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Abstract. We completely determine when a ring consists entirely of weak idempotents,
units and nilpotents. We prove that such ring is exactly isomorphic to one of the following:
a Boolean ring; Z3 ⊕ Z3; Z3 ⊕ B where B is a Boolean ring; local ring with nil Jacobson
radical; M2(Z2) or M2(Z3); or the ring of a Morita context with zero pairings where the
underlying rings are Z2 or Z3.
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Throughout, all rings are associative with an identity. Idempotents, units and

nilpotents play important roles in ring theory, cf. [2], [3], [4], [5], [6], [9], [10]. In [8],

Immormino determined when a ring consists entirely of idempotents, units, and

nilpotent elements. An element a in a ring is called weak idempotent if a or −a

is an idempotent. Clearly, every idempotent in a ring is a weak idempotent, but

the converse is not true. The motivation of this paper is to investigate when a ring

consists entirely of weak idempotents, units, and nilpotent elements. We prove that

a ring consisting entirely of such elements is isomorphic to one of the following:

a Boolean ring; Z3 ⊕ Z3; Z3 ⊕ B where B is a Boolean ring; local ring with nil

Jacobson radical; M2(Z2) or M2(Z3); or the ring of a Morita context with zero

pairings where the underlying rings are Z2 or Z3. The structure of such rings is

thereby completely determined.

We shall use Mn(R) and Tn(R) to denote the ring of all n × n full matrices and

triangular matrices over R, respectively. J(R) stands for the Jacobson radical of R.

Id(R) = {e ∈ R : e2 = e ∈ R}, −Id(R) = {e ∈ R : e2 = −e ∈ R}, U(R) is the set of

all units in R, and N(R) is the set of all nilpotents in R.
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We begin with a generalization of [1], Corollary 1.13 which is for a commutative

ring.

Lemma 1. Let R be a ring. Then R = U(R) ∪ Id(R) ∪ −Id(R) if and only if R

is isomorphic to one of the following:

(1) a Boolean ring;

(2) a division ring;

(3) Z3 ⊕ Z3;

(4) Z3 ⊕B where B is a Boolean ring.

P r o o f. ⇒ : It is easy to check that R is reduced; hence, it is abelian.

Case I. R is indecomposable. Then R is a division ring.

Case II. R is decomposable. Then R = A ⊕ B where A,B 6= 0. If 0 6= x ∈ A,

then (x, 0) ∈ R is a weak idempotent. Hence, x ∈ R is weak idempotent. Hence,

A = Id(A) ∪ −Id(A). Likewise, B = Id(B) ∪ −Id(B). In view of [1], Theorem 1.12,

A and B are isomorphic to one of the following:

(1) Z3;

(2) a Boolean ring;

(3) Z3 ⊕B where B is a Boolean ring.

Thus, R is isomorphic to one of the following:

(a) Z3 ⊕ Z3;

(b) Z3 ⊕B where B is a Boolean ring;

(c) Z3 ⊕ Z3 ⊕B where B is a Boolean ring;

(d) a Boolean ring.

Case (c). (1,−1, 0) 6∈ U(R) ∪ Id(R) ∪ −Id(R), an absurd. Therefore we conclude

that R is one of cases (a), (b) and (d), as desired.

⇐: (1) R = Id(R).

(2) R = U(R) ∪ Id(R).

(3) U(R) = {(1, 1), (1,−1), (−1, 1), (−1,−1)}, Id(R) = {(0, 0), (0, 1), (1, 0)} and

−Id(R) = {(0, 0), (0,−1), (−1, 0), (−1,−1)}. Thus, R = U(R) ∪ Id(R) ∪ −Id(R).

(4) Id(R) = {(0, x), (1, x) : x ∈ B} and −Id(R) = {(0, x), (−1, x) : x ∈ B}. There-

fore R = Id(R) ∪ −Id(R), as desired. �

Lemma 2. Let R be a decomposable ring. Then R consists entirely of weak idem-

potents, units, and nilpotents if and only if R is isomorphic to one of the following:

(1) a Boolean ring;

(2) Z3 ⊕ Z3;

(3) Z3 ⊕B where B is a Boolean ring.
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P r o o f. ⇒ : Write R = A ⊕ B with A,B 6= 0. Then A and B are rings that

consist entirely of weak idempotents, units, and nilpotents. If 0 6= x ∈ N(A), then

(x, 1) 6∈ Id(R)∪−Id(R)∪U(R)∪N(R). This shows that A = U(A)∪Id(A)∪−Id(A).

Likewise, B = U(B)∪Id(B)∪−Id(B). In light of Lemma 1, R is one of the following:

(a) a Boolean ring;

(b) B ⊕D where B is a Boolean ring and D is a division ring;

(c) Z3 ⊕ Z3 ⊕B where B is a Boolean ring;

(d) Z3 ⊕B where B is a Boolean ring;

(e) D ⊕D′ where D and D′ are division rings;

(f) Z3 ⊕B ⊕D where B is a Boolean ring and D is a division ring;

(g) Z3 ⊕ Z3 ⊕D, where D is division ring;

(h) Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3;

(i) Z3 ⊕ Z3 ⊕ Z3 ⊕B where B is a Boolean ring;

(j) Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3.

Case (b). If 0,±1 6= x ∈ D, then (0, x) 6∈ U(R) ∪ Id(R) ∪ −Id(R). This forces

D ∼= Z2,Z3. Hence, (b) forces R being in (1) or (3). Case (c) does not occur. Case (e)

forces D,D′ ∼= Z2 or Z3. Hence, R is in (1)–(3). Case (f) does not occur except

D ∼= Z2. Thus, R is in (1)–(3). Cases (g)–(j) do not occur as (1,−1, 0), (1,−1, 0, 0) 6∈

I(R) ∪ −Id(R) ∪N(R), as desired.

⇐ : This is obvious. �

Theorem 3. Let R be an abelian ring. Then R consists entirely of weak idem-

potents, units, and nilpotents if and only if R is isomorphic to one of the following:

(1) Z3;

(2) a Boolean ring;

(3) Z3 ⊕ Z3;

(4) Z3 ⊕B where B is a Boolean ring;

(5) local ring with nil Jacobson radical.

P r o o f. ⇒ : Case I. R is indecomposable. Then R = U(R)∪N(R). This shows

that R is local. Let x ∈ J(R), then x ∈ N(R), and so J(R) is nil.

Case II. R is decomposable. In view of Lemma 2, R is isomorphic to one of the

following:

(1) a Boolean ring;

(2) Z3 ⊕ Z3;

(3) Z3 ⊕B where B is a Boolean ring.

This shows that R is isomorphic to one of (1)–(5), as desired.

⇐ : This is obvious. �
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Lemma 4. Let R be a ring that consists entirely of weak idempotents, units and

nilpotents. Then eRe is a division ring for any noncentral idempotent e ∈ R.

P r o o f. Let e ∈ R be a noncentral idempotent, and let f = 1 − e. Then

R ∼=
(

eRe eRf

fRe fRf

)

. The subring
(

eRe 0

0 fRf

)

consists entirely of weak idempotents,

units and nilpotents. That is, eRe ⊕ fRf consists entirely of weak idempotents,

units and nilpotents. Set A = eRe and B = fRf . Similarly to Lemma 2, A =

U(A)∪ Id(A)∪−Id(A). In view of Lemma 1, A is isomorphic to one of the following:

(1) Z3;

(2) a Boolean ring;

(3) a division ring;

(4) Z3 ⊕B where B is a Boolean ring.

That is, A is a division ring or a ring in which every element is weak idempotent.

Suppose that eRe is not a division ring. Then eRe must contain a nontrivial idem-

potent, say a ∈ R. Let b = e − a. Let x ∈ eRf and y ∈ fRe. Choose

X1 =

(

a x

0 0

)

, X2 =

(

b x

0 0

)

, Y1 =

(

a 0

y 0

)

, Y2 =

(

b 0

y 0

)

.

Then X1, X2, Y1, Y2 are not invertible. As a, b ∈ eRe are nontrivial idempotents, we

see that X1, X2, Y1, Y2 are all not nilpotent matrices. This shows that X1 and X2

are both weak idempotents. It follows that X1 = ±X2

2
or X2

2
= ±X2. As x ∈ eRf ,

y ∈ fRe, we have ex = x and fy = y.

Case I. X1 = X2

1
, X2 = X2

2
. Then ax = x, bx = x, and so x = ex = 2x; hence,

x = 0.

Case II. X1 = X2

1
, X2 = −X2

2
. Then ax = x, bx = −x, and so x = ex = 0.

Case III. X1 = −X2

1
, X2 = X2

2
. Then ax = −x, bx = x, and so x = ex = 0.

Case IV. X1 = −X2

1
, X2 = −X2

2
. Then a = −a2, ax = −x, b = −b2 and bx = −x.

Hence, (e − a)x = −x, and so x = ex = −2x, hence, 3x = 0. As a ∈ R is an

idempotent, we see that a = a2, hence, a = −a, and so 2a = 0. It follows that

x = −ax = (2a)x− (3x)a = 0.

Thus, x = 0 in any case. We infer that eRf = 0. Likewise, fRe = 0. Hence,

e ∈ R is central, an absurd. This completes the proof. �

Lemma 5. Let R be a ring that consists entirely of weak idempotents, units and

nilpotents. Then eRe is isomorphic to Z/2Z or Z/3Z for any noncentral idempotent

e ∈ R.

P r o o f. Let e ∈ R be a noncentral idempotent. In view of Lemma 4, eRe is

a division ring. Set f = 1 − e. For any u ∈ eRe we assume that u 6= 0, u 6= e,
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u 6= −e, then the matrix

X =

(

u 0

0 0

)

∈

(

eRe eRf

fRe fRf

)

is neither a unit, nor a weak idempotent, nor a nilpotent element. This gives a con-

tradiction. Therefore u = 0, u = e or u = −e, as desired. �

Recall that a ringR is semiprime if it has no nonzero nilpotent ideals. Furthermore,

we derive:

Theorem 6. Let R be a nonabelian ring that consists entirely of units, weak

idempotents, and nilpotents. If R is semiprime, then it is isomorphic to M2(Z2)

or M2(Z3).

P r o o f. Suppose that R is semiprime. In view of Lemma 4, eRe is a division

ring for any noncentral idempotent e ∈ R. It follows by [7], Lemma 21 that R

is isomorphic to M2(D) for a division ring D. Choose E11 =
(

1 0

0 0

)

∈ M2(D).

Then E11 is a noncentral idempotent. According to Lemma 5, R ∼= Z/2Z or Z/3Z,

as asserted. �

Recall that a ring R is a NJ-ring provided that for any a ∈ R, either a ∈ R is

regular or 1− a ∈ R is a unit [11]. Clearly, all rings in which every elements consist

entirely of units, weak idempotents, and nilpotents are NJ-rings.

Theorem 7. Let R be a nonabelian ring that consists entirely of weak idempo-

tents, units and nilpotents. If R is not semiprime, then it is isomorphic to the ring

of a Morita context with zero pairings where the underlying rings are Z2 or Z3.

P r o o f. Suppose that R is not semiprime. Clearly, R is a NJ-ring. In view

of [11], Theorem 2, R must be a regular ring, a local ring or isomorphic to the

ring of a Morita context with zero pairings where the underlying rings are both

division rings. If R is regular, it is semiprime, a contradiction. If R is local, it is

abelian, a contradiction. Therefore, R is isomorphic to the ring of a Morita context

T = (A,B,M,N, ϕ, ψ) with zero pairings ϕ, ψ where the underlying rings are division

rings A and B. Choose E =
(

1A 0

0 0

)

∈ T . Then E ∈ T is a noncentral idempotent.

In light of Lemma 5, A ∼= ETE ∼= Z2 or Z3. Likewise, B ∼= Z2 or Z3. This completes

the proof. �

With these information we completely determine the structure of rings that consist

entirely of weak idempotents, units and nilpotents.
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Theorem 8. Let R be a ring. Then R consists entirely of weak idempotents,

units and nilpotents if and only if R is isomorphic to one of the following:

(1) a Boolean ring;

(2) Z3 ⊕ Z3;

(3) Z3 ⊕B where B is a Boolean ring;

(4) local ring with a nil Jacobson radical;

(5) M2(Z2) or M2(Z3);

(6) the ring of a Morita context with zero pairings where the underlying rings are

Z2 or Z3.

P r o o f. ⇒ : This is obvious by Theorem 3, Theorem 6 and Theorem 7.

⇐ : Cases (1)–(4) are easy. Cases (5)–(6) are verified by checking all possible

(generalized) matrices over Z2 and Z3. �
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