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Abstract. Let N denote the class of nilpotent Lie algebras. For any finite-dimensional Lie
algebra L over an arbitrary field F, there exists a smallest ideal I of L such that L/I ∈ N .
This uniquely determined ideal of L is called the nilpotent residual of L and is denoted
by LN . In this paper, we define the subalgebra S(L) =

⋂
H6L IL(H

N ). Set S0(L) = 0.

Define Si+1(L)/Si(L) = S(L/Si(L)) for i > 1. By S∞(L) denote the terminal term of the

ascending series. It is proved that L = S∞(L) if and only if L
N is nilpotent. In addition,

we investigate the basic properties of a Lie algebra L with S(L) = L.
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1. Introduction

Throughout this paper, L is a finite-dimensional Lie algebra over an arbi-

trary field F. Because of the connection between finite groups and Lie algebras

of finite dimension, such investigations were successfully carried out by Barnes

(see [1]–[5]), Marshall (see [10]), Schwarck (see [11]), Stitzinger (see [13], [14]),

Towers (see [16]–[20]), et al. The intersection of all maximal subgroups (subalge-

bras) in a group (algebra) is called the Frattini subgroup (subalgebra). The Frattini

theory was initiated in the study of finite groups by a paper of Frattini in 1885.

Marshall (see [10]) investigated the Frattini subalgebra analogous to that of the

Frattini subgroup. Chen and Meng (see [6]) studied the intersection of maximal
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subalgebras and obtained deeper structure theorems by extending and developing

the Frattini theory for Lie superalgebras.

It therefore seems natural to study the intersection of other special subalgebras

in a Lie algebra. Let N denote the class of nilpotent Lie algebras. For any finite-

dimensional Lie algebra L, there exists a smallest ideal I of L such that L/I ∈ N .

This uniquely determined ideal of L is called the nilpotent residual of L and is denoted

by LN . If H is a subalgebra of L, then we write H 6 L. For any subalgebra H of L,

the idealizer IL(H) of H is the set of all elements x of L such that [x,H ] ⊆ H , that

is, IL(H) = {x ∈ L : [x, h] ∈ H for all h ∈ H}.

In this paper, we consider the intersection of the idealizers of the nilpotent residuals

of all subalgebras of L and introduce the following notation:

Definition 1.1. Let L be a finite dimensional Lie algebra. By S(L) denote the

intersection of the idealisers of the nilpotent residuals of all subalgebras of L. That is

S(L) =
⋂

H6L

IL(H
N )

where HN is the nilpotent residual of H .

Obviously, S(L) is an ideal of L, S(L) = L if and only if the nilpotent residual of

each subalgebra of L is an ideal of L. In the following, we define an ascending series

of ideals of a Lie algebra L in terms of S(L).

Definition 1.2. Let L be a finite dimensional Lie algebra. There exists a series

of ideals

0 = S0(L) ⊆ S1(L) ⊆ S2(L) ⊆ . . . ⊆ Sn(L) ⊆ . . .

satisfying Si+1(L)/Si(L) = S(L/Si(L)) for i = 0, 1, 2, . . . and Sn(L) = Sn+1(L) for

some integer n > 1. Write S∞(L) for the terminal term of the ascending series.

This is analogous to the concept of S(G)-subgroup as introduced by Shen, Shiand

and Qian (see [12]); this concept has since been further studied by a number of

authors, including Gong and Guo (see [7], [8]), Su and Wang (see [15]).

In the present paper, the basic properties of S(L) and S∞(L) are investigated (see

Section 3). Let Fn denote the class of Lie algebras L such that L
N is nilpotent. We

characterize the class Fn of Lie algebra in terms of S(L) and S∞(L) (see Section 4).

In addition, L is called an S-Lie algebra if L = S(L), that is, the nilpotent residuals

of all subalgebras of L are ideals of L. We establish some basic properties of S-Lie

algebras and minimal non-S-Lie algebras (see Section 5). The results and proofs of

this paper have analogues in the theory of groups. The proofs are presented here for

completeness.
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If A and B are subalgebras of L, for which L = A + B and A ∩ B = 0, we will

write L = A ⊕ B. BL is the core (with respect to L) of B, that is the largest

ideal of L contained in B; CL(B) = {x ∈ L : [x, h] = 0 for all h ∈ H}; Z(L) is

the centre of L; ϕ(L) is the Frattini subalgebra of L, that is the intresection of all

maximal subalgebras of L; ψ(L) is the largest ideal of L that is contained in ϕ(L). All

unexplained notation and terminology are standard and can be found in [9], [10], [13].

2. Preliminaries

The lower central series (see [9], page 11) of a Lie algebra L is the sequence {Li}

of ideals of L,

L = L1 ⊇ L2 ⊇ . . . ⊇ Li ⊇ . . .

satisfying L1 = L, L2 = [L,L1], . . . , Li = [L,Li−1].

The algebra L is called nilpotent if Ln = 0 for some n. It is easily shown that

LN =
∞⋂

i=1

Li.

The upper central series (see [10], page 419) of a Lie algebra L is the se-

quence {Zi(L)} of ideals of L

0 = Z0(L) ⊆ Z1(L) ⊆ . . . ⊆ Zn(L) ⊆ . . .

satisfying Zi+1(L)/Zi(L) = Z(L/Zi(L)). Write

Z∞(L) =

∞⋃

i=0

Zi(L)

for the terminal term of the upper central series of L.

As L is a finite dimensional Lie algebra, there exists n such that LN = Ln and

Z∞(L) = Zn.

Lemma 2.1. Let L be a Lie algebra. Then

LN =
⋂

{I : I is an ideal of L and L/I is nilpotent}.
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P r o o f. Set K =
⋂
{I : I is an ideal of L and L/I is nilpotent}. Suppose I is

an ideal of L and L/I is nilpotent. Then

L/I ⊇ (L1 + I)/I ⊇ (L2 + I)/I ⊇ . . .

is a lower central series of L/I. So there exists n such that Ln ⊆ I, and thus, LN ⊆ I.

Therefore LN ⊆ K.

Conversely, for every Li we see that

L/Li ⊇ L1/Li ⊇ L2/Li ⊇ . . . ⊇ Li/Li

is a lower central series of L/Li and hence L/Li is nilpotent. So we have K ⊆ Li.

Furthermore, K ⊆ LN . The proof is completed. �

Lemma 2.2. Let L be a Lie algebra. Then

Z∞(L) =
⋂

{I : I is an ideal of L and Z(L/I) = 0}.

P r o o f. As L is a finite dimensional Lie algebra, there exists n such that

Z∞(L) = Zn(L) = Zn+1(L) = . . . Consequently, Z(L/Z∞(L)) = Z(L/Zn(L)) =

Zn+1(L)/Zn(L) = 0. So

Z∞(L) = Zn(L) ⊇
⋂

{I : I is an ideal of L and Z(L/I) = 0}.

In another words, if I is an ideal of L with Z(L/I) = 0, then Z∞(L/I) = 0.

We claim that (Zk(L)+ I)/I ⊆ Zk(L/I). Suppose k = 1. Since [Z(L), L] = 0 ⊆ I,

we have (Z(L) + I)/I ⊆ Z(L/I). Suppose (Zk−1(L) + I)/I ⊆ Zk−1(L/I). Since

[(Zk(L) + I)/I, L/I] = ([Zk(L), L] + I)/I ⊆ (Zk−1(L) + I)/I ⊆ Zk−1(L/I),

we get (Zk(L) + I)/I ⊆ Zk(L/I).

Therefore (Zn(L) + I)/I ⊆ Zn(L/I) = 0 and hence Z∞(L) = Zn(L) ⊆ I. So

Z∞(L) ⊆
⋂
{I : I is an ideal of L and Z(L/I) = 0}. The conclusion holds. �

Definition 2.3. The central series of a Lie algebra L is the sequence {Zi(L)}

of subalgebras of L,

L = K1 ⊇ K2 ⊇ . . . ⊇ Ks+1 = 0

satisfying [Ki, L] ⊆ Ki+1, i = 1, 2, . . . , s.
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By Definition 2.3, we see that [Ki, L] ⊆ Ki+1 ⊆ Ki. Hence Ki is an ideal of L.

The proof of the following fact is straightforward.

Lemma 2.4. The following properties of the Lie algebra L are equivalent:

(i) L is nilpotent;

(ii) LN = Ln = 0 for some n;

(iii) Z∞(L) = Zn(L) = L for some n;

(iv) L possesses a central series.

Lemma 2.5.

(i) Let

L = K1 ⊇ K2 ⊇ . . . ⊇ Ks+1 = 0

be a central series of nilpotent Lie algebra L. Then [Ki, L
j] ⊆ Ki+j for all i, j.

(ii) [Li, Lj] ⊂ Li+j , [Li, Zj(L)] ⊆ Zj−i(L). Clearly Zj−i(L) = 0 whenever j < i. In

particular, [Li, Zi(L)] = 0.

P r o o f. (i) If j = 1, then [Ki, L
1] = [Ki, L] ⊆ Ki+1, and the conclusion holds.

Let j > 1, suppose the conclusion holds for l < j. Since Lj = [L,Lj−1], we have

[Ki, L
j] = [Ki, [L,L

j−1]] = [[Ki, L], L
j−1] + [L, [Ki, L

j−1]]

⊆ [Ki+1, L
j−1] + [L,Ki+j−1] ⊆ Ki+j .

(ii) This is immediate from (i). �

Lemma 2.6. Let L be a Lie algebra. Then the following statements hold:

(i) If H is a subalgebra of L, then HN ⊆ LN .

(ii) If I is an ideal of L and H is a subalgebra of L with I ⊆ H , then (H/I)N =

(HN + I)/I.

P r o o f. (i) Let H be a subalgebra of L. Since H/(H ∩LN ) ∼= (H +LN )/LN ⊆

L/LN we see that H/(H ∩ LN ) is nilpotent and therefore HN ⊆ H ∩ LN ⊆ LN .

(ii) Let (H/I)N = R/I. Since (H/I)/(H/I)N = (H/I)/(R/I) ∼= H/R, we see

that HN + I ⊆ R. Conversely, it follows from

H/(HN + I) ∼= (H/HN )/((HN + I)/HN )

and

H/(HN + I) ∼= (H/I)/((HN + I)/I)

that R/I ⊆ (HN + I)/I and hence (H/I)N = (HN + I)/I. �
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The following proposition shows that CL(L
N ) is nilpotent.

Proposition 2.7. Let L be a Lie algebra. Then CL(L
N ) is nilpotent.

P r o o f. Write C = CL(L
N ). Then C/(C ∩ LN ) ∼= (C + LN )/LN ⊆ L/LN and

hence C/(C ∩LN ) is nilpotent. Since [C ∩LN , C] = 0 and C ∩LN ⊆ Z(C), we have

C/Z(C) is nilpotent. So C is nilpotent (see Proposition in [9], page 12). �

The following proposition characterizes the nilpotent Lie algebra in terms of LN .

Proposition 2.8. Let L be a Lie algebra. Then L is nilpotent if and only if the

nilpotent residual LN idealizes every subalgebra of L.

P r o o f. If L is nilpotent, then LN = 0 and therefore LN idealizes every subal-

gebra of L.

Conversely, suppose that LN idealizes every subalgebra of L. SupposeM is a max-

imal subalgebra of L. If LN 6⊂ M , then L = M + LN . Since LN ⊆ IL(M), we get

L = IL(M) and hence M is an ideal of L. If LN ⊆ M , then M/LN is a maximal

subalgebra of L/LN . As L/LN is nilpotent, we know M/LN is an ideal of L/LN

by the Theorem of [1]. Thus, M is also an ideal of L. Again applying the Theorem

of [1], L is nilpotent. The proof is completed. �

3. Basic properties of S(L) and S∞(L)

In this section, we prove some basic properties of the subalgebras S(L) and S∞(L).

Proposition 3.1. Let L be a Lie algebra. Then Z∞(L) ⊆ CL(L
N ) ⊆ S(L).

P r o o f. Since L/LN and Z∞(L) are nilpotent, by Lemma 2.5 (ii) we get

[LN , Z∞(L)] = 0.

Thus, Z∞(L) ⊆ CL(L
N ). Let H be a subalgebra of L, then HN ⊆ LN by

Lemma 2.6 (i). For any x ∈ CL(L
N ), x centralizes HN . So x ∈ IL(H) and hence

CL(L
N ) ⊆ S(L). The proof is complete. �

Proposition 3.2. Let L be a Lie algebra and M a subalgebra of L. Then

M ∩ S(L) ⊆ S(M).
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P r o o f. By definition, we have

S(L) =
⋂

H6L

IL(H
N ) ⊆

⋂

H6L

IL(H
N ).

So

M ∩ S(L) =M
⋂

H6L

IL(H
N ) ⊆

⋂

H6M

(M ∩ IL(H
N )) =

⋂

H6M

IM (HN ) = S(M).

The conclusion holds. �

Proposition 3.3. Let L be a Lie algebra and I an ideal of L. Then

(S(L) + I)/I ⊆ S(L/I).

P r o o f. Let H/I be a subalgebra of L/I. Then (H/I)N = (HN + I)/I by

Lemma 2.6 (ii). For any element x ∈ S(L), by definition, x ∈ IL(H
N ). It follows

that x+ I ∈ IL/I((H
N + I)/I) = (H/I)N . Thus (S(G) + I)/I ⊆ IL/I((H/I)

N ) for

every subalgebraH/I of L/I, so (S(G)+I)/I ⊆ S(L/I). The proof is completed. �

Proposition 3.4. Let L be a Lie algebra and I an ideal of L. If I ⊆ S∞(G),

then S∞(L/I) = S∞(L)/I.

P r o o f. As I ⊆ S∞(L), I ⊆ Si(L) for some i. Set S
1(L)/I = S(L/I) and

by S∞(L)/I denote the terminal term of the ascending series of L/I. We claim

that S1(L) ⊆ Si+1(L). For any subalgebra H/Si(L) of L/Si(L), H/I is a sub-

algebra of L/I. By definition, for any element x ∈ S1(L), we have x + I ∈

IL/I((H/I)
N ) = IL/I((H

N + I)/I), namely ((HN )x + I)/I = (HN + I)/I. As

I ⊆ Si(L), of course, we have ((H
N )x + Si(L))/Si(L) = (HN + Si(L))/Si(L), so

x + Si(L) ∈ IL/Si(L)((H/Si(L))
N ). Therefore x ∈ Si+1(L). The claim holds. Now,

by induction, we have S∞(L) ⊆ S∞(L). Conversely, clearly S(L) ⊆ S1(L), by in-

duction we have S∞(L) ⊆ S∞(L). Consequently, S∞(L/I) = S∞(L)/I. The proof

is completed. �

Proposition 3.5. For any Lie algebra L, S(L) is solvable or S(L) is a minimal

non-nilpotent Lie algebra.

P r o o f. Write H = S(L). Then H has the property: the nilpotent residual of

every subalgebra of H is an ideal of H . Let M be a maximal subalgebra of H . If

MN > 0, then MN is an ideal of H . By Propositions 3.2, 3.3 and induction, H/MN

and MN are solvable, hence H is solvable. Suppose MN = 0 for every maximal

subalgebra M of L, then M is nilpotent, and therefore L is a minimal non-nilpotent

Lie algebra. �
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Proposition 3.6. Let L be a Lie algebra. Then

S∞(L) =
⋂

{I : I is an ideal of L and S(L/I) = 0}.

P r o o f. As L is a finite dimensional Lie algebra, there exists an integer n such

that

S∞(L) = Sn(L) = Sn+1(L) = . . .

By the definition of the series, we have

S(L/S∞(L)) = S(L/Sn(L)) = Sn+1(L)/Sn(L) = 0

and therefore
⋂
{I : I is an ideal of L and S(L/I) = 0} ⊆ S∞(L).

Conversely, suppose S(L/I) = 0 for an ideal I of L. Then by the definition of the

series and induction, Sn(L/I) = 0 for any positive integer n. Proposition 3.3 implies

that Sn(L) ⊆ I and so S∞(L) ⊆
⋂
{I : I is an ideal of L and S(L/I) = 0}. This

completes the proof. �

Proposition 3.7. Let L be a Lie algebra. Then Z∞(LN ) ⊆ S∞(L).

P r o o f. Use induction on dimF(L). Since Z(L
N ) ⊆ CL(L

N ) ⊆ S(L), we get

Z∞(LN /Z(LN )) = Z∞((L/Z(LN ))N ) ⊆ S∞(L/Z(LN )).

The conclusion follows from

Z∞(LN /Z(LN )) = Z∞(LN )/Z(LN ) and S∞(L/Z(LN )).

�

4. Fn-Lie algebra

In this section, let Fn denote the class of Lie algebras such that L ∈ Fn if and

only if LN is nilpotent.

Theorem 4.1. The following properties of the Lie algebra L are equivalent:

(i) L ∈ Fn;

(ii) L/ψ(L) ∈ Fn.
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P r o o f. (i) ⇒ (ii): L ∈ Fn implies L
N is nilpotent. By Lemma 2.6 (ii),

(L/ψ(L))N = (LN + ψ(L))/ψ(L). As (LN + ψ(L))/ψ(L) ∼= LN/(LN ∩ ψ(L)), we

have (L/ψ(L))N is nilpotent and hence L/ψ(L) ∈ Fn.

(ii)⇒ (i): Since L/ψ(L) ∈ Fn, we have (L/ψ(L))
N is nilpotent. Thus, LN /(LN ∩

ψ(L)) ∼= (LN +ψ(L))/ψ(L) = (L/ψ(L))N is nilpotent. By Barnes’ theorem (see [2],

Theorem 5), LN is nilpotent and hence L ∈ Fn. �

Theorem 4.2. Let L be a finite dimensional Lie algebra. Then the following

statements are equivalent:

(i) L ∈ Fn;

(ii) L/S(L) ∈ Fn.

P r o o f. (i) ⇒ (ii): L ∈ Fn implies L
N is nilpotent and hence LN /(LN ∩ S(G))

is nilpotent. By Lemma 2.6 (ii), we know (L/S(L))N = (LN + S(G))/S(G). Since

(LN + S(G))/S(G) ∼= LN /(LN ∩ S(G)), we have (L/S(L))N is nilpotent and hence

L/S(L) ∈ Fn.

(ii) ⇒ (i): We use induction on the dimension of L. If S(L) = 0, the result is

trivial. Suppose that S(L) > 0, so that we can choose a minimal ideal A of L such

that A ⊆ S(L).

First suppose A ⊆ ψ(L), the Frattini ideal of L. By Proposition 3.3, S(L)/A ⊆

S(L/A). It follows that (L/A)/S(L/A) ∈ Fn since L/S(L) ∈ Fn. Thus, L/A satisfies

the condition of the theorem. By induction, (L/A)N = (LN +A)/A is nilpotent. As

A ⊆ ψ(L), by Barnes’ theorem, LN +A is nilpotent and hence LN is also nilpotent,

which gives L ∈ Fn as desired.

Next, let A 6⊆ ψ(L). Then there is a maximal subalgebra M of L such that

L = A+M with A ∩M = 0. By Proposition 3.2, M ∩ S(L) ⊆ S(M). Thus, by

the hypothesis that L/S(L) ∈ Fn, and as L/S(L) = (A + M)/S(L) ∼= M/(M ∩

S(L)), we have M/S(M) ∈ Fn. Hence M satisfies the condition. By induction,

MN is nilpotent. Now, as A ⊆ S(L) and S(L) idealizes the nilpotent residuals of all

subalgebras of L, thus MN is an ideal of L and it follows that A+MN = A⊕MN .

Since MN is nilpotent, we conclude that LN is nilpotent, as desired. �

Theorem 4.3. Let L be a finite dimensional Lie algebra. Then the following

statements are equivalent:

(i) L ∈ Fn;

(ii) L/S∞(L) ∈ Fn;

(iii) L = S∞(L);

(iv) S(L/I) > 0 for any proper ideal I of L.

P r o o f. (i) ⇒ (ii): The proof is similar to that of Theorem 4.2, so we omit it.
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(ii) ⇒ (iii): We first observe the following simple fact: If X > 0 is an Fn-Lie alge-

bra, then S(X) > 0. In fact, XN is nilpotent, so CX(XN ) > 0. But since CX(XN ) ⊆

S(X), we have S(X) > 0. Using this fact and noting that S(L/S∞(L)) = 0, we de-

duce L = S∞(L).

(iii) ⇒ (i): As S∞(L/S(L)) = S∞(L)/S(L), by induction, L/S(L) ∈ Fn. It

follows that L ∈ Fn by Proposition 3.2.

(i) ⇒ (iv): See the argument of (ii).

(iv) ⇒ (iii): By definition, S(L/Si(L)) = Si+1(L)/Si(L). As S(L/Si(L)) > 0 by

hypothesis, we have Si+1(L) > Si(L) for i = 0, 1, 2, . . . So the terminal term S∞(L)

of the ascending series must be L. �

5. minimal non-S-Lie algebra

By definition of S(L), we know that 0 ⊆ S(L) ⊆ L. If S(L) = 0, then Z∞(L) = 0

by Proposition 3.1. In other words, S(L) = L if and only if the nilpotent residuals

of all subalgebras of L are ideals of L.

Definition 5.1. A Lie algebra L is called an S-Lie algebra if L = S(L), that is,

the nilpotent residuals of all subalgebras of L are ideals of L.

Theorem 5.2.

(i) The subalgebras of an S-Lie algebra are S-Lie algebras.

(ii) The quotient algebras of an S-Lie algebra are S-Lie algebras.

P r o o f. (i) Suppose L is an S-Lie algebra and H is a subalgebra of L. We

choose a subalgebra K of H , then KN is an ideal of L and hence KN is also an ideal

of H . Therefore S(H) = H , that is, H is an S-Lie algebra.

(ii) Suppose L is an S-Lie algebra and I is an ideal of L. Let H/I be a subgroup

of L/I, thenH is a subalgebra of L and henceHN is an ideal of L. By Lemma 2.6 (ii),

(H/I)N = (HN +I)/I. Thus, (H/I)N is an ideal of L/I. So we have S(L/I) = L/I,

and L/I is an S-Lie algebra. �

Theorem 5.3. Let L be a non-nilpotent S-Lie algebra. If there is a maximal

subalgebra M of L with MG = 0, then L = LN +M , where LN is a minimal ideal

of L, M is nilpotent and LN ∩M = 0.

P r o o f. Since M is a maximal subalgebra of L and ML = 0, LN 6⊂ M and

hence L = LN +M . Because CL(CL(L
N ) ∩M) ⊇ LN and IL(CL(L

N ) ∩M) ⊇ M ,

we have L = IL(CL(L
N )∩M). It follows that CL(L

N )∩M = 0. For any nontrivial

ideal I of L contained in CL(L
N ), we get L = I+M and CL(L

N ) = I, which implies

CL(L
N ) is a minimal ideal of L. �
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Definition 5.4. A Lie algebra G is called a minimal non-S-Lie algebra if L is

not an S-Lie algebra, but every proper subalgebra of L is an S-Lie algebra.

Theorem 5.5. Let L be a minimal non-S-Lie algebra and ψ(L) 6= 0. Then either

L/ψ(L) is a minimal non-S-Lie algebra or it is an S-Lie algebra.

P r o o f. Let H be a maximal subalgebra of L and K a subalgebra of H . Since L

is a minimal non-S-Lie algebra, we know H is a S-Lie algebra, then KN is an ideal

of H . We consider L/ψ(L) and its maximal subalgebra H/ψ(L). It is clear that

((K + ψ(L))/ψ(L))N is an ideal of H/ψ(L), so H/ψ(L) is an S-Lie algebra, and

every maximal subalgebra of L/ψ(L) is an S-Lie algebra. Then L/ψ(L) is a minimal

non-S-Lie algebra or an S-Lie algebra. �
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