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Abstract. We obtain conditions for existence and (almost) non-oscillation of solutions of
a second order linear homogeneous functional differential equations

u
′′(x) +

∑
i

pi(x)u
′(hi(x)) +

∑
i

qi(x)u(gi(x)) = 0

without the delay conditions hi(x), gi(x) 6 x, i = 1, 2, . . ., and

u
′′(x) +

∫ ∞

0
u
′(s)dsr1(x, s) +

∫ ∞

0
u(s)dsr0(x, s) = 0.

Keywords: non-oscillation; deviating non-delay equation; singular boundary value prob-
lem

MSC 2010 : 34K11, 34K10, 34C10

1. Introduction

1.1. Non-oscillation and delay equations. Any solution of the Euler equation

u′′ +
1

4x2
u = 0, x ∈ (0,∞)

has the form u(x) = c1
√
x lnx + c2

√
x = c1u1 + c2u2. This equation may serve as a

model for generalizations. It is non-oscillating on [0,∞) according to the following

definition.
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Definition 1.1. The homogeneous equation

(1.1) u′′(x) + p(x)u′ + q(x)u = 0

is called non-oscillating on a finite interval I = [0, l], or infinite interval I = [0,∞)

or (0,∞) if any its nonzero solution can have at most one simple zero in I.

Taking into consideration the Sturm separation theorem (see [6], page 335) the

non-oscillation property of equation (1.1) is equivalent to the existence of a positive

solution. The non-oscillation property along with other issues of the distribution of

zeros of solutions are intensively studied because of its relation to spectral properties

of differential operators in quantum mechanics.

The non-oscillating property (as well as non-oscillatory property1) of the equation

u′′ + q(x)u = 0 is well studied. See, for example, [8], [7] and the references therein.

The non-oscillatory condition

(1.2)

∫ ∞

0

xq(x) dx <∞

(see [7]) is not fulfilled for the mentioned Euler equation. We will see that condi-

tion (1.2) must be regarded as too strict. In this paper, devoted to the following

equation (1.5), we obtain, in particular, the non-oscillation condition

(1.3)

∫ ∞

x

q(s)
√
s ds 6

1

2
√
x
, x > 0.

This inequality becomes an identity in the case u′′ + 1
4x

−2u = 0. For a deviating

equation see Corollary 3.2.

In [4], [1], the question about the existence of a finally positive solution of the

initial problem on semi-axis (t0,∞) for delay equation

(1.4) x′′(t) +
∑

i

pi(t)x
′(hi(t)) +

∑

i

qi(t)x(gi(t)) = 0, hi(t), gi(t) 6 t,

under conditions lim
t→∞

hi(t) = ∞, lim
t→∞

gi(t) = ∞, is considered.
For the delay equation Definition 1.1 has some problems in its interpretation be-

cause of the difficulties in determining the concept of the solution. There are two

ways to define the solutions to delay equation (1.4). The first is considering the

equation on all axis (−∞,∞), and the second is to use an initial function on the left

of a point x0. The solution itself is considered on the semi-axis [x0,∞). But the first

1A nonzero solution is oscillatory if it has arbitrarily large zeros.
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case is not simple and has to be considered as a singular boundary value problem. In

the second case the initial problem is not homogeneous even at zero right side as an

equation Lu = 0 with linear operator L. However, the homogeneity of the equation
is essential for the non-oscillation problem.

1.2. Deviating homogeneous equation. We use Definition 1.1 for the semi-

axis [0,∞) and for the homogeneous equation

(1.5) u′′(x) + Su(x) = 0, x ∈ [0,∞),

where the operator2 S is defined by

(1.6) Su(x) :=

∫ ∞

0

u′(s) dsr1(x, s) +

∫ ∞

0

u(s) dsr0(x, s)

and satisfies the positivity condition

(1.7) {u > 0, u′ > 0} → Su > 0.

Assumptions are in Section 3. Note that deviating equation (1.4) (no delay con-

dition hi(x), gi(x) 6 x) can be represented in the form

u′′(x) +

∫ ∞

−∞

u′(s) dsr1(x, s) +

∫ ∞

−∞

u(s) dsr0(x, s) = 0.

The initial problem (u(x) = ϕ(x) if x < 0) can be represented as non-homogeneous

equation on [0,∞) as

u′′ +

∫ ∞

0

u′(s) dsr1(x, s) +

∫ ∞

0

u(s) dsr0(x, s) = f(x).

The idea of such separation was first used by Azbelev (see [3]).

Let us discuss the form of equation (1.5). The notation x(t) is more popular and

used to underline that variable t denotes physical time. For this reason, the majority

of research of non-oscillation has been devoted to the delay equation; that may

describe an evolutionary processes. On the other hand, non-oscillation property has

its origin in the problem of positivity of a quadratic functional and has a mechanical

interpretation (see [11]). In this case the delay condition does not make sense, and

the form (1.5) looks more natural.

2 It will be considered in a space defined in Section 3.
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2. Non-oscillation and positive solvability

2.1. Ordinary and delay equation. For the ordinary equation it is sufficient

to establish the existence of a positive solution on (0,∞). In the case of the ordinary

equation it follows from the Sturm theorem based on non-vanishing of the Wronskian.

But for the delay and deviating equations the Wronskian may have zeros. Moreover,

for the deviating equation we do not know the structure of solutions. For delay

equations of the form

(2.1) u′′(x) +

∫ x

0

u(s) dsr(x, s) = 0, x > 0,

conditions for non-vanishing of the Wronskian were considered in articles [2], [14].

In this regard, see also [13], [5]. Using the ideas from [2] one can conclude, that

the Wronskian will be different from zero for equation (2.1) in the case of almost

non-oscillation.

Theorem 2.1. Suppose r(x, s) is non-decreasing with respect to s. Suppose also

that equation (2.1) has a positive solution on (0,∞). Then equation (2.1) is non-

oscillating on (0,∞).

P r o o f. Let u(x) > 0 for x ∈ (0,∞). Let x0 be the first zero of the Wronskian.

It can be shown (as in [2] or directly) that the Wronskian is not decreasing on

[0, x0). This contradiction shows that the Wronskian is different from zero on all

semi-axis [0,∞). �

2.2. Almost non-oscillation. Suppose equation (1.1) is non-oscillating on [0,∞)

and it has two positive solutions u1 and u2,

(2.2) u1(x) > 0, u2(x) > 0, x ∈ (0,∞),

satisfying conditions

(2.3) u1(0) = 0, u2(0) > 0.

Then we can assume that

(2.4) lim
x→∞

u2(x)

u1(x)
= 0.

Indeed, u2/u1 is strictly decreasing because this is equivalent to non-vanishing of the

Wronskian:

(2.5)
(u2
u1

)′

=
1

u21

∣∣∣∣
u1 u2
u′1 u′2

∣∣∣∣ < 0.
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If lim
x→∞

u2/u1 = c > 0, we can put ũ2 = u2 − cu1.

Based on properties (2.2), (2.3) and (2.4) we can formulate the following definition.

Definition 2.1 (almost non-oscillation). A second order linear equation (1.5)

is said to be almost non-oscillating on [0,∞) if there exist two solutions u1 and u2
satisfying (2.2), (2.3), (2.4).

R em a r k 2.1. The almost non-oscillation coincides with non-oscillation if and

only if u2/u1 is strictly decreasing, because of (2.5).

2.3. Non-oscillation and positive solvability. How can we establish the ex-

istence of a positive solution on all semi-axis [0,∞)? Let us analyse this using the

equation

u′′(x) + q(x)u = 0

with non-negative q(x) satisfying the condition q(x) 6≡ 0 on [l,∞) for any l > 0.

Proposition 2.1. The equation u′′(x) + q(x)u = 0 is non-oscillating on [0,∞) if

and only if the problem

(2.6) u′′(x) + q(x)u = 0, u(0) = 0, u′(l) = 0

is uniquely solvable for any l > 0.

P r o o f. Let u(x) be the solution satisfying initial conditions u(0) = 0, u′(0) = 1.

If it is increasing on all semi-axis, then problem (2.6) is uniquely solvable for each

l > 0.

If u(x) is not increasing, its derivative has a zero in a point x = l, and u(x) is a

nonzero solution to problem (2.6). The function u(x) must have a zero for x > l.

This is the oscillating case. �

The Fredholm property of problem (2.6) and the solvability of Cauchy problem

were used essentially. So, this approach is useful for the delay equation but does not

serve for the arbitrary deviating equation.

It seems that for an deviating equation it is more natural to use a boundary value

problem (BVP) on all semi-axis

(2.7) u′′ + Su = f, u(0) = α, u′(∞) = 0

This problem may have a unique non-negative solution if f 6 0 (and if f is in some

linear manifold) and α > 0.
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The set of solutions of problem (2.7) in the mentioned manifold (denote it byDω as

this will be done below) does not cover all solutions of the homogeneous equation. For

the ordinary equation u′′+qu = 0 and for the delay equation u′′(x)+q(x)u(h(x)) = 0,

h(x) 6 x (or (2.1)) it is not a problem because of Theorem 2.1. But for deviating

equation (1.5) we need to establish the existence of a nonzero positive solution sat-

isfying u(0) = 0. This is our main difficulty.

Thus, we will use the following definition.

Definition 2.2 (positive solvability). We say that the boundary value prob-

lem (2.7) is positively solvable if it is uniquely solvable in a space Dω (it will be

defined later) for any (f, α) (for a linear class (or space) of functions f). The so-

lution is positive if (−f, α) > 0, not identicaly 0, and there exists a solution u1,

positive on (0,∞), of the homogeneous problem

(2.8) u′′ + Su = 0, u(0) = 0, u′(∞) = 0.

A solution to the problem of positive solvability is presented in Theorem 3.1.

R em a r k 2.2. Since problem (2.7) is uniquely solvable in Dω, the solution

u1 /∈ Dω.

It seems that this property is equivalent to almost non-oscillation (Definition 2.1).

Indeed, denote by u1(x) a solution of (2.8) and suppose (2.7) is uniquely solvable.

The solution of (2.7) has the form u(x) = Gf(x) + αu2(x). Then any solution of

non-homogeneous equation

u′′(x) + Su(x) = f(x), x ∈ [0,∞)

has the form

u(x) = c1u1(x) + αu2(x) +Gf(x).

But there is the difficulty to establish the property (2.4).

R em a r k 2.3. The boundary condition u′(∞) = β 6= 0 can be considered if and

only if condition (3.16) holds. In the case of equation u′′+q(x)u = f , condition (3.16)

has the form (1.2).

For example, condition (1.2) is not fulfilled for equation u′′ + kx−2 u = 0,

x ∈ [1,∞), 0 < k 6 1
4 . It is non-oscillating but it does not have solutions with

u′(∞) 6= 0. Under condition (1.2) the problem

(2.9) u′′ + q(x)u = f, u(0) = α, u′(∞) = β

has the Fredholm property. We call this case a regular case despite the fact that the

equation is considered on the infinite interval.
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3. Results

3.1. Notation, assumptions, definitions. Let

⊲ R = (−∞,∞), L(Ω) be the space of Lebesgue integrable on the measurable set Ω

functions (Ω ⊂ R), L(α, β) := L([α, β]),

⊲ the symbol ‖·‖X denote a norm in a space X ; for example, ‖z‖L is the norm in
the space L,

⊲ Wloc be the set of locally
3 on [0,∞) absolutely continuous functions,

⊲ L∞(α, β) be the space of measurable and essentially bounded on (α, β) functions.

By definition, the solution u(x) of (1.5) is a continuous function which has absolutely

continuous derivative u′(x) on any segment in [0,∞) (in some examples an interval

[x0,∞) may be explored instead of [0,∞)).

The functions r0, r1 are non-decreasing with respect to the second argument for

almost all x > 0 and measurable with respect to x for all s > 0. Assume that

ri(x, 0) = 0, i = 0, 1. The non-decreasing condition provides positivity of the opera-

tor S defined by (1.6), that is, implication (1.7) holds.

The integrals in (1.6) are understood in the sense of Lebesgue-Stieltjes. This means

that
∫∞

0
|u′(s)| dsr1(x, s) and

∫∞

0
|u(s)| dsr0(x, s) are finite for almost all x ∈ [0,∞).

Let

⊲ D(S) be the domain of S, that is, the set of functions u ∈ Wloc such that u
′ ∈Wloc,

and the integrals
∫ ∞

0

u′(s) dsr1(x, s) and

∫ ∞

0

u(s) dsr0(x, s)

exist for almost all x > 0.

For the particular case of (1.4), when

Su(x) =

∞∑

k=1

pk(x)u
′(gk(x)) +

∞∑

k=1

qk(x)u(hk(x))

(assuming that u(x) = 0 if x < 0), the above conditions mean that pi(x), qi(x)

are Lebesgue integrable on any segment in [0,∞), hi(x), gi(x) are measurable, but

without delay conditions hi(x), gi(x) 6 x, i = 1, 2, . . . The positivity condition of S

for the deviating operator means non-negativeness; pi(x), qi(x) > 0.

Definition 3.1. A function z : [a,∞) → R is called non-finite if (for every ν > a)

z(x) 6= 0 on a set of positive measure in [ν,∞).

A function z : [a,∞) → R is called finally positive if there exists ν > a such that

z(x) > 0 on [ν,∞).

3 Locally on X means: on every segment from X.
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3.2. Positive solvability. We study positive solvability of the BVP (2.7).

Let ω(x) be a weight positive continuous function satisfying

(3.1) inf{ω(s) : s ∈ [0,∞)} > 0.

Lemma 3.1. For any (z, α) ∈ L(0,∞)× R the problem

(3.2) −ωu′′ = z, u(0) = α, u′(∞) = 0, z ∈ L(0,∞)

has a unique solution in Wloc with u
′ ∈ Wloc

(3.3) u(x) =

∫ ∞

0

G(x, s)

ω(s)
z(s) ds+ α := Gωz(x) + α,

where

(3.4) G(x, s) = min{x, s}.

If z > 0 and α > 0, then u(x) > 0 and u′(x) > 0 on [0,∞).

The assertion is verified directly. Note that the integral u′(x) =
∫∞

x
(z(s)/ω(s)) ds

exists since the function u′′ = −z/ω is integrable.
Let Dω be the set of all solutions of problem (3.2):

Dω = {u = Gωz + α : z ∈ L(0,∞), α ∈ R}.

We use relations (3.3) and (3.2) to reduce the BVP (2.7) to an equation in L(0,∞).

Lemma 3.2. Suppose D(S) ⊃ Dω and ω(x)r0(x,∞) is in L(0,∞). Then substi-

tution (3.3) reduces (2.7) to the equation

(3.5) z −Kωz = −ωf + αω(x)r0(x,∞),

where Kω = ωSGω. Conversely, if z −Kωz = f , z ∈ L(0,∞), then u = Gωz + α is

a solution of problem

u′′ + Su = − f
ω
+ αr0(x,∞), u(0) = α, u′(∞) = 0.
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Let D := Dω, K := Kω and K(x, s) := Kω(x, s) for ω = 1. Let ̺(K) and ̺(Kω)

be the spectral radii of the operators K and Kω, respectively.

The following assertion is a particular case of Lemma 3.2.

Lemma 3.3. Let ω = 1. Suppose D(S) ⊃ D. If the equation

(3.6) z = Kz

has a nonzero solution z > 0, z ∈ L(0,∞), then the function

(3.7) u(x) =

∫ ∞

0

G(x, s)z(s) ds

is a positive solution of problem (2.8). If z is non-finite, then v′(x) > 0, x ∈ [0,∞).

From Lemma 3.2 it follows the simple theorem:

Theorem 3.1 (positive solvability). Suppose Kω : L(0,∞) → L(0,∞) is a con-

tinuous operator and ̺(Kω) < 1. Then for any f such that ωf ∈ L(0,∞) and any α,

problem (2.7) is uniquely solvable in Dω. From (−f, α) > 0, not identicaly 0 it

follows the positivity; u(x) > 0, u′(x) > 0 on (0,∞).

P r o o f. If ωf ∈ L, f 6 0, α > 0, then (3.5) has a unique solution z > 0. Thus,

u = Gωz + α has the desired property. �

Lemma 3.4. D(S) ⊃ Dω if and only if

Kω(x, ·) ∈ L∞(0,∞) for almost all x ∈ [0,∞),

where Kω(x, s) is defined by

(3.8) Kω(x, s) =
ω(x)

ω(s)

(∫ ∞

0

dτ r0(x, τ)G(τ, s) + r1(x, s)

)
.

If D(S) ⊃ Dω, then Kω is an integral operator with the kernel Kω(x, s).

P r o o f. Suppose D(S) ⊃ Dω. Then for all z ∈ L there exist integrals

∫ ∞

0

dτr0(x, τ)

∫ ∞

0

G(τ, s)

ω(s)
|z(s)| ds and

∫ ∞

0

dτr1(x, τ)

∫ ∞

τ

|z(s)|
ω(s)

ds.

From the Fubini’s theorem we can conclude that there exists integral

(3.9)

∫ ∞

0

ds|z(s)| 1

ω(s)

(∫ ∞

0

dτ r0(x, τ)G(τ, s) +

∫ s

0

dτ r1(x, τ)

)
.

By virtue of arbitrariness of z ∈ L(0,∞) it is possible if K(x, ·) ∈ L∞(0,∞).
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Conversely, let K(x, ·) ∈ L∞(0,∞) for almost all x ∈ (0,∞), z ∈ L(0,∞) and

u = Gωz. Denote u± = Gωz±, where z = z+− z−, |z| = z++ z−. Apply the Fubini’s

theorem to (3.9), where instead of z we will have z±. Thus, the integrals

∫ ∞

0

u
(i)
± dsri(x, s), i = 0, 1

are finite for these x ∈ (0,∞). �

R em a r k 3.1. The condition ̺(Kω) < 1 is too tough. For this reason, we should

think about the consequences of using condition ̺(Kω) 6 1. This condition is enough

to establish the existence of a positive solution to the homogeneous problem (2.8).

To apply Theorem 3.1 one can use the estimation of the norm

(3.10) ‖Kω‖ 6 ess sup
s

∫ ∞

0

Kω(x, s) dx

of the operator Kω. From (3.10) and (3.8) we get

(3.11)

‖Kω‖ 6 ess sup
s

∫ ∞

0

ω(x)

ω(s)

(∫ ∞

0

dτ r0(x, τ)G(τ, s) + r1(x, s)

)
dx

= ess sup
s

∫ ∞

0

ω(x)

ω(s)

(∫ s

0

τ dτ r0(x, τ) + s(r0(x,∞) − r0(x, s)) + r1(x, s)

)
dx.

3.3. Example. Ordinary equation. For the ordinary equation

(3.12) u′′ + q(x)u = f,

Kω(x, s) = (ω(x)/ω(s))q(x)G(x, s). Therefore from (3.11),

‖Kω‖ 6 ess sup
s

1

ω(s)

(∫ s

0

xω(x)q(x) dx+ s

∫ ∞

s

ω(x)q(x) dx

)
.

For example, if4 ω(x) =
√
x, q(x) = kx−2, then the right-hand side of the inequality

is equal to 4k. Thus ‖Kω‖ 6 4k. If k < 1
4 , then the unique solution (in Dω) of

problem

u′′ +
k

x2
u = f(x) 6 0, u(x0) = α > 0, u′(+∞) = 0, ωf ∈ L[x0,∞)

is positive on [x0,∞).

4 To avoid singularity in the point 0 we have to consider here [x0,∞), x0 > 0 instead of
[0,∞).
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Let us now use Proposition 2.1. We can use the estimation of the integral opera-

tor K
(a,l)
ω for the segment [a, l] instead of [0,∞). Then

K(a,l)
ω (x, s) =

ω(x)

ω(s)
q(x)min{x− a, s− a}.

Corollary 3.1. Let the inequality

∫ ∞

x

q(s)
√
s ds 6

1

2
√
x
, x > 0

be fulfilled. Then equation u′′ + q(x)u = 0 is non-oscillating on (0,∞).

P r o o f. Show that ‖K(a,l)
ω ‖ < 1 for any l > 0. This guaranties unique solvability

of problem (2.6). Let ω(x) =
√
x. In this case

‖K(a,l)
ω ‖ 6 ess sup

s

1√
s

(∫ s

a

(x − a)
√
xq(x) dx+ (s− a)

∫ l

s

√
xq(x) dx

)

or

(3.13) ‖K(a,l)
ω ‖ 6 sup

s
ϕ̃(s),

where

ϕ̃(s) = ϕ(s)− a√
s

∫ l

a

√
xq(x) dx,

ϕ(s) =
1√
s

∫ s

a

x
√
xq(x) dx+

√
s

∫ l

s

√
xq(x) dx.

Since ϕ′(0) > 0, ϕ′(l) < 0, in the maximum point

∫ s

a

x
√
xq(x) dx = s

∫ l

s

√
xq(x) dx,

and at that point

ϕ(s) = 2
√
s

∫ l

s

√
xq(x) dx.

From here, (3.13) and (1.3) it follows ‖K(a,l)
ω ‖ < 1. �

3.4. Singular and regular cases.OperatorK is defined on L(0,∞) ifD ⊂ D(S).

From (3.8) it follows

(3.14) K(x, s) =

∫ s

0

τ dτr0(x, τ) + s(r0(x,∞)− r0(x, s)) + r1(x, s).

365



Using Lemma 3.4 and due to K(x, ·) being non-decreasing, we have the following
condition for D ⊂ D(S):

(3.15) K(x,∞) =

∫ ∞

0

τ dτr0(x, τ) + r1(x,∞) is finite for almost all x > 0.

Definition 3.2 (regular and singular). We say that problem (2.7) is regular (or

Fredholm one), if D ⊂ D(S) and the operator K = SG : L(0,∞) → L(0,∞) is

compact. Conversely case (D 6⊂ D(S) or K is not compact), the problem is singular.

Below we consider only the case D ⊂ D(S). The equation

u′′(x) +
1

8x
√
x

∫ ∞

1

u(s)
ds

s2
= 0

shows the case D 6⊂ D(S). It has the solution u(x) =
√
x.

Lemma 3.5. The condition

(3.16)

∫ ∞

0

(∫ ∞

0

τ dτr0(x, τ)

)
dx+

∫ ∞

0

r1(x,∞) dx <∞

is a necessary and sufficient condition of regularity of problem (2.7).

P r o o f. Note that

∫ ∞

0

K(x,∞) dx =

∫ ∞

0

(∫ ∞

0

τ dτ r0(x, τ)

)
dx+

∫ ∞

0

r1(x,∞) dx.

If
∫∞

0 K(x,∞) dx < ∞, operator K : L(0,∞) → L(0,∞) is compact. To show

compactness, note that K(·, s) ∈ L(0,∞) for any s and that it is non-decreasing

in s. A necessary and sufficient compactness condition of the integral operator K

is compactness of the vector function s 7→ K(x, s) (see [9], Theorem 6.6, page 116).

Monotonicity provides such compactness.

If
∫∞

0 K(x,∞) dx = ∞, then K does not act in L(0,∞). �

3.5. Homogeneous problem. Singular case. In this subsection assume that

the following two conditions are fulfilled:

⊲ singularity:

(3.17)

∫ ∞

0

(∫ ∞

0

τ dτ r0(x, τ)

)
dx+

∫ ∞

0

r1(x,∞) dx = ∞,

366



⊲ for any ν > 0

(3.18)

∫ ν

0

(∫ ∞

0

τ dτ r0(x, τ)

)
dx <∞,

∫ ν

0

r1(x,∞) dx <∞.

In this section we obtain some theorems about the existence of a positive solution

to the homogeneous boundary value problem (2.8). The scheme of work will be as

follows. First we use Lemma 3.3 to the connection between the boundary value prob-

lem (2.8) and the integral equation (3.6). After this we rely on the results obtained

for the integral equation in a separate independent Section A.2. The existence of

a nonzero non-negative solution of a homogeneous integral equation is asserted in

three theorems A.1, A.2, A.3. The corresponding theorems for the boundary value

problem are presented below.

Conditions (3.17) and (3.18) ensure the fulfillment of conditions (A.7) and (A.6)

for the kernel (3.14).

Theorem 3.2. Suppose ̺(Kω) 6 1 for a weight function satisfying condi-

tion (3.1). Then there exists a solution u(x) of problem (2.8), u(x) > 0, u′(x) > 0

on (0,∞).

P r o o f. From Theorem A.1 it follows that there exists a non-negative nontriv-

ial solution of (3.6). The function u(x) defined by (3.7) is positive on (0,∞) and

u′(x) > 0. �

R em a r k 3.2. Indeed, u′(x) > 0 if r1(x, s) ≡ 0, since the case u′ = 0 on [l,∞)

for some l > 0 is not possible. One can see this analysing equation (1.5).

The use of this theorem is reduced to the estimation of the norm by inequal-

ity (3.11).

Let K(0,l) be the integral operator with the kernel K(x, s) acting in the space

L(0, l). Let ̺l be the spectral radius of K
(0,l). Operator K(0,l) is compact. This

fact has been used in many articles. It is recommended to look at the proof of

compactness in [3].

The following two theorems are corollaries of Theorems A.2 and A.3.

Theorem 3.3. Suppose that ̺l < 1 for any l > 0. Then there exists a positive

strictly increasing solution of homogeneous problem (2.8).

This theorem can be used to obtain effective conditions as it is done, for example,

in [14], [15], [16].

Theorem 3.4. Suppose there exists a solution v(x) > 0, v′(x) > 0 of the inequal-

ity v′′ + Sv 6 0 positive on (0,∞). Then there exists a positive strictly increasing

solution of homogeneous problem (2.8).
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P r o o f. The function z1 = −v′′ satisfies the inequality z1 > Kz1. By Theo-

rem A.3 there exists a nonzero non-finite solution z(x) of (3.6). The function u(x)

defined by (3.7) is a necessary solution. �

Corollary 3.2 (of Theorem 3.2). Let a > 0. Consider deviating (without condi-

tion h(x) 6 x) equation

(3.19) u′′(x) + q(x)u(h(x)) = f(x), u(x) = 0, if x < a.

Assume that h(x) is increasing and the inverse function g(s) is differentiable. Suppose

that

(3.20)

∫ ∞

a

q(x)h(x) dx = ∞

and for some α ∈ (0, 1) and for all s > a,

(3.21)

∫ ∞

g(s)

q(x)xα dx 6
α

s1−α
.

Then there exists a positive strictly increasing solution of equation (3.19) satisfying

the initial condition u(a) = 0.

P r o o f. Condition (3.20) is the singularity condition (3.17) for equation (3.19).

In this case from (3.8) we have Kω(x, s) = (ω(x)/ω(s))q(x)G(h(x), s), where

G(x, s) = min{x − a, s − a} but G(x, s) = 0 if x < a. For the estimation of

the norm we have

(3.22) ‖Kω‖ 6 ess sup
s>a

ϕ̃(s),

where

ϕ̃(s) :=
1

ω(s)

∫ ∞

0

q(x)ω(x)G(h(x), s) dx

=
1

ω(s)

(∫

h(x)6s

q(x)ω(x)(h(x) − a) dx+ (s− a)

∫

h(x)>s

q(x)ω(x) dx

)

= ϕ(s)− a

ω(s)

∫ ∞

a

q(x)ω(x) dx.

Since ϕ(0) = 0, it is clear that supϕ(s) = sup{ϕ(s) : ϕ′(s) > 0}. Since

ϕ′(s) =
( 1

ω(s)

)′
∫ g(s)

0

q(x)ω(x)h(x) dx+
( s

ω(s)

)′
∫ ∞

g(s)

q(x)ω(x) dx,
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from inequality ϕ′(s) > 0 it follows (suppose ω is increasing)

∫ g(s)

0

q(x)ω(x)h(x) dx 6 − (sω−1)′

(ω−1)′

∫ ∞

g(s)

q(x)ω(x) dx.

From here

ϕ(s) 6
1

ω

(
− (sω−1)′

(ω−1)′
+ s

)∫ ∞

g(s)

q(x)ω(x) dx.

Let here ω = sα. Then

ϕ(s) 6
s1−α

α

∫ ∞

g(s)

q(x)xα dx.

�

Corollary 3.3 (comparison theorem). Suppose that the equation

v′′(x) +
∑

i

q̃i(x)v(h̃i(x)) = 0

with non-negative coefficients has a solution positive on (0,∞). Consider the equa-

tion with non-negative coefficients

(3.23) u′′(x) +
∑

i

qi(x)u(hi(x)) = 0.

If for all i, qi 6 q̃i and hi 6 h̃i, then equation (3.23) has a positive solution.

P r o o f. It follows from Theorem 3.4. �

3.6. Positive solvability. Regular case. Let condition (3.16) be fulfilled. Then

we can consider the problem

(3.24) u′′ + Su = f, u(0) = α, u′(∞) = β

with β 6= 0. By means of the substitution u(x) =
∫∞

0 min{x, s}z(s) ds+α+βx, this

problem is reduced to the equation (see (3.15))

z(x) =

∫ ∞

0

K(x, s)z(s) ds+ αr0(x,∞) + βK(x,∞).

Theorem 3.5. Suppose there exists a solution, positive on (0,∞), of the problem

u′′ + Su = ψ 6 0, u(0) = α > 0, u′(∞) = β > 0

for some non-negative nontrivial triple (−ψ, α, β). Then (3.24) is uniquely solvable
and for any non-negative nontrivial (−f, α, β) the solution of this problem is positive
on (0,∞).
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In substance, this theorem has already been obtained in [15]. The difference is

that an infinite interval is considered here. But the essence is in the compactness of

the operator SG.

Appendix A. The existence of a non-finite solution of

a homogeneous integral equation

The results of this section are independent of the main content of the article.

These results are presented in [18]. For completeness, we give them here with the

proofs. The scheme was used first in [17] without proofs and in [12].

Let L = L(0,∞),

⊲ Lloc be the topological space with topology of convergence in L(0, ν) for any ν > 0,

⊲ the convergences in L and Lloc be zn
L−→ z and zn

Lloc−→ z, respectively.

In the first subsection, an abstract operator K : L → Lloc will be considered and

in the second one, the obtained result will be applied to integral equation (A.5).

Note that the positivity condition K > 0 is used essentially.

A.1. General operator. LetK,Kn : L→ Lloc, n = 1, 2, . . ., be linear mappings.

Consider an equation

(A.1) z = Kz + f.

Suppose that there exists a sequence (zn) of solutions of the equations

(A.2) zn = Knzn + fn

such that ‖zn‖ = 1, fn
Lloc−→ f . We are looking for conditions under which zn → z 6= 0,

z ∈ L and z = Kz + f . Note that if f = 0, we will have a nonzero solution of

homogeneous equation z = Kz. Denote

(P β
α z)(x) :=

{
z(x), α 6 x 6 β,

0, x /∈ [α, β],

and5

K(0,ν) := P ν
0KP

ν
0 .

Below we sometimes write K instead of K(0,ν) for simplicity of notation.

5 In the case of an integral operator with a kernel K(x, s), the K(0,ν) is the restriction for
the segment [0, ν].
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⊲ Let ̺ν = ̺(K(0,ν)) be the spectral radius of operator K(0,ν).

Assume that the operators K,Kn satisfy the following three conditions; we call

them continuity, convergence, local compactness :

Contin: Operators K,Kn : L→ Lloc are continuous.

Conver: Knz
Lloc−→ Kz for all z ∈ L.

LocCompact: For any ν > 0 operators K(0,ν) and K
(0,ν)
n are compact.

Definition A.1. A set Ω ⊂ L is said to be (Lloc, L)-regular if

(
zn ∈ Ω and zn

Lloc−→ z
)

⇒
(
z ∈ L and zn

L−→ z
)
.

Definition A.2. A set Ω ⊂ L is said to be uniformly vanishing at ∞ if

(A.3) lim
ν→∞

sup
z∈Ω

∫ ∞

ν

|z(s)| ds = 0.

The same can be said about a sequence zn, that is,

lim
ν→∞

sup
n

∫ ∞

ν

|zn(s)| ds = 0.

Lemma A.1. A necessary and sufficient condition for relative compactness of a

set Ω ⊂ Lloc is if for any ν > 0 the set of restrictions to L(0, ν) of elements from Ω

is relatively compact.

P r o o f. The necessity is evident. Consider the sufficiency. Suppose (zn) ⊂ Ω

and νm → ∞. For each m > 1 there exists a sequence z
(m)
k which is a subsequence

of z
(m−1)
k , z

(0)
k = zk, and it converges on [0, νm]. It is clear that the diagonal sequence

z
(k)
k converges in Lloc. �

Lemma A.2. If a set Ω ⊂ L is uniformly vanishing at ∞, then Ω is (Lloc, L)-

regular.

P r o o f. Let zn ∈ Ω be convergent, zn
Lloc−→ z. From (A.3) we can conclude

that zn is bounded. Therefore, inclusion z ∈ L follows from the inequality

∫ ν

0

|z(s)| ds 6
∫ ν

0

|zn(s)− z(s)| ds+
∫ ν

0

|zn(s)| ds.

The convergence in L can be obtained from

∫ ∞

0

|zn(s)− z(s)| ds 6
∫ ν

0

|zn(s)− z(s)| ds+
∫ ∞

ν

|zn(s)| ds+
∫ ∞

ν

|z(s)| ds.

�
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Lemma A.3. If a set Ω ⊂ L is bounded and uniformly vanishing at ∞, then the
set

⋃
n

KnΩ is relatively compact in Lloc.

P r o o f. By virtue of Lemma A.1 it is sufficient to show for any ν > 0 the

compactness of the set of restrictions P ν
0 ∪ KnΩ to [0, ν]. Given ε > 0 find δ > 0

such that
‖z‖ < δ ⇒ sup

n
‖Knz‖L(0,ν) < ε.

Find now α > ν such that

∫ ∞

α

|z(s)| ds < δ ∀ z ∈ Ω.

The set
⋃
n

P ν
0KnP

α
0 Ω is a compact ε-net for

⋃
n

P ν
0KnΩ. Indeed, let y = Knη, η ∈ Ω,

and ỹ = KnP
α
0 η. Then y − ỹ = KnP

∞
α η, ‖P∞

α η‖ < δ and

‖y − ỹ‖L(0,ν) = ‖KnP
∞
α η‖L(0,ν) < ε.

�

Proposition A.1. Suppose there exists a sequence zn of solutions of equa-

tion (A.2) satisfying the conditions ‖zn‖ = 1 and fn → f in Lloc. If zn is uniformly

vanishing at ∞, then a subsequence znk
converges to a solution of equation (A.1),

and ‖z‖ = 1.

P r o o f. By virtue of Lemma A.3 there exists a subsequence znk
such that

Knk
znk

→ y in Lloc. From (A.2) we have znk

Lloc−→ z = y + f . From Lemma A.2,

z ∈ L and znk

L−→ z. Since ‖zn‖ = 1, ‖z‖ = 1. Now

z = lim znk
= lim(Knk

znk
+ fnk

) = Kz + f

since ‖Knzn −Knz‖L(0,ν) 6 sup ‖Kn‖ν · ‖zn − z‖L(0,ν). Here ‖Kn‖ν stands for the
norm of operator Kn : L(0, ν) → L(0, ν). Note that the sequence ‖Kn‖ν is bounded
by virtue of the Banach (Uniform Boundedness Principle) theorem. �

Corollary A.1. Let ω(x) be a weight function positive on [0,∞). Assume that

operator Kω := ωKω−1 acts in L and ̺(Kω) 6 1. Suppose that 0 < λn < 1, λn → 1,

fn
Lloc−→ 0 such that the solution zn of equation

zn = λnKzn + fn
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has the norm ‖zn‖ = 1. If the sequence zn is uniformly vanishing on ∞, then there
exists a subsequence znk

which converges to a nontrivial solution of equation

z = Kz

and ‖z‖ = 1.

If ̺(Kω) < 1, then the solution z is non-finite.

P r o o f. It is evident that Kn = λnK satisfies conditions Contin, Conver and

LocCompact.

Suppose ̺(Kω) < 1 and z(t) = 0 on (ν,∞) for ν > 0. Then y = ωz ∈ L is

a nonzero solution of equation y = Kωy which contradicts the uniqueness of the

solution. �

Corollary A.2. Suppose that ̺ν < 1 for any ν > 0, and fν
Lloc−→ 0 when ν → ∞

such that the solution of equation

(A.4) zν = K(0,ν)zν + fν

has the norm ‖zν‖ = 1. If the set zν is uniformly vanishing on ∞, then there exists
a sequence zνk converging to a non-finite solution of equation (A.1), and ‖z‖ = 1.

P r o o f. It is evident that operator K(0,ν) satisfies condition Contin. To prove

Conver note that K − K(0,ν) = P ν
0KP

∞
ν + P∞

ν K. If z ∈ L, then K(0,ν)z
Lloc−→ Kz

when ν → ∞.
Suppose z(x) = 0 for x > ν. Then z satisfies an equation zν = K(0,ν)zν . This

contradicts ̺ν < 1. Thus, z is a non-finite function. �

A.2. Integral operator. Here, consider the question of existence of a non-finite

non-negative solution z ∈ L of the equation

(A.5) z(x)−
∫ ∞

0

K(x, s)z(s) ds = 0.

Assume that everywhere below the function K(x, s) satisfies the following conditions:

Positiv: K(x, s) > 0, x, s > 0;

Contin(I): K(x, s) is measurable as function of two variables, and

(A.6) ess sup
s∈[0,∞)

∫ ν

0

K(x, s) dx <∞ ∀ν > 0;

LocCompact(I): For any ν > 0 the vector function s 7→ K(x, s), s, x ∈ [0, ν] with

values in L is essentially compact, that is, a set of values of this

function for a subset of full measure from [0, ν] is compact in L.
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Note that from condition Contin(I) it follows the continuity of the integral op-

erator K with kernel K(x, s) as operator from L to Lloc (see [9], Theorem 6.8,

condition (6.39)). Condition LocCompact(I) is a necessary and sufficient condition

for LocCompact (see [9], Theorem 6.6, page 116). This allows to use Proposition A.1

and Corollaries A.1 and A.2.

We assume that one more important condition is satisfied:

(A.7) lim inf
s→∞

∫ ∞

0

K(x, s) dx = ∞.

In accordance with the notation in Section A.1, ̺ν denotes the spectral radius

̺(K(0,ν)) of the integral operator K(0,ν) with the kernel K(x, s) which is consid-

ered on the interval [0, ν].

Theorem A.1. Suppose there exists a weight function ω(x) positive on [0,∞)

such that ̺(Kω) 6 1, where Kω is an integral operator with the kernel

Kω(x, s) =
ω(x)

ω(s)
K(x, s).

Then equation (A.5) has a nontrivial non-negative solution z(x). If ̺(Kω) < 1, then

the solution z(x) is non-finite.

P r o o f. Let us use Corollary A.1. It is sufficient to show the sequence zn is

uniformly vanishing. It follows from (A.7) and from the following inequalities for

any ν > 0 that

1 =

∫ ∞

0

zn(x) dx >

∫ ∞

0

(∫ ∞

0

K(x, s)zn(s) ds

)
dx

=

∫ ∞

0

zn(s)

(∫ ∞

0

K(x, s) dx

)
ds >

(∫ ∞

ν

zn(s) ds

)
ess inf
s∈[ν,∞)

∫ ∞

0

K(x, s) dx.

�

Theorem A.2. If ̺ν < 1 for any ν > 0, then equation (A.5) has a non-finite

non-negative solution z(x).

P r o o f. Since K(0,ν) is compact, there exists a non-negative nonzero solution

of equation (A.4). Condition (A.7) can be used to prove the family zν , ν > 0 is

uniformly vanishing in the same way as it was done in Theorem A.1.

Now from Corollary A.2 it can be concluded that in L there exists a non-finite

solution of η0 = Kη0. This solution is non-negative as well as a limit of non-negative

solutions of equation (A.4). �
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Lemma A.4. Let the kernel K(x, s) be non-decreasing in s. Suppose there exists

a non-finite non-negative solution of the inequality

(A.8) z(x) >

∫ ∞

0

K(x, s)z(s) ds.

Then for any ν > 0 the spectral radius ̺ν = ̺(K(0,ν)) is less than unit.

P r o o f. For any ν > 0 operator K(0,ν) is positive and compact. If ̺ν > 0,

then ̺ν is a positive eigenvalue of K
(0,ν) and of its conjugate operator (see [10]),

and their eigenfunctions are non-negative. Let f0 > 0 be an eigenfunction of the

conjugate operator

(A.9) ̺νf0(s) =

∫ ν

0

K(x, s)f0(x) dx.

We have

∫ ν

0

f0(x)η(x) dx >

∫ ν

0

f0(x) dx

∫ ∞

0

K(x, s)η(s) ds =

∫ ∞

0

η(s) ds

∫ ν

0

K(x, s)f0(x) dx

= ̺ν

∫ ν

0

f0(s)η(s) ds+

∫ ∞

ν

η(s) ds

∫ ν

0

K(x, s)f0(x) dx.

Since η is non-finite, K(x, ·) is not decreasing, for s > ν the inequality

∫ ν

0

K(x, s)f0(x) dx >

∫ ν

0

K(x, ν)f0(x) dx = ̺νf0(ν)

is fulfilled. Thus,

(1− ̺ν)

∫ ν

0

f0(s)η(s) ds > ̺νf(ν)

∫ ∞

ν

η(s) ds.

We see from (A.9) that f0(x) is non-decreasing on [0, ν]. Thus, f0(ν) > 0 and ̺ν < 1.

�

Theorem A.3. Let the kernel K(x, s) be non-decreasing with respect to s. If

there exists a non-finite non-negative solution of inequality (A.8), then equation (A.5)

has a non-finite non-negative solution z(x).

P r o o f. By virtue of Lemma A.4 for any ν > 0 the spectral radius ̺ν < 1. It is

sufficient to refer to Theorem A.2. �
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