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Abstract. We propose an analogue of the maximum angle condition (commonly used in
finite element analysis for triangular and tetrahedral meshes) for the case of prismatic ele-
ments. Under this condition, prisms in the meshes may degenerate in certain ways, violating
the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation
error remains of the order O(h) in the H*-norm for sufficiently smooth functions.
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1. INTRODUCTION

The regularity of families of computational meshes (i.e. limitations on the shape
parameters of mesh elements) is a very important issue for performing controllable
numerical simulations. It influences the interpolation properties of finite elements
and through Cea’s lemma also the convergence of the finite element method [9];
various regularity mesh properties are required in derivation of a posteriori error
estimates for various finite element-type approximations, in the discrete maximum
principles (see e.g. [13]), for acceleration of convergence of finite element approxima-
tions, also in computer graphics (see [18] and references therein), etc.

For simplicial meshes, the most famous regularity condition (commonly used in
various convergence proofs, see e.g. [30], [29], [9], [8]) is the minimum angle con-
dition. (It is also known as the Zldmal minimum angle condition for the case of
triangulations.) The definition of this condition in 2d is as follows. Consider a fam-
ily F = {Tn}n—o of face-to-face triangulations 7;, of a bounded polygonal domain.
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We say that the minimum angle condition is satisfied if there exists a constant cg > 0
such that for any triangulation 75, € F and any triangle T' € 7}, one has (see [30])

(1) ar 2 Qo,

where ap is the minimum angle of 7. Many algorithms for constructing families of
triangulations satisfying (1) can be found e.g. in the review paper [18].

The weaker limitation on angles of triangles, called the mazimum angle condi-
tion (see [28]), reads as follows: there exists a constant 79 < w such that for any
triangulation 7, € F and any triangle T' € T} one has

(2) yr < 70,

where 7 is the maximum angle of T'. Obviously, condition (1) implies condition (2),
but not vice versa. In the mid of 70th, Babuska and Aziz [4], Barnhill and Gregory [5],
and Jamet [14] independently derived the optimal interpolation order in the energy
norm of finite element approximations under condition (2). Later the maximum
angle condition was investigated in various norms in [1], [2], [16], [15], [17], [19],
[25], [26], [27]. In 1992, condition (2) was generalized by Krizek [20] to the case of
tetrahedral elements as follows: there exists a constant 79 < w such that for any
face-to-face tetrahedralization 7, € F and any tetrahedron T' € 7T, one has

(3) 7P < and 5 < 7o,

where 72 is the maximum dihedral angle between the faces of T and ~F is the
maximum angle in all four triangular faces of T. According to [21], the associated
finite element approximations preserve the optimal interpolation order in the H'-
norm under condition (3), which allows to use meshes with tetrahedra having some
types of degeneracy [10]. A new generalization of (2) and (3) in the case of simplices
of any dimension has been recently proposed in [12].

However, the case of prismatic meshes in the above context has been studied
quite weakly. Besides the standard case when prismatic elements (among all other
available finite elements) satisfy the so-called inscribed ball condition from [9] (see
Definition 1 below), which is equivalent to the Zlamal-type angle conditions in the
case of simplices [6], [7], [8], we are not aware of any results on interpolation and
convergence properties on degenerating prismatic meshes. To fill this gap, we pro-
pose here an analogue of the maximum angle conditions (2) and (3) for the case of
prismatic elements, which is nothing else but the only requirement for all the trian-
gular bases of all prisms in all partitions to satisfy the maximum angle condition (2).
Under this condition, prisms in the meshes may degenerate in certain ways, violating
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e.g. the inscribed ball condition, but the interpolation error remains of order O(h) in
the H'-norm for sufficiently smooth functions. It is worth to noticing that, due to
the special shape of prisms, the maximum angle condition (2) on angles of their tri-
angular bases immediately leads to upper estimation of all dihedral angles of prisms
(those between adjacent faces) and upper estimation of all (interior) angles in the
faces of prisms, i.e. to the estimation in the spirit of (3).

Note that the degenerated finite (e.g. tetrahedral and prismatic) elements can be
of use in many real-life applications, for example, in calculation of physical fields in
electrical rotary machines, see [21], [22]. Flat tetrahedral and prismatic elements can
be also used to approximate thin slots, layers, or gaps. Moreover, they are highly
desired when the true solution of some problem changes more rapidly in one direction
than in another direction (e.g. in anisotropic materials) [1].

2. MAIN DEFINITIONS AND DENOTATIONS

Let Q C R? be a bounded polyhedral domain with Lipschitz boundary 952, which
can be partitioned (face-to-face) into triangular prisms (for instance, 2 can be a union
of several cylindrical domains). Let 7, denote a face-to-face partition of Q into
(closed) triangular prisms P. This means that the union of all P € Tj, is Q, the
interiors of all P € 7}, are mutually disjoint, and any face of any P € 7}, is either
a face of another prism from 7}, or a subset of the boundary 9. As usual, we set
hp = diam P and the discretization parameter i will be the maximum of hp over all
PeTy.

We assume that each triangular prism considered in this work is of the form
P = K x I, where K is a triangular face (or base) of P and I is an interval of the
length z;. The angles of K (also called angles of P later on) are denoted by ok, Sk
and g, where

(4) 0 <ax < fPr <7k

A set of prismatic face-to-face partitions F = {7 }n—0 of Q is called a family of
prismatic partitions if for every ¢ > 0 there exists 7, € F with h < e.

Definition 1. A family of prismatic partitions F is said to be regular if there
exists a constant m > 0 such that for any 7, € F and for any P € 7}, there exists
a ball bp of radius rp such that bp C P and

(5) mhp < rp.
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Remark 1. Condition (5) is often called the inscribed ball condition in the
finite element community, see [9]. This actually means that the regular families of
prismatic partitions do not contain “shrinking” or “short” or “long” prisms.

Definition 2. A family of prismatic partitions F is said to be semiregular if
there exists a constant ¢ > 0 such that for any 7, € F and any P € 7T, all angles
of P are bounded from above by © — ¢, i.e.

(6) 0<ag <Brx <y <n—-c.

Remark 2. Semiregular families of prismatic partitions may contain prisms
degenerating in many ways. In particular, there is no restriction on heights of the
prisms involved in (6). Also, prisms in semiregular families may have arbitrarily
small (but not arbitrarily large) angles in their triangular faces.

In what follows, we use the standard denotation WS(Q), k=0,1,...,p > 1, for
Sobolev spaces with norms |||

kp = |I'llkp,o and seminorms ||z, = |-|kpa- The
symbol C(Q) stands for the space of continuous functions over Q.

The following denotation for certain sums of partial derivatives for the functions
of three variables u = u(z,y, z) is often used later on:

omtry ‘2

2 _
(7) [u]5.n = sz::m ‘axiayjazl
=1,...,n

With any prismatic mesh 7, we associate the finite element space
(8) Vi ={v e C(Q); vlp € Q(P) VP € Th},

where Q(P) = P1(K) x P1(I), and P1(K) and P;(I) are the spaces of linear func-
tions defined in the triangle K and in the interval I, respectively.
The interpolation operator 7, : C(Q) — V}, is uniquely determined by the require-

ment
(9) mpv(z) =v(x) for all vertices = of all P € T.

To prove the main result of the paper we will employ the technlque using transfer
of the prism P € 7T}, onto the reference prism P=K x I, where K is the triangular
base and I is the altitude of P.

Let P have the vertices flo, ceey Aj as indicated in Figure 1. The associated basis
functions @y, ..., s are
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The prismatic interpolant 75 of the function @ defined on P is constructed then as
5
(11) fpi = (A

By definition, 7 5i(A;) = @4(A;), i = 0,...,5, for any @ € C(P).

Assume that a given prismatic element P = K x I has the vertices A; =
(Ai,I,ALy,Ai’Z)T, 1 = 0,...,5, as marked in Figure 1 (right), where the largest
angle vx of K is at the vertex Ag.

Az Az A
5
As
i T
A3_(07071) A4
A T i T Fp P
Ay=(1,0,1) As=(0,1,1) ——> Ao
AO = (07 0, O)T F Ao
A1=(1,0,0)7 Ay=(0,1,0)" A
z ] x Y

Figure 1. The reference prism p (left) and an arbitrary prismatic element P (right).
We define an affine one-to-one mapping Fp: P Pas
(12) Fp(X)=BpX + A4, with X =(3,9,2)" €P,
where Bp is a (3 x 3) matrix with entries denoted by B;;. The matrix
Bp=(41 — Ao | As — Ao | A3 — Ap)

is of a block structure:

0
Bx ‘
0 0 ‘ A372 AO,Z
where
(14) By — {Bu B12] _ {ALI — Aoy Asp— Ay
Bs1 B Ary — Aoy Agy— Aoy’

The matrix Bp is nonsingular, since the vertices A;’s are not coplanar.
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‘We observe that
(15)  |Bul < fx, |Ba1l < fx, |Bi2| <gk, [B2| <gk, |Bss|= 2z,

where fx and g are the lengths of the edges AgA; and AgAs, respectively.
Let C;; denote the entries of the inverse matrix Bp'. Obviously, Bp' has also
a block structure, namely,

Cii Ci2 Cis B! ‘ 0
(16) Bp'= [0y O O = 0
C31 Csz C33 0 0 ‘ (As3.— Ap.)!

In what follows, the functions @ and u are always related by

(17) W(X) = u(X),
where
(18) X = (z,9,2)" =Fp(X).

Further, we observe for u € W3 (P) that

(5‘12 ot 8ﬁ)T:BT<8u ou 8u)T,

1 - - =
(19) 0z’ 9y’ 92 P\oz’ 0y’ 02

and for u € WZ(P) that

Pa o o Pu Pu Ou
032 010y 0102 0x?  Oxdy 0Oxdz
- 2 2. 2 2 2
(20) 8AuA 8_Au 8A uA _B] 0*u 0 u 0*u Bp.
o090z  0y2 0903 Ooyox  Oy2  Oyoz
Pu i 0 Pu Pu Ou
0301 0307 032 020x 020y 022
From (20) and (15) we get the estimate
0?12 , 0%u 0%u 5 0%u 2
21 gia| =[Phigsa +2BuBa g+ Phg)
0%u2 | 0%u |2 |0%u 2
<1264(|5z | /5035 +7
fK( Ox? Oxdy Oy )’
where we used the so-called sum of squares inequality (a special case of the Jensen
inequality)
S 2 s
(22) (Z ai> <s Z a?
i=1 i=1

242



with s = 3. Similarly, we can show that

&2 | < sk (|5l + s 1580
25 12 2 2 2 2
aéiegz ng%Z?(‘aigz‘ + aaygz‘ )

The third order derivatives 934/03%0%, 0%1/02070% and 8%a/09%0% will be re-
quired in Section 3. For instance, 931,/02090% is calculated as follows. From (20)
we have

9% P*u 0?u

= B19Bss——— + B9 Bss ——

(24) 9905 910> dyoz

Taking the partial derivative with respect to & at both sides of (24), we get

83? S = 2<B12333 Ou )8x + 2(312333 Ou )83/

010yoz  Ox 0x0z/ 0% Oy 0x0z/ 0%
8 Ou N0z 0 0%u \ Ox
8 (312333 83:82’) oz *or ox (B2QB‘33 8yaz) 0%
5‘ 0%u 8y 0 0%u \ 0z
8 (BQ2B33 8y82) oF | 0z <B22B33 dy 82')
From estimates (15), (18), and the fact that dz/9% = 0, we come to
2%a Pu &u ou
— | <
a:zagaz} S 9Kz O 8:625‘2} 5‘:583/(92} 920z D

Using (22) with s = 3, we get the estimate

a2

0z0y0z

(25) 0u ‘2 0u ‘2 0u ‘2>

2202 0x0y0z 0y20z

< 12g% fic2t (‘ 3

Analogously, we can show that

(26) 822?)‘2 ’2 S 122?]021{(’ 8(22?)‘2 ’2 + 82’93;5‘2 ’2 83222 ’2)
93 12 3 2 3 2 3 2
83}2;2’ < 122%9%(‘83222‘ 5‘:585‘;82‘ 8?/2;,2‘ )
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3. PRELIMINARY RESULTS

Theorem 1. Any regular family of prismatic partitions of a polyhedron is

semiregular.

Proof. Assume that condition (6) is not satisfied. Then there exists an infinite
sequence of prisms {P;}2°, in partitions from F such that their corresponding max-
imal angles tend to © as ¢ — co. Now, consider the triangular base K; of each P;
with three edges ax, < bk, < ck, so that the maximum angle vk, is the angle
between edges arx, and bx,. We denote the perimeter and the area of the triangle
K, by pa and Sa, respectively. It is clear that rp,, pa, and Sa satisfy the rela-
tion rp, < 25a/pa, where rp, is the radius of the (inscribed) ball bp, C P;. Now,
using (5) we observe that

re 25 254 _ axbk, sin vk,

27) 0 <m < <
( ) h hPi h hP,vaA = CK;PA = CKi3aKi

<sinvyg, -0 asi— oo,

which contradicts the fact that m is a fixed positive constant. ([

Remark 3. The statement converse to Theorem 1 is not true. For example,
prisms with arbitrarily small or arbitrarily large heights compared to the size of the
triangles may belong to semiregular families, but not to regular ones.

We are interested in estimation of the following interpolation error:
2 9 2
’ + ’—(’U,—ﬂ'pu)’ ) dX,

0 2 0
— 2 = — (u— —(y—
(28) |u—mpuli, p / (’ (u 7TP’U,)‘ +‘ y(u Tpu) .

where mpu denotes the prismatic interpolant for u on P.
For this purpose we first prove two lemmas.

Lemma 1. Let & € W3(P). Then the following estimates hold:

CON 0

o0z

< Cldet By'| fi; /P((f?( + g5l o + 27 ([W? 1 + giclul3 1) dX

2 .
dX

(4 — 7 pa)

and

U

0
9y

< Oldet B! g2 /P ((F2 + gl + (2, + f2[ul3,)) dX,

2 A
dX

(4 —Tpa)

where C' > 0 is a constant and @ and u are related via (17).
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Proof. Using the definition of the basis functions (10), we have

2

0 dX

@) [ |55 #p0
— £)(4(1,0,0) —u(0,0,0))

oz
+ 5(a(1,0,1) — @(0,0, 1)))‘2 ax

2

dX

0%
o ... .. Yo
u(x,y,z)—/o 3£u(9’0’0)d0>

N Lo
z( u(x,y,z)—/o %u(0,0,l)dﬂ)

Further, we rewrite the integrand on the right-hand side of (31) in a more suitable

1o L)
A)/ —ﬁ(@,0,0)d@—i—é/ —Aﬁ(é),o,l)d9>
0 0 833

2 A~
dX.

form. First, we have

(32)

1 1
/ aa(a,g,z)da—/ ;{a(a,o,mde

+ 0 0T 0 xXr
1 p2 2

:// 8—Aa(t,g),2)dtd9+/ 90 (0,9,2)d0 — / a(6,0,0) do.
0Jo 0 0z

The last two terms on the right-hand side of (32) can be further rewritten as

0
(33) /O S i(0,5,2) 0 - /
:/0 %U(O,y,z)dG—/o %U(O 0,z)dé
1 1
+/ ia(e,o,z)da—/ 9 4(6,0,0)d6
0 o Ot

// 8x8y 902d0d9+// aaA @(0,0,€)dédo

_/0/0 703" dgd{”// 8707 U0:,£)dedo

4(6,0,0)dé

245



// 8x8y 0,0,z dad9+// 3x8z ) dedo
_/0/0/0 mﬁ((%m&)dadgde.

Now, substituting (33) into (32), we see that

(34) w(z, 9,2 / P 4(6,0,0)d

:// —A dtd9+// 8x8A w(0,0,%2)dodd
// g5z (0,9,€) dedd - /// F59507 10> €) do dé do.

Analogously, we can show that

(35) w(, g, 2 / (’T 4(6,0,1)d

// 32 alt, g,z dtd9+// 8x8y (0, 0,2)do db
_/0 . 5‘:58A e, d§d9+// 5‘x8 57 (6.0:€) dor d€ 46,

Applying (34) and (35) for (31), and using inequality (22) with s = 6, after
straighforward calculation, we get the following relation:

(36) /I3 (1—2)(82(9:«,@,2)—/1§a(9,0,0)d9)
+z(a‘? (&, 9, 2) /a 601)d9>
alt, g, 2 dtd9+// 8x8y (0, 0,2) do
/ 8x5‘z )dgde"z/ 8xaz @(6,9,¢) e df
_,/0/0,/0 mﬂ(f),a,f)dadﬁdg
+z/01/01/0g %a(e,a,@dadgdﬁ

X

dX
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AQQ‘(t7y) z

dtdé)dX+6///‘ (0,0,2)| dododx
8m8y

+6 Aa(e,g,g)‘ dEdfdX

8Jo Jo 10202
ol [
+6//// ‘(%82& 905)‘ do d€dodX
o 1L

Now, we estimate the terms I;, i = 1,...,6. First, we observe that

1(6,9,)| dgagax

2 ~
Ta(e,a,g)‘ dodédfdX = I, + ... + I,

1-3
11—6

tyz‘ dt di dg dz.

Since 0 < & < 1 — ¢, we obtain

1,1 -9, 52 9
_ » R
(37) neo [ [a- [ gzt ada

The maximum of the positive function (1 — ), where § € [0, 1], is equal to 1, and

replacing t by &, we get

1,1 1y82 2
L . . NS
s 6/0/0< y>/0 it %) drdgas < /\axQ (#,.)| d

Now, I> can be expressed as

1 ,r1
I, = ‘ a6 do df dgj ds.
2 6/0/0 // 8x8y O’Z‘ odfdjydz

Since0<g<1l—2and 0<1 -9 <1, we get

o e[

Substituting # and o with & and ¢, respectively, implies

/ ‘8m8yu y

8x8yu 0,0, z)‘ do df dz.

2 ~
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Dueto 0 <8 <1—gand 0<E& <1, we observe that

1,1
weeffe-of ]
1-g
// /‘ 0y§‘d£d9dg)
oxo
1-g

—6/// 8xaz a6, 9, g)‘ 40.dj de.

Replacing 6 and £ with & and Z, respectively, implies

8x83

. 1.9 14 . .
For I, when using fo 42d2 < 1 and repeating the same process as we have carried

2
(0,.€)| dgagagaz

2 o

dX.

out for I3, the following result holds:

<6 [ fagzitencs

2
dX.

For I we can write

I / 1—1 /// ‘(%(%aA 905)‘ do dé df dj
AL
[ Ll

Substituting 6, o, and £ with &, ¢, and 2, respectively, we get

Wu(e, o, 5)‘ do dé df

Sil0,0 5)‘ do df de.

2
u(z, 9, 2 X.
/‘&ftazﬁy @,9,2)] d
Similarly to Iy, we have
0(2,5,2)] 4%
/‘83:82'8?; (,9.2) '

Considering the estimates of I;, i = 1,...,6, relation (31) can be written now as

2 2 93t 12\ A~
dX<12/13( Y )dX.

02070%

2 | 0%
020z%

aA(A—ffﬁﬁ)

%u ‘2 0%t

(40) 0221 " lozog
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From (21), (23) and (25), substituting partial derivatives of @ on the right-hand

side of (40) by the corresponding partial derivatives of u, we obtain

a

2

0 dX

0%
B 1
<Claeesy!| [ (rk([5

(4 — 7 pa)

22 0%u 2 |0%u )2
7] oy o)

2 2
+f[2{g%(<‘8x2‘ +‘8x8y‘ +‘ )+Z%f}2((‘8igz‘2 3((;;2‘2)
2 3 2 3 2
+ g% frd (‘ 8221(;2‘ 83:88;;8,2‘ %‘ )) dX,

where C' > 0 is a constant. Using denotation (7), estimate (29) is thus obtained.

The derivation of estimate (30) is similar. O

Lemma 2. Let & € W3(P). Then

o 2
/ﬁ‘é(u—Wﬁu)

_ 0%u |2
< e\ (251 [ |8 ax + itk + SRk + o) [ ax)

dX

where C} is a positive constant and @ and u are related via (17).

Proof. We have

) [ |5ta- )

‘ 2

(1—2—9)(a(0,0,1) — 4(0,0,0)))| dX

+
St (s [ 2o
e AR ol A E

1

1o

1
+-i-9) [ Fa0.0.0)| af

2

Assume that £ € [0,1] is given, g(&,9,£) = 8Z a(z, g, {) and 7 is the standard
linear interpolation operator over the reference triangle K with vertices (0,0), (1,0),

and (0,1). Then
8 8

5‘

(0,0,¢).

N
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Now, (42) can be written as

/ﬁ‘%(a—frﬁa)fd)?
1

z)de — / d£+/01§/(xygd5 /WKQ
/‘// 2z & 05 d"df+/ (g—WKg)d£2d)?
(//1 y/ ‘az; Mn\ dndfdg+/01/01@01|g_ﬁﬁg|2d€djdg>.

Replacing n with 2 implies

(43) /ﬁ‘%(a—frﬁa)fdk

2
ol [} e
P

_Aﬁ’(xa?%é)
By [9], pp. 118-120, we have

2 1
dX+/ (/A |g—ﬁgg|2d§:dg)>d£).
0 K

(44) ”g '/TKQH()QK C|g|22K,

where C' is a positive constant. Therefore

@) [

2 A

0
0z

(@ —7pa)

0? 2d)? o 1 9 ,
< u(z,y, 2 Al A A
\2/13 822“(”:"”’2)} * 1/0/;?( asz?az“(x’y’@‘
TN o 2N
‘&Uﬁyézu(x Y 5)‘ Wu(xayaf)‘ )dx dgdé
2 [ 2 a,5,2)[ %
- ‘/ﬁa’%Qu(xvyaz)
O a(e.g.2 i(2, 9, 2) NP
+Cl/(ax232 (2,9, 2) +‘5‘£5‘g}5‘z W(Z,7,2) ‘8y28z a(#, 9, 2) )dX
2
<2|detB;1|/Z;1 Ol ax
1
+ Cyldet Bp |/ 4Z]fK‘8 282‘ + 8z IfK‘axayaz‘ IfK‘a 282‘
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+4g§<z?f;2<%‘2+89 ZIfK‘a 8yaz‘ + ngIfK‘a 25‘2‘2

‘ 182244

+4z gK\a %7 IQK\W\Q 19K %\Q) dx

< |detB1§1|(2z‘}/‘a—Z
P

Oy |2 OBy |2 Py |2
2/ p4 2 2 4
+Clzf(fK+fK9K+9K)/P(‘ax2az‘ + 5‘:583/(92‘ + 8y28z‘ )dX>’

and the proof is completed. ([

4. MAIN RESULT

Theorem 2. Let u € W3(Q) and F = {Tj,}n_s0 be a semiregular family of pris-
matic partitions of (). Then there exists hg > 0 such that for all h € (0,ho) the
following estimate holds:

(46) | < Chlulzo.0,

where C' > 0 is a constant.

Proof. First, due to (19) and inequality (22) with s = 2, we have that

(47) u—7pulisp

A R S D

2

o ,. . . g.,. . .
:|detBP|/ﬁ( ({)JA}( 7r13u)+C21—y(u—7rﬁu)

5
9 . . o, . O A\ e
+‘ClQaA(U/—TFﬁU,)+0228_g(u—7'r13u) 7«2+‘033£(u—7r13u) )dX
0
2|deth|/ |Cn|2+|012| ) aA( )
2 AN O S s
+ (ICo1|? + |Caz| )\%(u 7 50) )dx

2
+ |det Bp|/ |033t|2‘i(a - frﬁa)‘ dx.
I 0z
By definition, C1; = |det Bx| ' Baz and Ch2 = —|det By |~ Bia, therefore
(48) |C11[* + [Cra|? = |det Bk | ~?(|Bra|? + | B22|?) < f2 :
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where we used estimates (15) and the easily provable fact that if the maximum angle
condition on partitions holds, then |det Bx|™! = C3/fxgx. Analogously, we get

C
(49) Con]? + Ca2? < =5
9K

Using the estimates from Lemma 1, Lemma 2, (48), (49), and the fact that
Cs3 = 1/z for (47), we get the estimate

_ 2 < 6 2 2 2 271,12 9,2 &2 dx
lu —Tpuli o p < . ((fx + 9:)ulao + 27[uli 1) + 227 92

+ /P (C2(f% + 53) + Cr(Fh + f2g% + gh))luld, dX.

Finally,

— 0% |2 —
60 fu=mpultsp <m3C [ ((hoo+ s +|5| ) aX + 160 [ i ax

P

— 120 ul2p p + KT /P [ul3., X,

where hp = max{fx, 9k, 21}
Summing up the above inequality over all prisms P € 7} and using the fact that
hp < h, for sufficiently small h we get that

(51) lu — mhuli 2.0 < Cihlulz2.0.

The result of the theorem now follows from the above estimate and the following
result from [9], p. 121, which is valid without any regularity assumptions on the
meshes:

(52) lu = mhullo,z,0 < Coh®luls2,0.
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5. NUMERICAL RESULTS

In this section, we present results of several numerical tests obtained for the func-
tion u(x,y,2) = 2y + 222 interpolated on various (regular and degenerating) face-
to-face prismatic partitions of the domain Q = (0,1)3.

All prismatic partitions of  used in the tests are constructed by means of three
natural numbers i, j and k& which describe and control the geometric characteristics
of the partitions as follows. First, we fix the values of 4, j, k (see the tables below).
Then we define h,, = 27% h, =277, h, = 27%. By three sets of planes defined as {z =
hep, p=0,1,...,2%}, {y_:hyp,p:(),l,...,Qj} and {z = h.p, p=0,1,...,2"} we
split the cubic domain 2 into blocks. Further, each block is split into two prisms
using a vertical cut parallel to the plane 27z + 2~y = 2= (*+J) and in this way we
get some face-to-face prismatic partition of Q.

Varying i, 7 and k we get different families of prismatic partitions with various
regularity properties. In order to compute relevant norms and a seminorm (of poly-
nomial functions) exactly, we use the Gaussian quadratures with sufficient number
of nodes, see [3].

In Tables 1,2,...,5, we present computations associated with justification of in-
terpolation error (51), and in Tables 6,7,...,10, with justification of interpolation
error in Lo-norm (52). We consider the case of regular families (Tables 1 and 6),
also the cases of various degeneracies—short prism/regular bases (Tables 2 and 7),
long prisms/regular bases (Tables 3 and 8), and the cases of degenerating bases with
various choices of heights (Tables 4, 5, 9, and 10).

Monitoring behaviour of ratios

[u—mnuhoe o lu—Thufose
hlulz,2,0 h?|ul2,2,0

we observe that those are always converging in all corresponding series of tests (see
the last columns in the tables below) to some values, thus, proving numerically the
interpolation estimates (51) and (52).

1 J k h lu —mpuli20 h™Hu —muli2.0/|ul20.0
0 0 0 1.732051 0.823508 0.441637
1 1 1 0.866025 0.398421 0.427336
2 2 2 0433013 0.197105 0.422820
3 3 3 0.216506 0.098282 0.421660
4 4 4 0.108253 0.049107 0.421369

Table 1. Regular prisms (i = j = k).
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1 J k h lu —mhuli2.0 h7Hu — mhuli2.0/|ul22.0
0 0 0 1.732051 0.823508 0.441637
1 1 2 0.750000 0.363382 0.450050
2 2 4 0.359035 0.178620 0.462116
3 3 6 0.177466 0.089007 0.465873
4 4 8 0.088475 0.044468 0.466861
Table 2. Short prisms (k > i = j).
1 J k h lu —mhuli2.0 h7Hu — mhuli2.0/|ul22.0
0 0 0 1.732051 0.823508 0.441637
2 2 1 0.612372 0.250227 0.379556
4 4 2 0.265165 0.095240 0.333628
6 6 3 0.126938 0.043221 0.316275
8 8 4 0.062744 0.021030 0.311335
Table 3. Long prisms (i =7 > k).
i j k h lu —mhulig0  hHu—mhulig.0/|ul22.0
0 0 0 1.732051 0.823508 0.441637
2 1 1 0.750000 0.377079 0.467013
4 2 2 0.359035 0.194645 0.503576
6 3 3 0.177466 0.100831 0.527760
8 4 4 0.088475 0.051502 0.540706
Table 4. Degenerating bases and proportional height (i > 7 = k).
i g k h |u—7rhu|17219 h*1|u—7rhu|1,2’9/|u|2,27g
0 0 0 1.732051 0.823508 0.441637
2 1 2 0.612372 0.339846 0.515496
4 2 4 0.265165 0.175902 0.616187
6 3 6 0.126938 0.091813 0.671850
8 4 8 0.062744 0.047099 0.697269
Table 5. Degenerating bases and proportional height (i = k> j).
i j K h lu—mhulig0  hHu—mhulig.0/|ul22.0
0 0 0 1.732051 0.227210 0.070350
1 1 1 0.866025 0.046685 0.057819
2 2 2 0433013 0.010880 0.053899
3 3 3 0.216506 0.002667 0.052855
4 4 4 0.108253 0.000663 0.052587

Table 6. Regular prisms (i = j = k).
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1 J k h lu —mhuli2.0 h7Hu — mhuli2.0/|ul22.0
0 0 0 1.732051 0.227210 0.070350
1 1 2 0.750000 0.030964 0.051131
2 2 4 0.359035 0.006211 0.044757
3 3 6 0.177466 0.001461 0.043081
4 4 8 0.088475 0.000359 0.042652
Table 7. Short prisms (k > i = j).
1 J k h lu —mhulio0 h™Hu — muli2.0/|ul20.0
0 0 0 1.732051 0.227210 0.070350
2 2 1 0.750000 0.029772 0.073746
4 4 2 0.359035 0.006768 0.089407
6 6 3 0.177466 0.001658 0.095570
8 8 4 0.088475 0.000412 0.097312
Table 8. Long prisms (i =7 > k).
i j K h lu—mhulizo A Hu—mauli0.0/|ul22.0
0 0 0 1.732051 0.227210 0.070350
2 1 1 0.750000 0.046224 0.076322
4 2 2 0.359035 0.012566 0.090546
6 3 3 0.177466 0.003336 0.098384
8 4 4 0.088475 0.000861 0.102199
Table 9. Degenerating bases and proportional height (i > j = k).
i j K h lu—mhulize A Hu— mauli0.0/|ul22.0
0 0 0 1.732051 0.227210 0.070350
2 1 2 0.612372 0.028891 0.071563
4 2 4 0.265165 0.007322 0.096735
6 3 6 0.126938 0.001985 0.114401
8 4 8 0.062744 0.000522 0.123220
Table 10. Degenerating bases and proportional height (i = k > j).

6. OPEN PROBLEM

It would be interesting to validate several results on sufficient and necessary con-

ditions for the convergence of the finite element method obtained in [11], [23], [25],

[24], [27] for the case of simplices, also for the case of prismatic partitions.
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