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Abstract. We extend and generalize some results in local spectral theory for upper tri-
angular operator matrices to upper triangular operator matrices with unbounded entries.
Furthermore, we investigate the boundedness of the local resolvent function for operator
matrices.
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1. Introduction

Many problems in mathematical physics are described by the system of partial

or ordinary differential equations or linearizations thereof. In applications, the time

evolution of a physical system is governed by block operator matrices. On the other

hand, the spectral properties of the block operator matrices are of vital importance as

they govern for instance the time evolution and hence the stability of the underlying

physical systems. Especially, the study of upper triangular operator matrices and

related topics is one of the hottest areas in operator theory. In the recent past,

a number of mathematicians have studied 2× 2 bounded upper triangular operator

matrices, see [3], [4], [7], [11], [12]. In [8], [12], the authors studied some local spectral

properties for a bounded upper triangular operator matrix acting on a Banach space.

The aim of this paper is to extend these results to the unbounded case. On the

other hand, we give sufficient conditions on its diagonal entries which ensure the

boundedness of the local resolvent function of bounded upper triangular operator

matrices.
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2. Preliminaries

Throughout, X denotes a complex Banach space. Let A be a closed linear operator

on X with domain D(A), we denote by A∗, R(A), N(A), R∞(A) =
⋂

n>0

R(An),

σsu(A), σ(A), respectively, the adjoint, the range, the null space, the hyper-range,

the surjectivity spectrum and the spectrum of A. Recall after [1]: for a closed linear

operator A and x ∈ X the local resolvent of A at x, ̺A(x) defined as the union of

all open subsets U of C for which there is an analytic function f : U → D(A) such

that the equation (A − µI)f(µ) = x holds for all µ ∈ U . The local spectrum σA(x)

of A at x is defined as σA(x) = C \ ̺A(x). Evidently σA(x) ⊆ σsu(A) ⊆ σ(A), ̺A(x)

is open and σA(x) is closed.

Next, let A be a closed linear operator, A is said to have the single valued extension

property at λ0 ∈ C (SVEP) if for every open neighborhood U ⊆ C of λ0, the only

analytic function f : U → D(A) which satisfies the equation (A − zI)f(z) = 0 for

all z ∈ U is the function f ≡ 0. A is said to have the SVEP if A has the SVEP for

every λ ∈ C. Denote

S(A) = {λ ∈ C : A does not have the SVEP at λ}.

S(A) is an open set of C.

Now, we define the notion of localizable spectrum [9] for a closed operator.

Definition 2.1. Let (A,D(A)) be a closed operator with SVEP. The localizable

spectrum σloc(A) of A is the set of all complex numbers λ0 with the following prop-

erty: for each open neighborhood U of λ0 there exists a nonzero vector x ∈ X such

that σA(x) ⊆ U .

Clearly, σloc(A) ⊆ σap(A) ⊆ σ(A). For a large class of operators including normal

operators, the localizable spectrum coincides with σ(A), for more information see [9].

Let X and Y be Banach spaces and B(X,Y ) denote the space of all bounded

linear operators from X to Y , let (A,D(A)), (B,D(B)) and (C,D(C)) be closed

linear operator, such that:

A : D(A) ⊆ X → X,

B : D(B) ⊆ Y → Y,

C : D(C) ⊆ Y → X.

We denote by MC the operator defined on D(A) ⊕ (D(C) ∩ D(B)), MC : D(A) ⊕

(D(C) ∩D(B)) → X ⊕ Y by
(

A C

0 B

)

.
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Lemma 2.1. Let (A,D(A)) and (B,D(B)) be closed linear operators. For every

C ∈ B(Y,X), MC is closed with domain D(A)⊕D(B).

P r o o f. It is easy to see that D(MC) = D(A) ⊕ D(B). Now, let xn ⊕ yn ∈

D(A) ⊕ D(B) be such that xn ⊕ yn → x ⊕ y and MC(xn ⊕ yn) → z1 ⊕ z2. Thus,

Axn + Cyn → z1 and Byn → z2, since B is closed, By = z2. Since C ∈ B(Y,X),

Cyn → Cy, hence Axn → z1 − Cy. A is closed, thus Ax = z1 − Cy. Therefore

MC(x ⊕ y) = z1 ⊕ z2, so MC is closed with domain D(A)⊕D(B). �

3. SVEP and local spectrum for operator matrices

We start this section by the following proposition which extends the results of [12],

Proposition 3.1.

Proposition 3.1. Let (A,D(A)) and (B,D(B)) be closed linear operators. For

every C ∈ B(Y,X) we have

S(A) ⊆ S(MC) ⊆ S(A) ∪ S(B).

P r o o f. Assume that λ /∈ S(A) ∪ S(B), let Vλ be a neighborhood of λ and take

an analytic function h : Vλ → D(A) ⊕ D(B) satisfying (MC − µ)h(µ) = 0 for all

µ ∈ Vλ. Hence, (A − µ)h1(µ) + Ch2(µ) = 0 and (B − µ)h2(µ) = 0 for all µ ∈ Vλ,

where h = h1 ⊕ h2. Since λ /∈ S(B), h2 ≡ 0 on Vλ. Thus (A − µ)h1(µ) = 0 on Vλ,

since λ /∈ S(A), h1 ≡ 0 on Vλ. Therefore h ≡ 0, so λ /∈ S(MC). Now, suppose that

λ /∈ S(MC), let Vλ be a neighborhood of λ and f : Vλ → D(A) an analytic function

satisfying (A− µ)f(µ) = 0 for all µ ∈ Vλ. Let h = f ⊕ 0: Vλ → D(A) ⊕D(B), h is

an analytic function and we have (MC −µ)h(µ) = 0, since λ /∈ S(MC), h ≡ 0 on Vλ.

Hence f ≡ 0, so λ /∈ S(A). �

R em a r k 3.1. If C = 0, then S(M0) = S(A) ∪ S(B).

Theorem 3.1. Let (A,D(A)) and (B,D(B)) be closed linear operators. For every

C ∈ B(Y,X) we have

S(B) ∪ σA(x) = S(B) ∪ σMC
(x⊕ 0) ∀x ∈ X.

P r o o f. Let λ /∈ S(B)∪ σMC
(x⊕ 0), thus there exists an open neighborhood Vλ

of λ and an analytic function h : Vλ → D(A)⊕D(B) such that (MC−µ)h(µ) = x⊕0

for all µ ∈ Vλ. Let h1 : Vλ → D(A) and h2 : Vλ → D(B) be analytic functions with
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h = h1⊕h2, then (A−µ)h1(µ)+Ch2(µ) = x and (B−µ)h2(µ) = 0. Since λ /∈ S(B),

h2 ≡ 0 on Vλ, thus (A − µ)h1(µ) = x for all µ ∈ Vλ. So λ /∈ σA(x) for all x ∈ X .

Conversely, if λ /∈ σA(x), then there exists an open neighborhood Vλ of λ and an

analytic function f : Vλ → D(A) such that (A − µ)f(µ) = x for all µ ∈ Vλ. Let

h = f ⊕ 0: Vλ → D(A)⊕D(B), h is an analytic function and (MC −µ)h(µ) = x⊕ 0

for all µ ∈ Vλ. So λ /∈ σMC
(x⊕ 0). �

R em a r k 3.2. Theorem 3.1 generalizes [8], Proposition 2.3. Note that

σMC
(x⊕ 0) ⊆ σA(x) and σB(y) ⊆ σMC

(x⊕ y), x ∈ X, y ∈ Y

hold in the general case when A, B are closed and C ∈ B(Y,X).

As consequences of Theorem 3.1, we have the following corollaries.

Corollary 3.1. Let (A,D(A)) and (B,D(B)) be closed linear operators, assume

that B has the SVEP. Then for every C ∈ B(Y,X),

σA(x) = σMC
(x ⊕ 0) ∀x ∈ X.

Corollary 3.2. Let (A,D(A)) and (B,D(B)) be closed linear operators, assume

that B has the SVEP. Then for every C ∈ B(Y,X),

σsu(A) ∪ σsu(B) ⊆ σsu(MC).

P r o o f. We have σsu(A) =
⋃

x∈X

σA(x) and
⋃

x∈X

σMC
(x ⊕ 0) ⊆ σsu(MC), from

Corollary 3.1, σsu(A) ⊆ σsu(MC). Since σB(y) ⊆ σMC
(x ⊕ y) for all x ∈ X and

y ∈ Y , σsu(B) ⊆ σsu(MC). Thus σsu(A) ∪ σsu(B) ⊆ σsu(MC). �

Lemma 3.1. Let (A,D(A)) and (B,D(B)) be closed linear operators. For every

C ∈ B(Y,X) we have

σp(A) ⊆ σp(MC) ⊆ σp(A) ∪ σp(B).

P r o o f. Suppose that λ /∈ σp(MC), if (A−λ)x = 0, then (MC−λ)(x⊕0) = 0⊕0

implies that x = 0, hence λ /∈ σp(A). Now suppose that λ /∈ σp(A) ∪ σp(B), if

(MC −λ)(x⊕y) = 0⊕0, then (A−λ)x+Cy = 0 and (B−λ)y = 0, since λ /∈ σp(B),

y = 0, hence (A− λ)x = 0. Since λ /∈ σp(A), x = 0, so λ /∈ σp(MC). �
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Theorem 3.2. Let (A,D(A)) and (B,D(B)) be closed linear operators, assume

that B has the SVEP. Then for every C ∈ B(Y,X) we have

σ(A) ∪ σ(B) = σ(MC).

P r o o f. If A and B are invertible, then MC is invertible with the inverse

(

A−1 −A−1CB−1

0 B−1

)

.

Hence σ(MC) ⊆ σ(A) ∪ σ(B). Conversely, since B has the SVEP, σsu(B) = σ(B),

from Lemma 3.1 and Corollary 3.2 we have σp(A) ∪ σsu(A) ∪ σ(B) ⊆ σp(MC) ∪

σsu(MC) = σ(MC), thus σ(A) ∪ σ(B) ⊆ σ(MC). �

4. Bounded local resolvent

It is well known that the resolvent mapping RT (z) = (T − z)−1, which is defined

and analytic on the resolvent set ̺(T ), is unbounded. On the other hand, as observed

in [10], the behavior of local resolvent functions may be quite different. In [5],

Bermudez and Gonzalez have shown that a normal operatorN on a separable Hilbert

space has a nontrivial bounded local resolvent function if and only if the interior of

the spectrum of N is not empty. Neumman extended this result in [13] to non-

separable Banach spaces. In [6], Bračič and Müller proved that for every operator T

on a Banach space X , such that both its point spectrum and its localizable spectrum

have nonempty interior, there is a vector x such that the local resolvent function at x,

RT (·, x) is bounded on ̺T (x).

Let X , Y be Banach spaces and let B(X) be the algebra of all bounded linear

operators on X . We start this section by the following definitions.

Definition 4.1. An operator T ∈ B(X) is said to have the decomposition prop-

erty δ if, given an arbitrary open cover {U1, U2} of C, every x ∈ X admits a decom-

position x = x1 + x2, where xi, i = 1, 2 satisfies xi = (T − z)fi(z) for all z ∈ C \ Ui

and some analytic function fi : C \ Ui → X .

Definition 4.2. An operator T ∈ B(X) is said to be decomposable if for any

open covering U1, U2 of the complex plane C there are two closed T -invariant sub-

spaces X1 and X2 of X such that X1 +X2 = X and σ(T |Xk) ⊂ Uk, k = 1, 2.

Proposition 4.1. If (A,B) ∈ B(X)× B(Y ) are normal, then

int(σ(M0)) 6= ∅ ⇔ RM0
(·, z) is bounded for some z ∈ X ⊕ Y.
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P r o o f. Of course, if A and B are normal, then M0 is normal. Indeed:

M0M
∗

0 = AA∗ ⊕BB∗ = A∗A⊕B∗B = M∗

0M0.

According to [13], Proposition 3, we have the result. �

In the following proposition, we give a sufficient conditions on A and B to prove

that the local resolvent function of MC is bounded.

Proposition 4.2. Let (A,B) ∈ B(X)×B(Y ) have the SVEP and the property δ.

Suppose that int(σ(B)) 6= ∅, then there exists z ∈ X ⊕ Y and y ∈ Y such that

σMC
(z) = σB(y) and RMC

(·, z), RB(·, y) are bounded on ̺MC
(z) for every C ∈

B(Y,X).

P r o o f. Let U be a nonempty open set such that U ⊆ σ(B). Since A and B

have the SVEP, from Proposition 3.1, MC has the SVEP and σ(B) ⊆ σ(MC), then

int(σ(MC)) 6= ∅. Since A and B have the property δ, according to [14], Propo-

sition 3.4, MC has the property δ. By [6], Theorem 1, there exist z ∈ X ⊕ Y

and y ∈ Y such that σMC
(z) = U and σB(y) = U , hence σMC

(z) = σB(y) and

RMC
(·, z), RB(·, y) are bounded on ̺MC

(z). �

Using the same arguments we can prove the following proposition.

Proposition 4.3. Let (A,B) ∈ B(X)×B(Y ) have the SVEP and the property δ.

Suppose that int(σ(A)) 6= ∅. Then there exist z ∈ X ⊕ Y and x ∈ X such that

σMC
(z) = σA(x) and RMC

(·, z), RA(·, x) are bounded on ̺MC
(z).

Proposition 4.4. Let (A,B) ∈ B(X)×B(Y ) be such that B has the property δ.

Suppose that MC has the SVEP and the property δ. Assume that int(σ(B)) 6= ∅.

Then there exist z ∈ X ⊕ Y and y ∈ Y such that σMC
(z) = σB(y) and RMC

(·, z),

RB(·, y) are bounded on ̺MC
(z).

P r o o f. Since MC has the property δ, by [14], Proposition 3.4, B has the

property δ. Since MC and B have the SVEP, σ(MC) = σs(MC) and σ(B) = σs(B),

from the inclusion σs(B) ⊆ σs(MC) we have int(σ(MC)) 6= ∅. According to [6],

Theorem 1, there exist z ∈ X⊕Y and y ∈ Y such that σMC
(z) = U and σB(y) = U ,

therefore σMC
(z) = σB(y) and RMC

(·, z), RB(·, y) are bounded on ̺MC
(z). �

In particular, we obtain the following results.

Corollary 4.1. Let (A,B) ∈ B(X) × B(Y ) be decomposable. Assume that

int(σ(A)) 6= ∅. Then there exist z ∈ X ⊕ Y and x ∈ X such that σMC
(z) = σA(x)

and RMC
(·, z), RA(·, x) are bounded on ̺MC

(z).
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Corollary 4.2. Let (A,B) ∈ B(X) × B(Y ) be decomposable. Assume that

int(σ(B)) 6= ∅. Then there exist z ∈ X ⊕ Y and y ∈ Y such that σMC
(z) = σB(y)

and RMC
(·, z), RB(·, y) are bounded on ̺MC

(z) for every C ∈ B(Y,X).

Now we give some information about the localizable spectrum for operator matri-

ces.

Theorem 4.1. Let (A,B) ∈ B(X)× B(Y ). Then

σloc(M0) = σloc(A) ∩ σloc(B).

P r o o f. Let λ ∈ σloc(M0). Then for each open neighborhood V of λ there exists

z ∈ X ⊕ Y such that σM0
(z) ⊆ V . With z = x ⊕ y, where x ∈ X and y ∈ Y , since

σM0
(x⊕y) = σA(x)∪σB(y), σA(x) ⊆ V and σB(y) ⊆ V , hence λ ∈ σloc(A)∩σloc(B).

Conversely, assume that λ ∈ σloc(A)∩ σloc(B). Then for each open neighborhood V

of λ there exist x ∈ X and y ∈ Y such that σA(x)∪σB(y) ⊆ V , thus σM0
(x⊕y) ⊆ V ,

and therefore λ ∈ σloc(M0). It follows that σloc(M0) = σloc(A) ∩ σloc(B). �

In the general case when C 6= 0 we have the following theorem.

For A ∈ B(X) we denote by RA the right multiplication operator given by

RA(X) = XA.

Theorem 4.2. Let (A,B) ∈ B(X)× B(Y ). If C ∈ N(Rn
B) for some n > 1, then

σloc(A) ∩ σloc(B) ⊆ σloc(MC).

P r o o f. Let λ ∈ σloc(A) ∩ σloc(B). Then for each open neighborhood V of λ

there exist x ∈ X and y ∈ Y such that σA(x) ∪ σB(y) ⊆ V . According to [4],

Theorem 2.3, we have σMC
(x⊕Bny) ⊆ σA(x)∪σB(y) and then σMC

(x⊕Bny) ⊆ V ,

consequently λ ∈ σloc(MC). Therefore σloc(A) ∩ σloc(B) ⊆ σloc(MC). �

Theorem 4.3. Let (A,B) ∈ B(X)× B(Y ), assume that int(σp(A) ∪ σp(B)) = ∅

and σloc(A) has nonempty interior. Let U be a nonempty open subset of σloc(A) and

let u ∈ X be a vector with σA(u) ⊆ U . Then for every ε there exists some z ∈ X⊕Y

such that ‖u⊕ 0− z‖ 6 ε, σMC
(z) = U and RMC

(·, z) is bounded.

P r o o f. Since int(σp(A) ∪ σp(B)) = ∅, int(σp(MC)) = ∅. From Theorem 4.2,

σloc(A) ⊆ σloc(MC), then σloc(MC) has nonempty interior. BecauseB has the SVEP,

by [12], Proposition 2.2, we have σA(u) = σMC
(u ⊕ 0) ⊆ U . By [6], Theorem 4, we

conclude that for every ε there exists some z ∈ X ⊕ Y such that ‖u ⊕ 0 − z‖ 6 ε,

σMC
(z) = U and RMC

(·, z) is bounded. �
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5. Application to Hamiltonian operator

A Hamiltonian operator matrix H is a block operator matrix

(

A C

B −A∗

)

acting on the product space X × X of some complex Hilbert space X with closed

densely defined operators A, B, C such that B, C are self-adjoint and H is densely

defined. For an upper triangular Hamiltonian operator defined on a Hilbert space X

(

A C

0 −A∗

)

,

where A is closed and C is bounded on X , we have the following proposition.

Proposition 5.1. Let (A,D(A)) be a closed operator. If A∗ has the SVEP, then

σ(H) = −σ(A∗) ∪ σ(A).

P r o o f. The proof follows from Theorem 3.2. �

If A is bounded, from Corollary 4.1 the following holds.

Proposition 5.2. Let A ∈ B(X). If A is decomposable and int(σ(A)) 6= ∅, then

(1) H has a bounded local resolvent function;

(2) there exist z ∈ X ⊕X and x ∈ X such that σH(z) = σA(x).

E x am p l e 5.1. Consider the plate bending equation

D
( ∂2

∂x2
+

∂2

∂y2

)2

ω = 0 for 0 < x < 1 and 0 < y < 1,

where D > 0 is a constant, with boundary conditions

ω(x, 0) = ω(x, 1) = 0,
∂2ω

∂x2
+

∂2ω

∂y2
= 0, y = 0, 1.

We introduce the rotation θ, the Lagrange parametric function q, and the momentm

as

θ =
∂ω

∂x
, q = D

(∂3ω

∂x3
+

∂3ω

∂x∂y2

)

, m = −D
(∂θ

∂x
+

∂2ω

∂y2

)

.
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The equation becomes (see [15])

∂

∂x









ω

θ

q

m









=









0 1 0 0

−∂2/∂y2 0 0 −1/D

0 0 0 ∂2/∂y2

0 0 −1 0

















ω

θ

q

m









.

The corresponding Hamiltonian operator matrix is given by

H =









0 1 0 0

−∂2/∂y2 0 0 −1/D

0 0 0 ∂2/∂y2

0 0 −1 0









=

(

A C

0 −A∗

)

with domain D(A) ⊕D(A∗) ⊆ X ⊕X , X = L2(0, 1)⊕ L2(0, 1), A = AC[0, 1], and

A =

(

0 1

−∂2/∂y2 0

)

, B =

(

0 0

0 −1/D

)

,

D(A) = {(ω, θ) ∈ X, ω(0) = ω(1) = 0, ω′ ∈ A, ω′′ ∈ X}.

From [2], Example 4.1, σasc(A
∗) = ∅, where σasc(·) is the ascent spectrum, and by [1],

Corollary 4.9, we have S(A∗) = ∅. According to Proposition 5.1,

σ(H) = −σ(A∗) ∪ σ(A).

A c k n ow l e d g em e n t. The authors thank the referee for his suggestions, re-

marks and comments thorough reading the manuscript.
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