ,Λ[4].

Now, we apply the equation (2.4) to the identity map I : (G/H, g) → (G/H, ĝ).

Straightforward calculations yield that

4(aĉ− câ)

âa(a− 4d)
= 0,

which immediately gives the first statement. Similar arguments used in the remaining

cases will complete the proof. �

5.2. Harmonicity of ĝS with respect to gS and ĝH with respect to gH .

Theorem 5.2. Let g be an invariant metric on a four-dimensional, non-reductive

homogeneous pseudo-Riemannian manifold M = G/H . Then the Sasaki metric ĝS

is harmonic with respect to gS (and the horizontal lift ĝH is harmonic with respect

to gH) if and only if one of the following cases occurs

(1) (G/H, g) is of type A1 and câ = aĉ.

(2) (G/H, g) is of type A2 and one of the following cases occurs

(i) α = 0, câ = aĉ,

(ii) α = 1/4, ad̂ = dâ,

(iii) α = arbitary, câ = aĉ, dâ = ad̂.

(3) (G/H, g) is of type A3 for ε = ±1 and bâ = ab̂, bĉ = cb̂.

(4) (G/H, g) is of type A4, A5, B2 or B3.

(5) (G/H, g) is of type B1 and câ = aĉ, dâ = ad̂.

P r o o f. Let (G/H, g) be a non-reductive homogeneous manifold of dimen-

sion four and ĝ an arbitrary invariant metric which is harmonic with respect to

the invariant metric g.

(A1) Putting Λ[i] := Λ(δxi) and Λ[j̄] := Λ(∂yj̄ ) for all indices i, j = 1, . . . , 4, we

find the Levi-Civita components of gS and ĝS (gH and ĝH) using the relations (4.6)

(respectively, (4.7)).

A straightforward calculation after substituting the equations (4.5) and (4.6) in

the equation (2.4) shows that the Sasaki metric ĝS is harmonic with respect to gS

(the horizontal lift metric ĝH is harmonic with respect to gH) if and only if the

following equations are satisfied:

{

tr
(

gij(Γ̂k
ij − Γk

ij)
)

= 0,

tr
(

gij(R̂k
ijh −Rk

ijh)y
h
)

= 0, k = 1, . . . , 4,
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(respectively, tr(gij(Γ̂k
ij − Γk

ij)) = 0, k = 1, . . . , 4). Now, we get the following equa-

tions for ĝS (or ĝH) being harmonic with respect to gS (respectively, gH):























x2(aĉ− âc) = 0,

(â− 4d̂− 2x2(ĉ+ âx4))(aĉ − âc) = 0,

(aĉ− âc)d̂x2 = 0,

(aĉ− âc)d̂x22 = 0,

so câ = aĉ which shows the validity of the first statement. By the same method used

for each of the classes A2, . . . , A5, B1, . . . , B3, the remaining assertions are deduced

and this ends the proof. �

5.3. Harmonicity of ĝC with respect to gC.

Theorem 5.3. Let g be an invariant metric on a four-dimensional, non-reductive

homogeneous pseudo-Riemannian manifold M = G/H . Then the complete metric

ĝC is harmonic with respect to gC if and only if one of the following cases occurs

(1) (G/H, g) is of type A1 and câ = aĉ.

(2) (G/H, g) is of type A2 and one of the following cases occurs

(i) α = 0, câ = aĉ,

(ii) α = 1/4, ad̂ = dâ,

(iii) α = arbitary, câ = aĉ, dâ = ad̂.

(3) (G/H, g) is of type A3 for ε = ±1 and bâ = ab̂, bĉ = cb̂.

(4) (G/H, g) is of type A4, A5, B2 or B3.

(5) (G/H, g) is of type B1 and câ = aĉ, dâ = ad̂.

P r o o f. Let (G/H, g) be a non-reductive homogeneous manifold of dimen-

sion four and gC the complete lift of the invariant metric g. We will show the

details of the case (A1).

(A1) Using the equations (3.2) and (4.9), straightforward computations yield:

CG =













8bx2y2 2by2 −2ax4y2 + 2cy2 − 2ax2y4 2ay2
2by2 0 −ay4 0

−2ax4y2 + 2cy2 − 2ax2y4 −ay4 0 0

2ay2 0 0 0

G

G 0













,

in the local coordinates (x1, . . . , x4, y1, . . . , y4) on the tangent bundle.

Putting Λ[i] := Λ(δxi) and Λ[j̄] := Λ(∂yj̄ ) for all indices i, j̄ = 1, . . . , 4, we obtain

the Levi-Civita componenets of gC and ĝC .
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Straightforward calculations according to equation (2.4) (by replacing the neces-

sary components of gC) we get the following equations for ĝC being harmonic with

respect to gC :
aĉ− câ

a(â− 4d̂)(a− 4d)
= 0,

so câ = aĉ which shows the validity of the first statement. By straightforward

computations we use the same method for each of the classes A2, . . . , A5, B1, . . . , B3.

�

Summarizing the arguments above, we give the proof of the main Theorem 5.4 as

following.

Theorem 5.4. Let (M, g) be a non-reductive homogeneous four-manifold. The

following statements are equivalent:

(i) A pseudo-Riemannian metric ĝ on M is harmonic with respect to the pseudo-

Riemannian metric g.

(ii) The Sasaki metric ĝS of a pseudo-Riemannian metric ĝ is harmonic with respect

to the Sasaki metric gS of the pseudo-Riemannian metric g.

(iii) The horizontal lift ĝH of a pseudo-Riemannian metric ĝ is harmonic with respect

to the horizontal lift gH of the pseudo-Riemannian metric g.

(iv) The complete lift ĝC of a pseudo-Riemannian metric ĝ is harmonic with respect

to the complete lift gC of the pseudo-Riemannian metric g.

P r o o f. In order to show the equivalence between statements (i), (ii), (iii) and

(iv), we must completely consider all cases which are presented in the classification

of non-reductive homogeneous four manifolds. Following Theorems 5.1, 5.2 and 5.3,

we immediately observe that harmonicity conditions of a pseudo-Riemannian metric

ĝ with respect to the pseudo-Riemannian metric g, the Sasaki metric ĝS with respect

to the Sasaki metric gS , the horizontal lift ĝH with respect to the horizontal lift gH

and the complete lift ĝC with respect to the complete lift gC coincide. Thus, the

statements (i), . . . , (iv) are equivalent. �
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