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Abstract. Let A be a standard Koszul standardly stratified algebra and X an A-module.
The paper investigates conditions which imply that the module Ext∗A(X) over the Yoneda
extension algebra A

∗ is filtered by standard modules. In particular, we prove that the
Yoneda extension algebra of A is also standardly stratified. This is a generalization of
similar results on quasi-hereditary and on graded standardly stratified algebras.
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1. Introduction

In [2] and [4] Ágoston, Dlab and Lukács were looking for conditions which would
imply that the Yoneda extension algebra of a quasi-hereditary algebra is again quasi-
hereditary. They proved in [4] that a quasi-hereditary algebra which is standard
Koszul, that is, its right and left standard modules have top projective resolutions,
satisfies this property. They also showed that this homological duality respects the
stratifying structure, i.e., the functor Ext∗A maps standard A-modules to standard
modules over the extension algebra. Later, the same authors investigated the anal-
ogous question for Koszul standardly stratified algebras under the additional as-
sumption that the initial algebra was graded. They generalized the standard Koszul
property for this class of algebras in [5], and achieved similar results for this case,
using Poincaré and Hilbert matrices.
The present paper examines the more general case of (not necessarily graded)

standardly stratified algebras. Our main goal is to find modules over a standard
Koszul standardly stratified algebra, whose images under the natural functor Ext∗A
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are filtered by standard modules. Notably, we extend former results about quasi-
hereditary and graded Koszul standardly stratified algebras by showing that the
homological dual of a standard Koszul standardly stratified (but not necessarily
graded) algebra is standardly stratified. The lack of left-right symmetry in standardly
stratified algebras, however, makes it necessary to deal separately with left and right
modules.

We show in Section 3 that for certain A-modules, the functors Hom(εiA,−) :

mod -A → mod -εiAεi and the trace filtration (corresponding to the projective left
A∗-modules) of the Ext∗A-images of these modules are closely related when A or A◦

is standard Koszul and standardly stratified. After a short preparatory section, the
refinement of this filtration is handled separately for the two cases in Sections 5
and 6. In both cases we define sufficiently large classes of modules (which contain
simple and standard or proper standard modules, and are closed under top exten-
sions), whose elements are mapped by Ext∗A to ∆

◦

- or ∆-filtered A∗-modules. In
particular, A∗A∗ and A∗

A∗ prove to be ∆
◦

- and ∆-filtered, respectively. Finally, we
present some examples and counterexamples in Section 7.

2. Preliminaries

Throughout the paper, A is a basic finite dimensional algebra over a field K.
Modules are finitely generated and they are usually right modules. The category of
finitely generated left or right A-modules will be denoted by A-mod and mod -A,
respectively.

For the algebra A we fix a complete ordered set of primitive orthogonal idempo-
tents e = (e1, . . . , en). In the canonical decomposition AA = e1A⊕ . . .⊕ enA of the
regular module, the ith indecomposable projective module eiA will be denoted by
P (i) and its simple top P (i)/ radP (i) by S(i). Besides, Ŝ stands for the semisim-

ple top of AA, so Ŝ =
n⊕

i=1

S(i). The corresponding left modules are denoted by

P ◦(i), S◦(i) and Ŝ◦, respectively.

If 1 6 i 6 n, set εi = ei+. . .+en and εn+1 = 0. The centralizer algebras εiAεi of A
will be denoted by Ci, where the idempotents and their order are naturally inherited
from A. The ith standard and proper standard A-modules are ∆(i) = eiA/eiAεi+1A

and ∆(i) = eiA/ei(radA)εiA, respectively. That is, the ith standard module is the
largest factor module of P (i) which has no composition factor isomorphic to S(j) if
j > i, while the ith proper standard module is the largest factor module of P (i) whose
radical has no composition factor isomorphic to S(j) if j > i. The left standard and
the proper standard modules are defined analogously. The ith costandard module is
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∇(i) = D(∆◦(i)) and the ith proper costandard module is ∇(i) = D(∆
◦

(i)), where
D stands for the usualK-duality functor HomK(−,K) of finitely generated modules.
Let X be a class of modules. We say that a module X is filtered by X if there

is a sequence of submodules X = X0 ⊇ X1 ⊇ . . . such that
⋂
i>0

X i = 0, and all

the factor modules X i/X i+1 are isomorphic to some modules of X . In this case, we
write X ∈ F(X ).
Given the ordered set (e1, . . . , en) we can form the trace filtration of a module X

with respect to the projective modules P (i)

X = Xε1A ⊇ Xε2A ⊇ . . . ⊇ XεnA ⊇ 0.

We will refer to this filtration as the trace filtration of X . Following the terminol-
ogy of [10], we call an algebra A (with a fixed complete ordered set e of primitive
orthogonal idempotents) standardly stratified if the regular module AA ∈ F(∆) (or
equivalently, the left regular module AA ∈ F(∆

◦

), cf. [8]), where ∆
◦

consists of
the proper standard modules, while ∆ consists of the left standard modules. We
shall use later the fact that ExthA(∆(i), S(j)) = 0 for all h > 0 and i > j when
AA ∈ F(∆) (cf. [7]), and similarly, ExthA(∆(i), S(j)) = 0 for all h > 0 and i > j

when AA ∈ F(∆).

A submodule X 6 Y is a top submodule (X
t
6 Y ), whenever X ∩ radY =

radX . This is equivalent to the condition that the natural embedding of X into
Y induces an embedding of X/ radX into Y/ radY (such embeddings will be called
top embeddings), or in other words, the induced map HomA(Y, Ŝ) → HomA(X, Ŝ)

is surjective. (See [1] for the origin of this concept.) Let

P•(X) : . . . → Ph(X) → . . . → P1(X) → P0(X) → X → 0

be a minimal projective resolution of X with the hth syzygy Ωh. Using the concept
of top submodules, we introduce the classes Ci

A. The module X belongs to C
i
A if Ωh

is a top submodule of radPh−1 for all h 6 i. We say that X has a top projective

resolution, or X is Koszul if X ∈ CA :=
∞⋂
i=1

Ci
A. The algebra A is a Koszul algebra if Ŝ

(or equivalently Ŝ◦) has a top projective resolution (cf. [9]). Observe that the concept
of top projective resolution generalizes the notion of a linear projective resolution for
the non-graded setting.
A standardly stratified algebra A is said to be standard Koszul if ∆(i) ∈ CA and

∆
◦

(i) ∈ CA◦ for all i. In this case εi(radA)
2εi = εi(radA)εi(radA)εi holds for

all i (see Corollary 1.2 of [10]). Let us also state here some earlier results about
these algebras, which we shall later use freely. The next theorem summarizes the
statements of Lemma 2.1 and Theorem 2.9 of [10].
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Theorem 2.1. If A is a standard Koszul standardly stratified algebra, then A

is Koszul. Furthermore, the centralizer algebras Ci are also standard Koszul and

standardly stratified algebras, moreover, ∆Ci
(j) ∼= ∆A(j)εi and ∆

◦

Ci
(j) ∼= εi∆

◦

A(j)

for all j > i.

The extension algebra (or homological dual) of A is the positively graded algebra
A∗ whose underlying vector space is

⊕
h>0

(A∗)h =
⊕
h>0

ExthA(Ŝ, Ŝ), and the multiplica-

tion is given by the Yoneda composition of the extensions. A graded (left) A∗-module
X =

⊕
h∈Z

Xh is an A∗-module for which (A∗)hXk ⊆ Xh+k, and by an A∗-module ho-

momorphism f : X → Y we mean a graded A∗-module homomorphism f having
any degree d ∈ Z. In this sense, we say that two graded A∗-modules X and Y are
isomorphic if there exists a bijective A∗-homomorphism f : X → Y (not necessarily
of degree 0). The ith graded shift of the graded A∗-module X is denoted by X [i],
which is a graded module such that X [i]h = Xh−i. For graded modules we shall also
use the notation X>i =

⊕
h>i

Xh.

The functor Ext∗A : modA → A∗- grmod is defined as the direct sum of the func-
tors ExthA(−, Ŝ). Namely, if X ∈ mod -A, then Ext∗A(X) is the graded left module⊕
h>0

ExthA(X, Ŝ). For simplicity, we denote Ext∗A(X) by X∗, while for its homoge-

neous part of degree h we write (X∗)h. We use the notation ϕ∗ = Ext∗A(ϕ, Ŝ) :

Ext∗A(Y, Ŝ) → Ext∗A(X, Ŝ), where ϕ : X → Y is a module homomorphism, and we
denote by Eh

X the canonical isomorphism between the spaces HomA(Ωh(X), Ŝ) and
ExthA(X, Ŝ). Thus, we have the commutative diagram

HomA(Ωh(Y ), Ŝ)
(ϕ̃h−1)

∗

//

Eh
Y

��

HomA(Ωh(X), Ŝ)

Eh
X

��
ExthA(Y, Ŝ)

ϕ∗

// ExthA(X, Ŝ)

of left (A∗)0-modules, where ϕ• : P•(X) → P•(Y ) is a lifting of ϕ, while ϕ̃h−1 is the
restriction of ϕh−1 to the submodule Ωh(X) ⊆ Ph−1(X).
The module X has a top projective resolution if and only if X∗ is generated in

degree 0, that is, (X∗)h = ExthA(X, Ŝ) = (A∗)h · (X∗)0 for h > 0. In particular, if A
is Koszul (for example, when A is standard Koszul and standardly stratified), then
A∗ is tightly graded, i.e., ExthA(Ŝ, Ŝ) = (Ext1A(Ŝ, Ŝ))

h for h > 1 (cf. [9]).
The notion of S-Koszul modules for semisimple S generalizes the concept of Koszul

modules. The module X is S-Koszul if satisfies ExthA(X,S)=Ext1(Ŝ, S) Exth−1
A (X, Ŝ)

for all h > 0. In this sense, a module has a top projective resolution if and only if it
is S-Koszul for all simple modules S.
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Let (e1, . . . , en) be a complete ordered set of primitive orthogonal idempotents
of A. The set {fi = idS(i) : 1 6 i 6 n} defines a complete set of primitive or-
thogonal idempotents in A∗. We will always consider this set with the opposite
order (fn, . . . , f1). In this way, the ith standard A∗-module ∆A∗(i) is defined as
∆A∗(i) = fiA

∗/fiA
∗(f1 + . . . + fi−1)A

∗, while the ith proper standard module is
given by ∆A∗(i) = fiA

∗/fi(A
∗)>1(f1 + . . .+ fi)A

∗. The definitions of left standard
and proper standard modules are analogous. The algebra A∗ is standardly stratified
if A∗

A∗ is filtered by right standard A∗-modules. In view of Theorem 1 of [5], if A∗ is
tightly graded, then this is equivalent to the condition that A∗A∗ is filtered by left
proper standard A∗-modules.

3. Stratification of modules over A∗

Generalizing the concept of quasi-hereditary lean algebras (cf. [1]), we call an
algebra A with a fixed ordered set (e1, . . . , en) of primitive idempotents lean if
εiJ

2εi = εiJεiJεi for all i. In particular, A is lean if A or A◦ is standard Koszul,
as it was shown in Corollary 1.2 of [10]. We should also note that the centralizer
algebras εiAεi of A are also lean if A is lean. In this section, we examine modules
over the extension algebra of a lean algebra A. For induction purposes we define the
classes

K2 = {X ∈ modA : Xε2A
t
6 X, Xε2 ∈ CC2} and K = K2 ∩ CA,

as they appeared in [10]. (We shall use the notation KA when we need to specify the
algebra.) We also introduce a recursive version rK ⊂ K of K as

rK = {X ∈ K : Xεi ∈ KCi
for all i}.

Although K2 was originally defined for standard Koszul standardly stratified al-
gebras, several useful features are preserved in this more general setting.
For an arbitrary module X we write X̃ = Xε2A and X = X/X̃. Let the op-

erator ω : mod-A → mod-A be defined by ω(X) = Ω(X̃). If h > 1, then ωh(X)

stands for ω(ωh−1(X)), while we denote the submodule ωh(X)ε2A by ω̃h(X), and
set ω0(X) = X.

Lemma 3.1. Suppose that X = Xε2A ∈ mod-A. Let P•(X) denote a minimal

projective resolution of X and let P•(Xε2) denote a minimal projective resolution

of the C2-module Xε2. If u• : P•(Xε2) → P•(X)ε2 is a lifting of idXε2 , then ũ0 =

u0

∣∣
Ω(Xε2)

: Ω(Xε2) → Ω(X)ε2 is an isomorphism.
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P r o o f. Consider the following commutative diagram

0 // Ω(Xε2)

ũ0

��

// P (Xε2)

u0

��

// Xε2 // 0

0 // Ω(X)ε2 // P (X)ε2 // Xε2 // 0

with exact rows. As X = Xε2A, it follows that P (X) = P (X)ε2A, and so P (X)ε2
is also a projective cover of Xε2. Thus u0 and ũ0 are isomorphisms. �

Lemma 3.2. Suppose that A is a lean algebra and X 6 Y are A-modules such

that Xε2 ∈ CC2 and the natural embedding ϕ : X̃ → Y is a top embedding. If

ϕ• : P•(X̃) → P•(Y ) is a lifting of ϕ, then ϕ̃0 = ϕ0

∣∣
ω̃(X)

: ω̃(X) → Ω(Y ) is also

a top embedding. Consequently, ω̃(X)
t
6 ω(X).

P r o o f. By the horseshoe lemma we have the commutative exact diagram

0

��

0

��

0

��
0 // ω(X)

��

// Ω(Y )

��

// Ω(Z)

��

// 0

0 // P (X̃)

��

ϕ0 // P (Y )

��

// P (Z)

��

// 0

0 // X̃

��

ϕ // Y

��

// Z

��

// 0

0 0 0

where the middle column is also a projective cover because ϕ is a top embedding. In
view of Lemma 3.1, ω̃(X)ε2 ∼= Ω(Xε2), so Xε2 ∈ CC2 implies that ω̃(X)ε2 is a top

submodule of P (Xε2)(ε2Jε2) = P (X̃)Jε2, thus by Lemma 1.4 (2) of [10], ω̃(X)
t
6

P (X̃)J . On the other hand, ϕ0 is a split monomorphism, so P (X̃)J
t
6 P (Y )J , giving

ϕ0(ω̃(X))
t
6 P (Y )J . Since

ϕ0(ω̃(X)) ⊆ ϕ0(ω(X)) ⊆ Ω(Y ) ⊆ P (Y )J,

we get ϕ̃0(ω̃(X))
t
6 Ω(Y ) and ω̃(X)

t
6 ω(X). �

Corollary 3.3. If A is lean and X ∈ K2, then ω(X) ∈ K2.

P r o o f. We apply Lemma 3.2 with Y = X , and Lemma 3.1. �
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Proposition 3.4. If A is lean, then the classes K2,K, and rK are closed under

top extensions. That is, if

0 → X
t
→ Y → Z → 0

is an exact sequence with top embedding, and both X and Z are in one of these

classes, then Y is in the same class.

P r o o f. Since X̃
t
6 X

t
6 Y and Z̃

t
6 Z, by Lemma 1.6 of [10], Ỹ

t
6 Y . Besides,

X̃
t
6 Y also gives that Xε2

t
6 Y ε2, so Y ε2 is a top extension of the Koszul modules

Xε2 and Zε2, thus Y ε2 ∈ CC2 by Lemma 2.4 of [2]. Hence we get that the class K2 is
closed under top extensions; and this also implies the same condition for K = K2∩ CA.
To prove the statement for rK, we can use the previous argument recursively for Xεi
and Zεi. �

Proposition 3.5. Suppose that ε2J
2ε2 = ε2Jε2Jε2. If X ∈ K2, then for every

h > 0 we have an exact sequence

(1) 0 → ω̃h(X)
αh−→ Ωh(X)

βh
−→ Yh(X) → 0

with αh a top embedding.

P r o o f. Fix an A-module X ∈ K2, and consider the embeddings eh : ω̃h(X) →

ωh(X). For h > 0 let eh
•
: P•(ω̃h(X)) → P•(ωh(X)) denote a lifting of eh (and also

its restriction to Ω•+1(ω̃h(X)) ⊆ P•(ω̃h(X))). Using Lemma 3.2 and Corollary 3.3,
an induction on h shows that αh as the composition of morphisms

ω̃h(X)
eh

−→ ωh(X) = Ω1(ω̃h−1(X))
eh−1
0−→ Ω1(ωh−1(X)) = Ω2(ω̃h−2(X))(2)

eh−2
1−→ . . .

e1h−2
−→ Ωh−1(ω1(X)) = Ωh(ω̃0(X))

e0h−1
−→ Ωh(X),

is a top embedding. �

Corollary 3.6. Let A be lean and X ∈ K2. Using the earlier notation, the

degree k part ExtkA(αh, Ŝ) : ExtkA(Ωh(X), Ŝ) → ExtkA(ω̃h(X), Ŝ) of Ext∗A(αh) can

be written as

ExtkA(αh, Ŝ) = (αh,k−1)
∗ = Ek

ω̃h(X) ◦ (e
h
k−1)

∗ ◦ . . . ◦ (e0h+k−1)
∗ ◦ (Ek

Ωh(X))
−1,

where αh,• : P•(ω̃h(X)) → P•(Ωh(X)) is a lifting of αh, and e
h
•
is the same as in the

previous proof.
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The functor HomA(εiA,−) maps exact sequences of mod-A to exact sequences of
mod-Ci. For i = 2, let us denote HomA(ε2A,−) by F . For an A-module X we define
qX to be the direct sum of linear maps

qX =
⊕

h>0

(qX)h : Ext∗A(X) → Ext∗C2
(Xε2),

where (qX)h sends every h-fold extension 0 → Ŝ → Xh−1 → . . . → X0 → X → 0

to an h-fold extension 0 → Ŝε2 → Xh−1ε2 → . . . → X0ε2 → Xε2 → 0. The
map qX is well-defined because F preserves the equivalence of extensions. Since the
functor F commutes with the Yoneda product of extensions, q

Ŝ
provides an algebra

homomorphism from A∗ to C∗

2 . Consequently, qX can be considered as a left graded
A∗-module homomorphism having degree 0.

Lemma 3.7. For h > 1, the following diagram is commutative:

ExthA(X, Ŝ)
(qX )h //

(Eh
X )−1

��

ExthC2
(Xε2, Ŝε2)

HomA(Ωh(X), Ŝ)
(qΩh(X))0// HomC2

(Ωh(X)ε2, Ŝε2)
(ũh−1)

∗

// HomC2
(Ωh(Xε2), Ŝε2)

Eh
Xε2

OO

where ũh−1a : Ωh(Xε2) → Ωh(X)ε2 is the restriction of a lifting u• : P•(Xε2) →

P•(X)ε2 of idXε2 . That is,

(qX)h = Eh
Xε2

◦ (ũh−1)
∗ ◦ (qΩh(X))0 ◦ (E

h
X)−1.

When h = 0, the actions of (qX)0 and F coincide, i.e., (qX)0(ξ) = F (ξ) for all

ξ ∈ HomA(X, Ŝ).

P r o o f. The statement for h = 0 is an easy consequence of the construction
of q. For h > 1, let ξ ∈ ExthA(X, Ŝ) and ξ′ = (Eh

X)−1(ξ) ∈ HomA(Ωh(X), Ŝ). In the
diagram

0 // Ωh(Xε2) //

ũh−1

��

Ph−1(Xε2) //

��

. . . // Xε2 //

idXε2

��

0

0 // Ωh(X)ε2 //

F (ξ′)

��

Ph(X)ε2 //

��

. . . // Xε2 //

idXε2

��

0

0 // Ŝε2
// Xh−1ε2 // . . . // Xε2 // 0

the extensions (qX)h(ξ) = ((qX)h ◦ Eh
X)(ξ′) and (Eh

Xε2
◦ (ũh−1)

∗ ◦ F )(ξ′) are both
equivalent to the extension represented by the bottom row. �
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Lemma 3.8. The correspondence qX is natural, that is, if ϕ : X → Y is an

A-module homomorphism, then the following diagram is commutative:

Ext∗A(Y )
qY //

ϕ∗

��

Ext∗C2
(Y ε2)

F (ϕ)∗

��
Ext∗A(X)

qX // Ext∗C2
(Xε2)

P r o o f. Let u• : P•(Xε2) → P•(X)ε2 denote a lifting of idXε2 , and similarly let
v• : P•(Y ε2) → P•(Y )ε2 denote a lifting of idY ε2 . In the diagram

P•(Xε2)

u•

||③③
③③
③③
③③
③

F (ϕ)•

!!❉
❉❉

❉❉
❉❉

❉❉

P•(X)ε2

F (ϕ•) ""❉
❉❉

❉❉
❉❉

❉❉
P•(Y ε2)

v•
}}③③
③③
③③
③③
③

P•(Y )ε2

the chain maps F (ϕ•)◦u• and v•◦F (ϕ)• are homotopic, since they are both liftings of
the map F (ϕ) ◦ idXε2 = idY ε2 ◦F (ϕ). Let ξ ∈ ExthA(Y, Ŝ) for which ξ′ = (Eh

Y )
−1(ξ).

Then we have

Eh
Y (ξ

′)
✤ qY // (Eh

Y ε2
◦ (ṽh−1)

∗

0 ◦ F )(ξ′) ✤
F (ϕ)∗ // (Eh

Xε2
◦ (F (ϕ)h−1)

∗

0 ◦ (ṽh−1)
∗

0 ◦ F )(ξ′)

Eh
Y (ξ

′)
✤ ϕ∗

// (Eh
X ◦ (ϕh−1)

∗)(ξ′)
✤ qX // (Eh

Xε2
◦ (ũh−1)

∗

0 ◦ F (ϕh−1)
∗

0)(F (ξ′)).

�

Remark 3.9. We should point out that for any A-module X , the kernel of qX
contains A∗f1X

∗ because any extension ξ ∈ ExtkA(X, Ŝ)∩A∗f1X
∗ can be written as

a Yoneda-composite of

0 → Ŝ → . . . →
⊕

S(1) → 0 and 0 →
⊕

S(1) → . . . → X → 0,

which has clearly a 0 image with respect to qX .
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Lemma 3.10. Suppose that A is lean, X ∈ K2, and P•(X) is a minimal projective

resolution of X . Then there is a lifting

u• : P•(Xε2) → P•(X)ε2

of idXε2 such that each ũh : Ωh+1(Xε2) → Ωh+1(X)ε2 is a top embedding, and

(3) ũh(Ωh+1(Xε2)) = F (αh+1)(ω̃h+1(X)ε2) ∼= ω̃h+1(X)ε2.

P r o o f. We use induction on h. The case h = 0 is proved by Lemma 3.1.
Suppose that h > 0. We define the maps ηh : Ph(Xε2) → P (ω̃h(X))ε2 recursively as
shown in the first two rows of the commutative diagram below.

0 // Ωh+1(Xε2) //

η̃h

��

Ph(Xε2) //

ηh

��

Ωh(Xε2) //

η̃h−1∼=
��

0

0 // ωh+1(X)ε2 //
��
F (αh+1)
��

P (ω̃h(X))ε2 //
��

��

ω̃h(X)ε2 //

F (αh)
��

0

0 // Ωh+1(X)ε2 // Ph(X)ε2 // Ωh(X)ε2 // 0

We show by induction that ηh and η̃h are isomorphisms for each h. If η̃h−1 is an
isomorphism, then ηh is surjective because P (ω̃h(X))ε2 → ω̃h(X)ε2 is a projective
cover. As P (ω̃h(X))ε2 is projective, ηh splits. But ker ηh ⊆ radPh(Xε2), so ηh is
also injective. Then, by the snake lemma, η̃h is an isomorphism, too.
Finally, αh+1 : ω̃h+1(X) → Ωh+1(X) is a top embedding with ω̃h+1(X) generated

by ε2A, so F (αh+1) and ũh := F (αh+1) ◦ η̃h are also top embeddings. �

For the remaining part of this section let us fix the notation of the previous lemma.
That is, for a fixed arbitrary module X ∈ K2 let u• denote a lifting P•(Xε2) →

P•(X)ε2 of idXε2 for which ũ• = F (α•+1) ◦ η̃• and αh—along with its cokernel βh—
is defined by the exact sequence (1).

Proposition 3.11. Let A be lean and X ∈ K2. Then qX : X∗ → (Xε2)
∗ is an

epimorphism, whose kernel is
⊕
h>0

Eh
X(im(βh)

∗

0).

P r o o f. For an arbitrary index h > 0,

(qX)h ◦ Eh
X = Eh

Xε2
◦ (η̃h−1)

∗

0 ◦ F (αh)
∗

0 ◦ (qΩh(X))0

by the definition of ũ• and Lemma 3.7. Both Eh
Xε2
and Eh

X are isomorphisms, so we
investigate (η̃h−1)

∗

0 ◦ F (αh)
∗

0 ◦ (qΩh(X))0. By Lemma 3.8,

(ηh−1)
∗

0 ◦
(
F (αh)

∗

0 ◦ (qΩh(X))0
)
= (ηh−1)

∗

0 ◦
(
(qω̃h(X))0 ◦ (αh)

∗

0

)
.
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As (ηh−1)
∗

0 and (qω̃h(X))0 are isomorphisms, ker((qX)h ◦E
h
X) = ker(αh)

∗

0 = im(βh)
∗

0.
Furthermore, the surjectivity of (αh)

∗

0 follows from αh being a top embedding. Hence
(qX)h is surjective with kernel Eh

X(im(βh)
∗

0). �

Proposition 3.12. Suppose that A is lean and X ∈ K2. If Yh(X) is Ŝε2A-Koszul

for all h, then ker qX = A∗f1X
∗.

P r o o f. In view of Proposition 3.11 and Remark 3.9, it is enough to show that⊕
h>0

Eh
X(im(βh)

∗

0) ⊆ A∗f1X
∗, or equivalently,

(Eh
X ◦ (βh)

∗

0)(HomA(Yh(X), Ŝ)) ⊆ (A∗f1X
∗)h

for all h. We prove this by induction on h. If h = 0, then Y0(X) = X ∈ F(S(1)),
and that implies

E0
X(im(β0)

∗

0) = im(β0)
∗

0 = HomA(X,S(1)) ⊆ (A∗f1X
∗)0.

It is clear that (Eh
X ◦ (βh)

∗

0)(HomA(Yh(X), S(1))) ⊆ A∗f1X
∗, so we only have to

deal with the image of HomA(Yh(X), Ŝε2A). Since αh is a top embedding, we get,
using the horseshoe lemma, the short exact sequence of the respective syzygies as
the bottom row of the following diagram:

(4)
0 // ω̃h+1(X)

αh+1 //

��

Ωh+1(X)
βh+1 // Yh+1(X) //

θh+1

��

0

0 // ωh+1(X) // Ωh+1(X)
β̃h,0 // Ω(Yh(X)) // 0.

Here the snake lemma yields the exact sequence

(5) 0 → ωh+1(X) −→ Yh+1(X)
θh+1
−→ Ω(Yh(X)) → 0.

By (4), (βh+1)
∗ ◦ (θh+1)

∗ = (β̃h,0)
∗. Besides, ωh+1(X) ∈ F(S(1)) gives the iso-

morphism (θh+1)
∗ : HomA(Ω(Yh(X)), Ŝε2A) → HomA(Yh+1(X), Ŝε2A), so

(βh+1)
∗

0

(
HomA(Yh+1(X), Ŝε2A)

)
= (βh,0)

∗

0

(
HomA(Ω(Yh(X)), Ŝε2A)

)
.

Suppose that ϕ is an element of HomA(Ω(Y ), Ŝε2A). Then from the diagram

ξ : 0 // Ωh+1(X) //

βh,0

��

Ph(X) //

��

Ωh(X) //

βh

��

0

0 // Ω(Yh+1) //

ϕ
��

P (Yh+1) // Yh+1
// 0

Ŝε2A
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we get

(Eh+1
X ◦ (βh,0)

∗

0)(ϕ) ⊆ ϕ ∗ βh,0 ∗ ξ ∗ Ext
h
A(X,Ωh(X))

⊆ ϕ ∗ Ext1A(Yh+1,Ω(Y )) ∗ βh ∗ ExthA(Yh+1,Ωh(X))

⊆ Ext1A(Yh+1, Ŝε2A) ∗ βh ∗ ExthA(X,Ωh(X)),

where ∗ stands for the Yoneda product of extensions of arbitrary modules, to em-
phasize that this product is not necessarily a product in A∗. It was assumed that
Yh+1 is Ŝε2A-Koszul, so the latter is included in

(A∗)1 ∗HomA(Yh+1, Ŝ) ∗ βh ∗ ExthA(X,Ωh(X))

⊆ (A∗)1 ∗ E
h
X(im(βh)

∗

0) ⊆ (A∗f1X
∗)h+1.

�

4. ∆-filtration of modules over an infinite dimensional

graded algebra

Suppose that Λ =
⊕
h>0

Λh is a tightly graded K-algebra, i.e., Λh ·Λk = Λh+k for all

h, k > 0. Let Λ- grfmod denote the category of left graded Λ-modules X =
⊕
h∈Z

Xh

such that dimK Xh < ∞ for every h, and there exists a t ∈ Z for which Xh = 0

whenever h < t. The homomorphisms and isomorphisms in Λ- grfmod will be graded,
but not necessarily of degree 0. We assume that f1 ∈ Λ0 is an idempotent element
and the proper standard module belonging to f1 is defined as

∆
◦

(1) = Λf1/Λf1 (Λ>1) f1.

Clearly, Ext1Λ(∆
◦

(1), S) = 0 for all simple modules with f1S = 0. We call a chain

of submodules X = X0 ⊇ X1 ⊇ . . . a ∆
◦

(1)-filtration if
∞⋂
i=0

X i = 0 and X i/X i+1 ∼=

∆
◦

(1) for each i.

Lemma 4.1 . If X ∈ F(∆
◦

(1)), then X is generated by the projective module

Λf1, i.e. X = Λf1X .

P r o o f. If X = X0 ⊇ X1 ⊇ . . . is a ∆
◦

(1)-filtration, then X i = Λui +X i+1 for
some elements ui = f1ui. Then for any h the finiteness of the dimension of (X)6h

and the condition
⋂
X i = 0 implies that (X i)h = 0 for some i, thus,

Xh =

(i−1∑

j=0

Λuj

)

h

+ (X i)h 6

∞∑

j=0

Λuj 6 Λf1X.

�
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Proposition 4.2. Let 0 → X → Y → Z → 0 be a short exact sequence, where

Z ∈ F(∆
◦

(1)), and Y = Λf1Y . If S is a simple module such that f1S = 0, then

Ext1Λ(Z, S)
∼= HomΛ(X,S) = 0.

As a consequence, X is generated by Λf1.

P r o o f. First suppose that Z ∼= ∆
◦

(1). Then Ext1Λ(Z, S) = 0 and from the
exact sequence

(6) HomΛ(Y, S) → HomΛ(X,S) → Ext1Λ(Z, S)

we get HomΛ(X,S) = 0.
Now let Z = Z0 ⊇ Z1 ⊇ . . . be a ∆

◦

(1)-filtration and assume that

ξ : 0 → S → W → Z → 0

is a short exact sequence. Let us denote by W i the preimage of Zi in W for each i.
Then

⋂
W i = S.

If Λf1W 6= W , then the condition Z = Λf1Z (by Lemma 4.1) together with the
simplicity of S implies that W = S ⊕ Λf1W , so the extension ξ is trivial.
If Λf1W = W , then we may apply the first step of the proof to the sequences

0 → W i+1 → W i → W i/W i+1 → 0

to show by induction that HomΛ(W
i, S) = 0 for all i.

On the other hand, the simple module S lies in Wh for some h. But
∞⋂
i=0

W i = S

yields that
∞⋂
i=0

(W i)k = 0 for k 6= h, and
∞⋂
i=0

W i = S for k = h. So dimK Wk < ∞

implies that there is an i such that (W i)k = 0 for k < h and S for k = h, which
contradicts HomA(W

i, S) = 0. We proved that Ext1Λ(Z, S) = 0, thus (6) gives
HomΛ(X,S) = 0. �

Proposition 4.3. Let 0 → X → Y → Z → 0 be a short exact sequence, where

Y ∈ F(∆
◦

(1)), and X is generated by Λf1. Then both X and Z are ∆
◦

(1)-filtered.

P r o o f. Let Y = Y 0 ⊇ Y 1 ⊇ . . . be a ∆
◦

(1)-filtration. To prove that X is
∆

◦

(1)-filtered, we can show by induction that the terms in the chain of modules
X = X ∩ Y 0 ⊇ X ∩Y 1 ⊇ . . . are generated by Λf1 and the factors are isomorphic to
∆

◦

(1). Indeed, if X ∩Y i is generated by Λf1, then the factor module (X ∩Y i)/(X ∩

Y i+1) ∼= (Y i+1+(X∩Y i))/Y i+1, which is also generated by Λf1, is embeddable into
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Y i/Y i+1 ∼= ∆
◦

(1), so it is either 0, or is isomorphic to ∆
◦

(1). Then Proposition 4.2
implies that X ∩ Y i+1 is generated by Λf1.
Next we show that the image of the chain Y = X + Y 0 ⊇ X + Y 1 ⊇ . . . gives

a ∆
◦

(1)-filtration of Z. The modules X + Y i are Λf1-generated, since X and Y i

are Λf1-generated by Lemma 4.1. The factor (X + Y i)/(X + Y i+1) ∼= Y i/(Y i ∩

(X + Y i+1)) is a homomorphic image of Y i/Y i+1 ∼= ∆
◦

(1), where the kernel is
(Y i ∩ (X + Y i+1))/Y i+1 = ((Y i ∩X) + Y i+1)/Y i+1, and this is, by the first part of
the proof, generated by Λf1. So the kernel can only be 0 or Y i/Y i+1, consequently
the factor is either isomorphic to ∆

◦

(1) or 0.
It remains to be shown that

⋂
(X + Y i) = X . Let x be an element of the inter-

section, which is in Yh. Since the homogeneous parts of the graded module Y are
finite dimensional, there is an i such that Y i ⊆ (Y )>h, hence x ∈ X + Y i implies
that x ∈ X . �

Lemma 4.4. A module X ∈ Λ- grfmod is ∆
◦

(1)-filtered if and only if the factors

of the sequence

(7) X = Λf1(X)>t ⊇ Λf1(X)>t+1 ⊇ . . . ⊇ Λf1(X)>h ⊇ . . .

have finite ∆
◦

(1)-filtrations, or equivalently,

Λf1(X)>h/Λf1(X)>h+1
∼=

⊕
∆

◦

(1) for every h.

P r o o f. If the factors have finite ∆
◦

(1)-filtrations, then the chain of modules
in (7) can be refined to a ∆

◦

(1)-filtration of X .
On the other hand, if X ∈ F(∆

◦

(1)), then the factors of the sequence (7)
are ∆

◦

(1)-filtered by Proposition 4.3, while dimK f1
(
Λf1(X)>h/Λf1(X)>h+1

)
=

dimK f1Xh < ∞ shows that they, in fact, have finite ∆
◦

(1)-filtrations.
For the second equivalence, let 0 → Ω → P → Z → 0 be the projective cover

of a factor Z of the sequence (7). Then Z = Λf1Z gives P =
⊕

Λf1, where Ω ⊆

(P )>1 is generated by Λf1 according to Proposition 4.2. So Ω ⊆ Λf1(P )>1, while
Λf1(Z)>1 = 0 yields Λf1(P )>1 ⊆ Ω, thus Z ∼= P/Λf1(P )>1

∼=
⊕

∆
◦

(1). �

Proposition 4.5. If 0 → X → Y → Z → 0 is a short exact sequence with X

and Z both ∆
◦

(1)-filtered, then Y is also ∆
◦

(1)-filtered.

P r o o f. We need to show that the factors of the chain of modules

Y = Λf1(Y )>t ⊇ Λf1(Y )>t+1 ⊇ . . . ⊇ Λf1(Y )>h ⊇ . . . .

have finite ∆
◦

(1)-filtrations.
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For every index h > 0 we can form the short exact sequence

(8) 0 → (X)>h ∩ Λf1(Y )>h → Λf1(Y )>h → Λf1(Z)>h → 0.

Since Λf1(Z)>h ∈ F(∆
◦

(1)) and Λf1(Y )>h is generated by Λf1, Proposition 4.2
gives that (X)>h ∩ Λf1(Y )>h = Λf1((X)>h ∩ Λf1(Y )>h) = Λf1(X)>h. Therefore,
we can rewrite (8) as

0 → Λf1(X)>h → Λf1(Y )>h → Λf1(Z)>h → 0,

so we get the short exact sequences

0 → Λf1(X)>h/Λf1(X)>h+1 → Λf1(Y )>h/Λf1(Y )>h+1

→ Λf1(Z)>h/Λf1(Z)>h+1 → 0,

where the first and third modules have finite ∆
◦

(1)-filtrations, providing finite
∆

◦

(1)-filtrations for the middle terms. By Lemma 4.4, this proves that Y is ∆
◦

(1)-
filtered. �

5. ∆-filtered algebras

In this section, we shall prove that the Ext∗A-images of the modules of rK are fil-
tered by left proper standard modules of A∗, when A is a standard Koszul standardly
stratified algebra (s.K.s.s. algebra, for short).

For an easier reference, let us quote two lemmas from [2], which will be used
repeatedly in the sequel.

Lemma 5.1. Let 0 → X → Y → Z → 0 be exact with the map X → Y

a top embedding. If X ∈ C, then the induced sequence of graded left A∗-modules

0 → Ext∗A(Z) → Ext∗A(Y ) → Ext∗A(X) → 0 is also exact with morphisms of degree 0.

Lemma 5.2. Let 0 → X → Y → Z → 0 be exact with X ⊆ radY . If Y ∈ C,

then the induced sequence of graded left A∗-modules 0 → Ext∗A(X)[1] → Ext∗A(Z) →

Ext∗A(Y ) → 0 is also exact with morphisms of degree 0.
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Proposition 5.3. If A is s.K.s.s. and X ∈ K2, then X∗/A∗f1X
∗ ∼= (Xε2)

∗
.

P r o o f. In view of Propositions 3.11 and 3.12, we only need to show that the
modules Yh(X) defined in Proposition 3.5 by the short exact sequences

(9) 0 → ω̃h(X)
αh−→ Ωh(X)

βh
−→ Yh(X) → 0

are in K2, since by Proposition 2.7 of [10] this will imply that Yh(X) is Ŝε2A-Koszul.

Since X ∈ K2, its hth syzygy Ωh(X) also lies in K2 by Proposition 2.6 of [10]. In
particular, Ωh(X)ε2A is a top submodule of Ωh(X). Hence, we can apply Lemma 1.6

of [10] to sequence (9) to get Yh(X)ε2A
t
6 Yh(X). Note that Y0(X) = X ∈ F(S(1)) ⊆

K2, so it suffices to prove that Yh(X) ∈ K2 implies Yh+1(X)ε2 ∈ CC2 .

In the short exact sequence (5) of Proposition 3.12:

0 → ωh+1(X) → Yh+1(X) → Ω(Yh(X)) → 0,

ωh+1(X) ∈ F(S(1)), so Yh+1(X)ε2 ∼= Ω(Yh(X))ε2. By the inductive hypothe-
sis Yh(X) ∈ K2, thus Ω(Yh(X)) ∈ K2 by Proposition 2.6 of [10], consequently
Yh+1(X)ε2 ∼= Ω(Yh(X))ε2 ∈ CC2 . �

Applying Proposition 5.3 recursively, we immediately get the trace filtration of
X∗ for modules X of rK.

Theorem 5.4. If A is s.K.s.s. and X ∈ rK, then X∗/A∗(f1 + . . . + fi−1)X
∗ ∼=

(Xεi)
∗
for all i > 1.

Lemma 5.5. If A is s.K.s.s., then A∗/A∗f1A
∗ ∼= C∗

2 as algebras.

P r o o f. By Theorem 2.1, the module Ŝ belongs to K2, so we can apply Propo-
sition 5.3 to this module to get the isomorphism A∗A∗/A∗f1A∗A∗ ∼= A∗C∗

2 of (left)
A∗-modules, which implies the required isomorphism of algebras. �

Lemma 5.6. If A is s.K.s.s. and X ∈ F(S(1)), then X∗ = A∗f1X
∗.

P r o o f. Clearly, X ∈ K2, so X∗/A∗f1X
∗ ∼= (Xε2)

∗ = 0 by Proposition 5.3. �
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Theorem 5.7. If A is s.K.s.s., then right standard A-modules are mapped to

left proper standard A∗-modules, and left proper standard A-modules are mapped

to right standard A∗-modules by the functor Ext∗A, that is, Ext
∗

A(∆
◦(i)) ∼= ∆A∗(i)

and Ext∗A(∆
◦

(i)) ∼= ∆A∗(i).

P r o o f. We provide here the proof only for right standard modules. The state-
ment about the left proper standard modules can be proved similarly. Applying
Theorem 2.1, we use induction on the number of simple modules.
For a local algebra, the module ∆(1) is projective and Ext∗A(∆(1)) = S◦

A∗(1) =

∆
◦

A∗(1). So we may assume that A is not local and the statement holds for C2. We
recall that ExthA(∆(i), S(j)) = 0 for all h > 0 and i > j. Besides, it is easy to see
that ∆(i) ∈ K.
Suppose that i > 2. Then Ext∗C2

(∆(i)ε2) ∼= Ext∗C2
(∆C2(i)) and they are isomor-

phic to∆
◦

C∗

2
(i) by the inductive hypothesis. On the other hand, A∗f1Ext

∗

A(∆(i)) = 0

because ExthA(∆(i), S(1)) = 0 for all h > 0, so we get ∆
◦

C∗

2
(i) ∼= ∆

◦

A∗(i) as A∗-
modules, since C∗

2
∼= A∗/A∗f1A

∗ by Lemma 5.5. Finally, Proposition 5.3 yields
Ext∗A(∆(i)) ∼= ∆

◦

A∗(i).
It is left to be shown that Ext∗A(∆(1)) ∼= ∆

◦

A∗(1). Since ∆(1) ∈ K, the module
Ext∗A(∆(1)) is a graded module generated in degree 0. It is also clear that it has
a one-dimensional degree 0 part, and since ExthA(∆(1), S(1)) = 0 if h > 1, we see
that Ext∗A(∆(1)) is a homomorphic image of ∆

◦

A∗(1). Consider the Ext∗A-image of
the short exact sequence 0 → rad∆(1) → ∆(1) → S(1) → 0, which is the exact
sequence

0 → Ext∗A(rad∆(1))[1] → Ext∗A(S(1)) → Ext∗A(∆(1)) → 0

in A∗-grmod by Lemma 5.2. This sequence shows that there is an epimor-
phism P ◦

A∗(1) → Ext∗A(∆(1)), whose kernel is isomorphic to Ext∗A(rad∆(1)). By
Lemma 5.6, Ext∗A(rad∆(1)) = A∗f1Ext

∗

A(rad∆(1)) because rad∆(1) is in F(S(1)).
Thus Ext∗A(∆(1)) ∼= ∆

◦

A∗(1). �

Next, we want to show that rK is mapped into F(∆
◦

A∗). In particular, this will
imply that A∗ is a standardly stratified algebra with respect to the opposite order of
idempotents. In the proof, we use induction on the number of simple modules, so for
the induction step we need to show that for X ∈ K the trace of the first projective
A∗-module in X∗ is filtered by ∆

◦

A∗(1).

Lemma 5.8. If A is s.K.s.s. andX ∈ F(S(1)), then A∗f1X
∗ is filtered by∆

◦

A∗(1).

P r o o f. First, we observe that if X ∈ F(S(1)), then X has a ∆-cover. That is,
there exists an epimorphism∆(X) → X such that its kernel is contained in rad∆(X)
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and ∆(X) is isomorphic to a direct sum of copies of ∆(1). Indeed, if we take the
projective cover P (X) → X , then it factors through P (X) → P (X)/P (X)ε2A ∼=⊕

∆(1).

Let us apply the functor Ext∗A to the short exact sequence

0 → X ′ → ∆(X) → X → 0.

This yields the exact sequence

0 → (X ′)∗[1] → X∗ → (∆(X))∗ → 0

by Lemma 5.2. Since X ′ also belongs to F(S(1)), we can continue the procedure to
get

X∗ ⊇ (X ′)∗ ⊇ (X ′′)∗ ⊇ . . . ⊇ (X(i))∗ ⊇ . . . ,

where (X(i))∗ is identified with its image in (X∗)>i. Thus, the intersection of the
chain is 0 and the factors are isomorphic to Ext∗A(∆(X(i))) ∼=

⊕
∆

◦

A∗(1). �

Proposition 5.9. Suppose that A is s.K.s.s. and X ∈ K2. Then the short exact

sequence 0 → X̃ → X → X → 0 yields an exact sequence in A∗- grfmod

(10) 0 → N [1] → A∗f1X
∗

→ A∗f1X
∗ → A∗f1X̃

∗ → N → 0

with morphisms of degree 0 and N = A∗f1N .

P r o o f. We apply HomA(−, Ŝ) to 0 → X̃ → X → X → 0 and get the long
exact sequence

. . .
δh−→ ExthA(X, Ŝ) → ExthA(X, Ŝ) → ExthA(X̃, Ŝ)

δh+1
−→ Exth+1

A (X, Ŝ) → . . . .

The sequence X
∗

→ X∗ → X̃∗ is exact and we may add to it the respective kernel
and cokernel to get

0 → N [1] → X
∗

→ X∗ → X̃∗ → N → 0,

where N is the graded left A∗-module whose degree h part is

Nh = coker(ExthA(X, Ŝ) → ExthA(X̃, Ŝ))

= ker(Exth+1
A (X, Ŝ) → Exth+1

A (X, Ŝ)).
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We still need to show that A∗f1N = N . Since both X and X̃ are in K2, we can apply
Proposition 3.12 to get X∗/A∗f1X

∗ ∼= (Xε2)
∗ ∼= (X̃ε2)

∗ ∼= X̃∗/A∗f1X̃
∗. Hence, we

have the following commutative exact diagram:

A∗f1X
∗ //

��

A∗f1X̃
∗ //

��

N

��
X∗ //

qX
��

X̃∗ //

q
X̃

��

N //

��

0

0 // (Xε2)
∗ //

��

(X̃ε2)
∗ //

��

0

0 0

The snake lemma gives us that A∗f1X̃
∗ → N is an epimorphism and so N = A∗f1N .

Finally, we can extend the upper row to get

0 → N [1] → X
∗

→ A∗f1X
∗ → A∗f1X̃

∗ → N → 0,

where X
∗

∈ F(∆
◦

(1)) by Lemma 5.8, so Lemma 4.1 gives X
∗

= A∗f1X
∗

. �

Theorem 5.10. If A is s.K.s.s. and X ∈ K2, then A∗f1X
∗ ∈ F(∆

◦

A∗(1)).

P r o o f. Consider the following chain of submodules:

A∗f1X
∗ ⊇ A∗f1(X

∗)>1 ⊇ . . . ⊇ A∗f1(X
∗)>h ⊇ . . . .

We claim that the factor modules

A∗f1(X
∗)>h/A

∗f1(X
∗)>h+1

∼= A∗f1Ωh(X)∗/A∗f1(Ωh(X)∗)>1

are isomorphic to finite direct powers of ∆
◦

A∗(1). As Proposition 2.6 of [10] implies
that Ωh(X) ∈ K2 for all h > 0, it suffices to deal with the case h = 0. For this, we
show the isomorphism

(11) A∗f1X
∗/A∗f1(X

∗)>1
∼= A∗f1X

∗

/A∗f1(X
∗

)>1.

Consider sequence (10) for the module X . Then (N [1])0 = 0, and by Proposi-
tion 5.9, N [1] = A∗f1N [1], so we have N [1] ⊆ A∗f1(X

∗

)>1
∼= A∗f1Ω(X)∗. The

space (A∗f1X̃
∗)0 = HomA(X̃, S(1)) is zero, thus the map A∗f1X

∗

→ A∗f1X
∗ in-

duces an isomorphism

A∗f1X
∗

/(A∗f1X
∗

)>1
∼= A∗f1X

∗/(A∗f1X
∗)>1
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and these modules are isomorphic to a direct power (S◦

A∗(1))t. Thus, the projective
cover (P ◦

A∗)t → A∗f1X
∗/A∗f1(X

∗)>1 can be factored through (∆
◦

A∗(1))t, which is
isomorphic to A∗f1X

∗

/A∗f1(X
∗

)>1 by Lemmas 5.8 and 4.4. So

(12) A∗f1X
∗

/A∗f1(X
∗

)>1 −→ A∗f1X
∗/A∗f1(X

∗)>1

is a graded epimorphism of degree 0.

Since X ∈ F(S(1)) ⊂ K2, its syzygy Ω(X) ∈ K2 according to Proposition 2.6
of [10], so Ω(X)

∗

/A∗f1Ω(X)
∗ ∼=

(
Ω(X)ε2

)∗
by Proposition 5.3.

For the sequence 0 → X̃ → X → X → 0 (with X̃
t
6 X), the horseshoe lemma

gives the exact sequence 0 → ω(X) → Ω(X) → Ω(X) → 0 of the syzygies. Apply
Hom(ε2A,−) to get 0 → ω(X)ε2 → Ω(X)ε2 → Ω(X)ε2 → 0, where ω(X)ε2 =

ω̃(X)ε2 ∼= Ω(Xε2) ∈ CC2 . Since ω̃(X) → Ω(X) is a top embedding by Lemma 3.2,
ω̃(X)ε2 is a top submodule of Ω(X)ε2 according to Lemma 1.4 of [10]. By Lemma 5.1,
the last sequence is mapped by Ext∗C2

to the exact sequence

0 →
(
Ω(X)ε2

)∗
→ (Ω(X)ε2)

∗
→ (Ω(Xε2))

∗
→ 0.

Thus, we found an injective graded morphism of degree 0 from

(
Ω(X)ε2

)∗ ∼= Ω(X)
∗

/A∗f1Ω(X)
∗ ∼= (A∗f1X

∗

/A∗f1(X
∗

)>1)>1

to

(Ω(X)ε2)
∗ ∼= Ω(X)

∗
/A∗f1Ω(X)

∗ ∼= (A∗f1X
∗/A∗f1(X

∗)>1)>1.

But the epimorphism in (12) induces an epimorphism from the former to the latter,
so taking into account that all levels of the modules have finite dimension, these
factor modules must be isomorphic as stated in (11). Then Lemmas 5.8 and 4.4
finish the proof. �

Theorem 5.11. If A is a standard Koszul standardly stratified algebra and

X ∈ rK, then X∗ ∈ F(∆
◦

A∗). In particular, if X is a top extension of simple and

standard modules, then X∗ is ∆
◦

A∗ -filtered.

P r o o f. The first statement follows by induction using Theorems 5.4 and 5.10,
while the second is a consequence of Proposition 3.4 because simple and standard
modules obviously belong to rK. �
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Theorem 5.12. If A is a standard Koszul standardly stratified algebra, then its

homological dual A∗ is a standardly stratified algebra.

P r o o f. Semisimple A-modules belong to rK, thus A∗A∗ = Ŝ∗ ∈ F(∆
◦

A∗). �

6. ∆-filtered algebras

In this section, we focus on the left module category of a standard Koszul stan-
dardly stratified algebra. To keep our notation simple, we investigate the right mod-
ules over an algebra A, whose opposite algebra A◦ is a standard Koszul standardly
stratified algebra, so AA ∈ F(∆).

We would like to prove theorems analogous to those of the previous section. How-
ever, to handle the asymmetry of the left and the right module category of A, we have
to consider a narrower subclass K+ ⊆ K of modules. It is defined with additional
restrictions as

K+ = {X ∈ K : ω̃h(X) ∈ CA and ωh(X) ∼=
⊕

S(1) for all h > 0}.

We also introduce the recursive version of K+ as

rK+ = {X ∈ K+ : Xεi ∈ K+
Ci
for all i}.

We shall prove that the functor Ext∗A maps the subclass rK
+ into F(∆◦

A∗). Further-
more, we show that rK+ is closed under top extensions and also that simple and
proper standard modules belong to this class.

Lemma 6.1. If A◦ is s.K.s.s. and X ∈ K+, then ω(X) and ω̃(X) also belong

to K+.

P r o o f. According to Corollary 3.3, both modules ω(X) and ω̃(X) are in K2.
By definition, ω̃(X) is also Koszul, and it is a top submodule of ω(X). So we have
the exact sequence

0 → ω̃(X) → ω(X) → ω(X) → 0

with a top embedding, where ω̃(X) and ω(X) ∼=
⊕

S(1) are Koszul, so their top
extension ω(X) is also Koszul by Lemma 2.4 of [2]. The remaining conditions hold
by the recursive definition of ωh. �
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Proposition 6.2. If A◦ is s.K.s.s., the classes K+ and rK+ are closed under top

extensions.

P r o o f. Suppose that X,Z ∈ K+ and we have the short exact sequence

0 → X
t
→ Y → Z → 0

with a top embedding. First we show that in this case, Ỹ is a top extension of Z̃
by X̃. As X̃

t
6 Y , the sequence 0 → X/X̃ → Y/X̃ → Z → 0 is a top extension

(cf. Lemma 1.3 of [10]). The first term is a direct sum of copies of S(1), so the
sequence splits and we get Y/X̃ ∼= X ⊕ Z. This yields Y ∼= X ⊕ Z ∼=

⊕
S(1) and it

also implies Ỹ /X̃ ∼= Z̃. That is, the sequence

(13) 0 → X̃ → Ỹ → Z̃ → 0

is exact, where X̃
t
6 Ỹ , so Ỹ ∈ CA according to Lemma 2.4 of [2]. The application

of the horseshoe lemma to the sequence (13) gives the short exact sequence 0 →

ω(X) → ω(Y ) → ω(Z) → 0 of the syzygies. By the Koszul property of X̃ , it is
a top extension. Using Lemma 6.1, we can show by induction that ω̃h(Y ) and ωh(Y )

satisfy the prescribed conditions of K+ for every h. Finally, (13) gives a top extension
0 → Xε2 → Y ε2 → Zε2 → 0 by Lemma 1.4 of [10], so a recursive argument shows
that Y ∈ rK+. �

Proposition 6.3. If A◦ is s.K.s.s. and X ∈ K+, then X∗/A∗f1X
∗ ∼= (Xε2)

∗
.

P r o o f. In view of Propositions 3.11 and 3.12, it is enough to show that the
modules Yh(X) defined in Proposition 3.5 by the short exact sequences

(14) 0 → ω̃h(X)
αh−→ Ωh(X)

βh
−→ Yh(X) → 0

are Koszul for all h. We prove this by induction on h. The module Y0(X) =

ω0(X) = X is semisimple, hence Koszul. Now we assume that Yh(X) ∈ CA. By
assumption, X ∈ K+, so ω̃h(X) is Koszul for all h. If we apply Lemma 5.1 to
the sequence (14), we get that Ωh(X)∗ → ω̃h(X)∗ is an epimorphism, in particular,
HomA(Ωh+1(X), Ŝ) → HomA(ωh+1(X), Ŝ) is surjective. It means that in the induced
sequence of the syzygies

0 → ωh+1(X) → Ωh+1(X) → Ω(Yh(X)) → 0

we also get a top embedding. If we factor out the submodule ω̃h+1(X) (which is
a top submodule both in the first and the middle terms), then by Lemma 1.3 of [10],
we get that the sequence

0 → ωh+1(X) → Yh+1(X) → Ω(Yh(X)) → 0

544



also has a top embedding. The first term is semisimple, hence Koszul, and
Ω(Yh(X)) ∈ CA follows from the inductive hypothesis. By Lemma 2.4 of [2],
their top extension Yh+1(X) is also in CA. �

Applying the proposition recursively, we immediately get the trace filtration of X∗

for modules X of rK+.

Theorem 6.4. If A◦ is s.K.s.s. and X ∈ rK+, then X∗/A∗(f1 + . . .+ fi−1)X
∗ ∼=

(Xεi)
∗ for all i > 1.

Lemma 6.5. Suppose that A◦ is s.K.s.s., X,Y ∈ modA and Y ∈ F(∇), i.e. Y is

filtered by costandard modules. Then the map ExthA(X,Y ) → ExthA(X̃, Y ) induced

by the natural embedding X̃ → X is an isomorphism for h > 1.

P r o o f. We take the short exact sequence 0 → X̃ → X → X → 0 and apply
the functor HomA(−, Y ). In the long exact sequence

. . . → ExthA(X,Y ) → ExthA(X,Y ) → ExthA(X̃, Y ) → Exth+1
A (X,Y ) → . . . ,

ExthA(X,Y ) = 0 for h > 0 because ExthA(S(1),∇(1)) = ExthA(∆(1),∇(1)) = 0 if A◦

is standardly stratified (cf. Theorem 3.1 of [3]). �

Lemma 6.6. Let h > n, where n is the number of simple A-modules. If A◦ is

s.K.s.s. andX ∈ K2, then HomA(ωh(X), S(1)) = 0. Consequently, A∗f1ωn(X)∗ = 0.

P r o o f. As K2 is closed under ω, we only have to deal with the case when
h = n. Let 0 → ωn(X) → P (ω̃n−1(X)) → ω̃n−1(X) → 0 be the first step of
a projective resolution of ω̃n−1(X). Then HomA(P (ω̃n−1(X)),∇(1)) = 0 and so
Ext1A(ω̃n−1(X),∇(1)) ∼= HomA(ωn(X),∇(1)). This and Lemma 6.5 yield

HomA(ωn(X),∇(1)) ∼= Ext1A(ω̃n−1(X),∇(1)) ∼= Ext1A(ωn−1(X),∇(1)) ∼= . . .

. . . ∼= Extn−1
A (ω(X),∇(1)) ∼= ExtnA(X̃,∇(1)).

Since A◦ is standardly stratified, the injective dimension of ∇(1) is less than n

(cf. Lemma 3.2 of [6]), giving HomA(ωn(X),∇(1)) ∼= ExtnA(X̃,∇(1)) = 0. Thus
HomA(ωn(X), S(1)) = 0.

We obtained that ωh(X) = ω̃h(X) for all h > n, hence ExttA(ωn(X), S(1)) ∼=

HomA(Ωt(ωn(X)), S(1)) = HomA(ωn+t(X), S(1)) = 0 for t > 0, proving the second
statement. �
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Theorem 6.7. If A◦ is s.K.s.s. and X ∈ rK+, then X∗ ∈ F(∆◦

A∗).

P r o o f. In view of Theorem 6.4, we only have to show that A∗f1X
∗ is projective

when X ∈ K+. Applying the functor Ext∗A to the short exact sequence 0 → X̃ →

X → X → 0 gives the exact sequence

0 → X
∗

→ X∗ → X̃∗ → 0.

Since X =
⊕

S(1), we have the exact sequence

0 → A∗f1X
∗

→ A∗f1X
∗ → A∗f1X̃

∗ → 0,

where A∗f1X
∗

is projective. Furthermore, HomA(X̃, S(1)) = 0, so A∗f1X̃
∗ ∼=

A∗f1Ω(X̃)∗ = A∗f1ω(X)∗. We get that A∗f1X
∗ is projective if A∗f1ω(X)∗ is projec-

tive. We have seen in Lemma 6.1 that K+ is closed under ω, while A∗f1ωn(X)∗ is zero
by Lemma 6.6. By induction, A∗f1ωh(X)∗ is also projective for all 0 6 h 6 n. �

In the remaining part of this section, we want to show that ∆(i) ∈ rK+ and
S(i) ∈ rK+ for all i > 1.

Theorem 6.8. If A◦ is s.K.s.s., then the proper standard modules are in rK+.

P r o o f. The centralizer algebras of A◦ are standard Koszul standardly stratified
algebras and ∆(i)ε2 ∼= ∆C2(i) for all i (see Theorem 2.1). This means that it is
enough to see that ∆(i) ∈ K+ for all indices i.
If i = 1, then ∆(1) = S(1) ∈ CA, and ωh(S(1)) = 0 for h > 1. If i > 2, then

ExthA(∆(i), S(1)) = 0 for h > 0, so ω̃h(∆(i)) = ωh(∆(i)) = Ωh(∆(i)), which is Koszul
by assumption, and we also have ωh(∆(i)) = 0. �

Now, we focus on simple modules. Since ∆(1) ∼= S(1), it suffices to deal with
simple modules S which are not isomorphic to S(1). All simple A-modules belong
to K2, so by Corollary 3.3, ωh(S) ∈ K2 for all h.
We consider the canonical embeddings eh : ω̃h(S) → ωh(S) and i : S(1) → ∇(1).

These morphisms give rise for every h to a commutative diagram:

(15)

(ωh+1(S), S(1))
0

∼= //

i′∼=
��

(ω̃h(S), S(1))
1

ĩ����

(ωh(S), S(1))
1

∼= //e′oooo

i′����
(ωh+1(S),∇(1))0

∼= // (ω̃h(S),∇(1))1 (ωh(S),∇(1))1
∼=

ẽoooo ∼= //

. . .

. . .

(ω1(S), S(1))
he′oo ∼= //

i′����

(S, S(1))h+1

ĩ����
(ω1(S),∇(1))h

∼=

ẽoo ∼= // (S,∇(1))h+1
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where (X,Y )k stands for ExtkA(X,Y ) if k > 0, while (X,Y )0 denotes the space
HomA(X,Y ). For simplicity, we also omit the indices of the maps in the diagram.
Proposition 6.9 shows that in diagram (15), the marked morphisms are indeed epi-
morphisms and isomorphisms, respectively.

Proposition 6.9. If A◦ is s.K.s.s., then the induced maps of the diagram (15)
have the following properties:

(1) ẽ : ExtkA(ωj(S),∇(1)) → ExtkA(ω̃j(S),∇(1)) is an isomorphism for all k > 1 and

j > 0.

(2) The maps ExtkA(ωj+1(S), X) → Extk+1
A (ω̃j(S), X) are isomorphisms for all

k, j > 0 if X ∈ F(S(1)), in particular, when X = S(1) or ∇(1). Consequently,

the map ĩ : Ext1A(ω̃h(S), S(1)) → Ext1A(ω̃h(S),∇(1)) is injective for all h > 0.

(3) ĩ : ExtkA(ω̃j(S), S(1)) → ExtkA(ω̃j(S),∇(1)) and i′ : ExtkA(ωj(S), S(1)) →

ExtkA(ωj(S),∇(1)) are epimorphisms for all j > 0 and k > 0.

(4) e′ : Ext1A(ωh(S), S(1)) → Ext1A(ω̃h(S), S(1)) is surjective for all h > 0.

P r o o f. (1) The first statement follows immediately from Lemma 6.5.
(2) Apply HomA(−, X) to 0 → ωj+1(S) → P (ω̃j(S)) → ω̃j(S) → 0, which is the

first step of the minimal projective resolution of ω̃j(S), to get

. . . → ExtkA(P (ω̃j(S)), X) → ExtkA(ωj+1(S), X)

→ Extk+1
A (ω̃j(S), X) → Extk+1

A (P (ω̃j(S)), X) → . . . .

Here ExtkA(P (ω̃j(S), X) = 0 if k > 1 because P (ω̃j(S)) is projective, and
HomA(P (ω̃j(S)), X) = 0 since P (ω̃j(S)) = P (ω̃j(S))ε2A. These give the required
isomorphisms, while the left exactness of HomA(ωj+1(S),−) implies the second part.
(3) First, we note that as ẽ is an isomorphism, the surjectivity of i′ implies the

surjectivity of ĩ for every pair (k, j). Thus, we may prove the surjectivity of the two
maps simultaneously. We use induction on j.
The algebra A◦ is standard Koszul, so the left module ∆◦(1) lies in CA◦ . In view

of Proposition 2.7 of [2] (or rather its “K-dual version”), ∆◦(1) ∈ CA◦ implies that
the natural maps ExtkA(S, S(1)) → ExtkA(S,∇(1)) are epimorphisms for all k. This
provides the base case (k, 0) of the induction.
Suppose that the statement is proved for the pair (k + 1, j − 1). The inductive

hypothesis gives the surjectivity of ĩ, and hence the surjectivity of i′ in the diagram
below.

ExtkA(ωj(S), S(1))
∼= //

i′

��

Extk+1
A (ω̃j−1(S), S(1))

ĩ
��

ExtkA(ωj(S),∇(1))
∼= // Extk+1

A (ω̃j−1(S),∇(1))

(4) The fourth statement is a consequence of the first three. �
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Proposition 6.10. Let A◦ be s.K.s.s. and S a simple A-module not isomorphic

to S(1). The homomorphism αk−1,0 : ωk+h(S) → Ωk(ωh(S)) induced by αk−1 of

formula (14) applied to X = ωh(S) is a top embedding for all k.

P r o o f. Let k > 1 be arbitrary. The map αk−1 : ω̃k+h−1(S) → Ωk−1(ωh(S)) is
a top embedding by Proposition 3.5, and this implies that Ω(ω̃k+h−1(S)) = ωk+h(S)

is mapped into Ωk(ωh(S)) injectively.
To see that αk−1,0 is a top embedding, we will show that the induced map α∗

k−1,0 :

HomA(Ωk(ωh(S)), Ŝ) → HomA(ωk+h(S), Ŝ) is surjective. By Proposition 3.5, the
restriction of αk−1,0 to ω̃k+h(S) ⊆ ωk+h(S) is a top embedding, or what is equivalent,

HomA(Ωk(ωh(S)), Ŝε2A)
α∗

k−1,0
−→ HomA(ωk+h(S), Ŝε2A) is an epimorphism. Thus, we

only need to show that HomA(Ωk(ωh(S)), S(1))
α∗

k−1,0
−→ HomA(ωk+h(S), S(1)) is an

epimorphism. Consider the following commutative diagram.

. . .

(ω̃j(S), S(1))
l

∼=oo (ωj(S), S(1))
le′oo (ω̃j−1(S), S(1))

l+1
∼=oo e′oo

(Ωl(ω̃j(S)), S(1))
0

El
ω̃j(S)

OO

(Ωl(ωj(S)), S(1))
0

(ej
l−1)

∗

oo

El
ωj(S)

OO

(Ωl+1(ω̃j−1(S)), S(1))
0

El+1
ω̃j−1(S)

OO

oo

. . .

By Corollary 3.6, HomA(Ωk(ωh(S)), S(1))
α∗

k−1,0
−→ HomA(ωk+h(S), S(1)) is surjective

if the bottom row of the diagram is surjective. This is equivalent to the surjectivity
of the top row, which comes from the top row of diagram (15) by reversing the
isomorphisms. Hence it can be factored as

ExtkA(ωh(S), S(1))
i′

→ ExtkA(ωh(S),∇(1))
ẽ
→ ExtkA(ω̃h(S),∇(1))

∼=
→ Extk−1

A (ωh+1(S),∇(1))
ẽ
→ . . .

ẽ
→ Ext1A(ω̃k+h−1(S),∇(1))

ĩ−1

→ Ext1A(ω̃k+h−1(S), S(1)),

where i′ is an epimorphism, while the other maps are isomorphisms, so the compo-
sition is surjective. �

Theorem 6.11. If A◦ is s.K.s.s., then the simple A-modules are in rK+.

P r o o f. In view of Theorem 2.1, it suffices to show that simple A-modules
belong to K+. We also know that S(1) ∈ rK+ by Theorem 6.8. So we only have to
prove the statement for a simple module S, which is not isomorphic to S(1).
We show first that ω̃h(S) ∈ C1

A for all h. Applying Proposition 6.10 to αh,0 :

Ω(ω̃h(S)) = ωh+1(S) → Ωh+1(S) and using S ∈ CA, we get αh,0(Ω(ω̃h(S)))
t
6

548



Ωh+1(S)
t
6 radPh(S). As αh,0(Ω(ω̃h(S))) ⊆ αh,0(radP (ω̃h(S))) ⊆ radPh(S), it

follows that Ω(ω̃h(S)) is a top submodule of radP (ω̃h(S)).
To prove that ωh(S) = ωh(S)/ω̃h(S) is semisimple, in fact, isomorphic to

⊕
S(1),

we only need that HomA(ωh(S), S(1)) → HomA(ωh(S),∇(1)) is surjective, and this
was proved in the third part of Proposition 6.9.
Finally, we show that ωh(S) ∈ CA by backwards induction. For h > n, Lemma 6.6

gives that Ω(ω̃h(S)) = ωh+1(S) = ω̃h+1(S), so every syzygy of ωh(S) is in C1
A. Thus,

ω̃h(S) = ωh(S) ∈ CA if h > n. On the other hand, if ωh(S) ∈ CA, then in the exact
sequence 0 → ω̃h(S) → ωh(S) → ωh(S) → 0 (with top embedding) both the first
and the third terms are Koszul. Hence, by Lemma 2.4 of [2], ωh ∈ CA. Together
with the first part of the proof, this gives ω̃h−1 ∈ CA. �

We point out that Theorems 6.4 and 6.11 imply that A∗A∗ is filtered by standard
modules. Actually, this gives an alternative proof for Theorem 5.12.
Finally, the combination of the results of Proposition 6.2 and Theorems 6.7, 6.8

and 6.11 provides the following theorem.

Theorem 6.12. If A◦ is a standard Koszul standardly stratified algebra and X

is a top extension of standard and simple modules, then X∗ is filtered by standard

A∗-modules.

7. Examples

We conclude our work with a few examples. Some of them point out differences be-
tween the behaviour of quasi-hereditary algebras and standardly stratified algebras,
while others show that some of our results can not be strengthened.

Example 7.1. In [4], it was shown that the classes K2 and K coincide when A is
standard Koszul and quasi-hereditary. It was also shown that, in this context, the
class K is closed under the operation ω. In our case, both properties fail. In this
example, A is standard Koszul and standardly stratified, X belongs to K2 but it is
not Koszul. It is also easy to check that Y ∈ K but ω(Y ) = X /∈ K.

AA =
1

1
⊕

2

1

1

⊕

3
✂✂ ❁❁

1 ❁❁ 2
✂✂

1

, X = P (2)/ socP (2) =
2

1
, Y =

1 ❁❁ 3
✂✂

1

Example 7.2. This example shows that on the∆-filtered side, the simple modules
do not have to be in K+, even ω̃(S) does not have to be Koszul for each simple
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module S.

AA =

1
③③

✷✷
✷

1

2
1

1
❉❉

☞☞☞

⊕
2
1

⊕

3
③③

✷✷
✷

1

2
1

1
❉❉

☞☞☞

⊕

4
③③

✷✷
✷

1

3
1

1
❉❉

☞☞☞

, S(4) /∈ K+, ω̃(S(4)) /∈ CA.

Example 7.3. None of the defining conditions of the class K+ can be omitted
in Proposition 6.3. Consider the algebra A, whose regular representation is the
following:

AA =

1
✂✂ ❁❁

1 ❁❁ 2
✂✂

1

⊕
2

1
⊕

3

2

1

, X =
1 ❁❁ 3

✂✂
2

, Y =
1

1

Here, A◦ is standard Koszul and standardly stratified, X ∈ K, and ωk(X) is semisim-
ple for all k but X̃ /∈ CA. The A∗-module A∗f1X

∗ is not projective:

A∗A∗ =

1
✂✂ ❁❁

1
✂✂ ❁❁ 2

✂✂
2 ❁❁ 1

✂✂ ❁❁

1
✂✂ ❁❁ 2

✂✂...
...

⊕

2

1
✂✂ ❁❁

1
✂✂ ❁❁ 2

✂✂
2 ❁❁ 1

✂✂ ❁❁

1
✂✂ ❁❁ 2

✂✂...
...

⊕
3

2
and X∗ =

1
✂✂ ❁❁ 3

✂✂
1

✂✂
2

2

On the other hand, Y is not semisimple but satisfies all the other conditions pre-
scribed by the definition of K+, and Y ∗ ∼= ∆

◦

A∗(1) 6= P ◦

A∗(1).

Example 7.4. The map q defined in Section 3 does not have to be an epimorphism
ifX /∈ K2. In our next example, the A-moduleX fails to be inK2 becauseXε2 /∈ CC2 .
Here ExthA(X,S(4)) = 0 for all h but Ext1C2

(Xε2, S(4)ε2) 6= 0.

AA =

1
⑦⑦ ❅❅

3 1 ✵✵ 2
✎✎

3

⊕

2

3

4

⊕
3

4
⊕ 4, X =

1 ✼✼ 2
✞✞

3

To see that the other defining condition of K2 is also necessary consider the (hered-
itary) algebra A, whose regular representation is

AA =
1

2
⊕ 2.

Here P (1)ε2 ∈ CC2 but P (1)ε2A
t

� P (1), so P (1) /∈ K2. It is easy to check that
Ext∗A(P (1)) = S◦

A∗(1) and Ext∗C2
(P (1)ε2) 6= 0.
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Example 7.5. Our last example shows that in general ker qX 6= A∗f1X
∗, even if

A satisfies εiJ2εi = εiJεiJεi for all i and X ∈ K (see Proposition 3.12). We take
the algebra A and the A-module X for which

AA =

1
✂✂ ❁❁

1 2

2 2

2

⊕
2

2
, X =

1

2 ❁❁ 1
✂✂

2

.

Here A◦ is standard Koszul and standardly stratified. The A-module X is in K but
A∗f1X

∗ 6= ker qX as

A∗A∗ =

1
✂✂ ❁❁

1 2

1

...

⊕

2

2
...

, X∗ =
1

2
⊕

2

2
and qX(X∗) = S(2).
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