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Asymmetric tie-points and almost clopen subsets of N
∗

Alan Dow, Saharon Shelah

To the memory of Bohuslav Balcar

Abstract. A tie-point of compact space is analogous to a cut-point: the comple-
ment of the point falls apart into two relatively clopen non-compact subsets. We
review some of the many consistency results that have depended on the construc-
tion of tie-points of N∗. One especially important application, due to Veličković,
was to the existence of nontrivial involutions on N∗. A tie-point of N∗ has been
called symmetric if it is the unique fixed point of an involution. We define the
notion of an almost clopen set to be the closure of one of the proper relatively
clopen subsets of the complement of a tie-point. We explore asymmetries of
almost clopen subsets of N∗ in the sense of how may an almost clopen set differ
from its natural complementary almost clopen set.

Keywords: ultrafilter; cardinal invariants of continuum

Classification: 54D80, 03E15

1. Introduction

In this introductory section we review some background to motivate our in-
terest in further study of tie-points and almost clopen sets. The Stone–Čech
compactification of the integers N, is denoted as βN and, as a set, is equal to N

together with all the free ultrafilters on N. The remainder N
∗ = βN \ N can be

topologized as a subspace of the Stone space of the power set of N as a Boolean
algebra and, in particular, for a subset a of N, the set a∗ of all free ultrafilters
with a as an element, is a basic clopen subset of N∗.

A point x of a space X is a butterfly point (or b-point, see [23]) if there are
sets D,E ⊂ X \ {x} such that {x} = D ∩ E. In [4], the authors introduced the
tie-point terminology.

Definition 1.1. A point x is a tie-point of a space X if there are closed sets
A,B of X such that X = A ∪ B, {x} = A ∩ B and x is a limit point of each
of A and B. We picture (and denote) this as X = A ⊲⊳

x
B where A,B are the

closed sets which have a unique common accumulation point x and say that x is
a tie-point as witnessed by A,B.
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In this note the focus is on the local properties of x with respect to each of the
closed sets A and B such that A ⊲⊳

x
B in the case when A,B witness that x is

a tie-point. For this reason we introduce the notion of an almost clopen subset
of N∗.

Definition 1.2. A set A ⊂ N
∗ is almost clopen if A is the closure of an open

subset of N
∗ and has a unique boundary point, which we denote xA.

Proposition 1.3. If A is an almost clopen subset of N∗, then B = {xA}∪(N∗\A)
is almost clopen and xB = xA. In addition xA is a tie-point as witnessed by A,B.

Definition 1.4 ([4]). A tie-point x is a symmetric tie-point of N∗ if there is a pair
A,B witnessing that x is a tie-point and if there is a homeomorphism h : A → B
satisfying that h(x) = x.

If A is almost clopen, then we refer to B = {xA} ∪ (N∗ \ A) as the almost
clopen complement of A. A more set-theoretically inclined reader would surely
prefer a straightforward translation of almost clopen to properties of ideals of
subsets of N and the usual mod finite ordering ⊂∗.

Definition 1.5. If A is any subset of N∗, then IA is defined as the set {a ⊂ N :
a∗ ⊂ A}.

For any family A of subsets of N (or ω), we define A⊥ to be the orthogonal
ideal {b ⊂ N : ∀ a ∈ A b ∩ a =∗ ∅}. We state this next result for easy reference.

Proposition 1.6. If I is an ideal that has no ⊂∗-maximal element, then the
ideal generated by I ∪ I⊥ is a proper ideal.

Lemma 1.7. If A is an almost clopen subset of N
∗ with almost clopen comple-

ment B, then IA ∩IB is the Fréchet ideal [N]<ℵ0 , IB = I⊥
A , and xA is the unique

ultrafilter that is disjoint from IA ∪ IB.

Almost clopen sets (and tie-points) first arose implicitly in the work [9] of
N. J. Fine and L. Gillman in the investigation of extending continuous functions
on dense subsets of N∗. A subset Y of a spaceX is C∗-embedded if every bounded
continuous real-valued function on Y can be continuously extended to all of X .
The character of a point x ∈ N

∗ is the minimal cardinality of a filter base for x
as an ultrafilter on N.

Proposition 1.8 ([9]). If x is a tie-point of N∗, then N
∗\{x} is not C∗-embedded

in N
∗. Every point of character ℵ1 is a tie-point of N

∗.

It was shown in [3] to be consistent with Zermelo–Fraenkel set theory (ZFC)
that N∗ \ {x} is C∗-embedded for all x ∈ N

∗. It was also shown by J. E. Baum-
gartner in [1] that this result holds in models of the Proper forcing axiom (PFA).

Proposition 1.9 ([3], [1]). PFA implies that N∗ \ {x} is C∗-embedded in N
∗ for

all x ∈ N
∗
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Corollary 1.10. PFA implies that there are no almost clopen sets and no tie-
points in N

∗.

Almost clopen sets arise in the study of minimal extensions of Boolean algebras
(see [15]) and in the application of this method of construction for building a va-
riety of counterexamples (e.g. [16], [12], [22], [6]). The next application of almost
clopen subsets of N∗ was to the study of nontrivial automorphisms of P(N)/ fin,
or nontrivial autohomeomorphisms of N∗. M. Katětov in [14] proved that the set
of fixed points of an autohomeomorphism of βN will be a clopen set. It is imme-
diate from N. J. Fine and L. Gillman’s work [9] that every P -point of character
of ℵ1 is a fixed point of a nontrivial autohomeomorphism of N∗.

Definition 1.11. A point x of N∗ is a P -point if the ultrafilter x is countably
complete mod finite. For a cardinal κ, an ultrafilter x on N is a simple Pκ-point
if x has a base well-ordered by mod finite inclusion of order type κ.

Proposition 1.12 ([9]). If A is an almost clopen subset of N
∗ and xA is a simple

Pℵ1
-point of N

∗, then

(1) A is homeomorphic to N
∗;

(2) xA is a symmetric tie-point;
(3) there is an autohomeomorphism f on N∗ such that {x} is the only fixed

point of f .

As we have seen above, PFA implies that there are no almost clopen subsets
of N∗, and of course, PFA also implies that all autohomeomorphisms of N∗ are
trivial, see [24]. However Veličković utilized a similar simple P -point trick (mo-
tivating our definition of symmetric tie-point) in order to prove that this is not
a consequence of Martin’s axiom (MA).

Proposition 1.13 ([27]). It is consistent with MA and c = ℵ2 that there is an
almost clopen set A of N

∗ such that xA is a simple Pℵ2
-point and,

(1) xA is a symmetric tie-point,
(2) there is an autohomeomorphism f on N

∗ such that {x} is the only fixed
point of f .

Veličković’s result and approach was further generalized in [25] and [26]. It is
very interesting to know if an almost clopen subset of N∗ is itself homeomorphic
to N

∗, see [8], [13]. This question also arose in the authors’ work on two-to-one
images of N∗, see [5]. Veličković’s method was slightly modified in [5] to produce
a complementary pair of almost clopen sets so that neither is homeomorphic to N∗,
but it is not known if there is a symmetric tie-point A ⊲⊳

x
B where A is not a copy

of N∗.
Our final mention of recent interest in almost clopen subsets of N∗ is in connec-

tion to the question, see [19], [7], of whether the Banach space l∞/c0 is necessarily
primary. It was noted by P. Koszmider in [20, page 577] that a special almost
clopen subset of N∗ could possibly resolve the problem. For a compact space K,
we let C(K) denote the Banach space of continuous real-valued functions on K
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with the supremum norm. It is well-known that C(N∗) is isomorphic (as a Ba-
nach space) to l∞/c0. Naturally if a space A is homeomorphic to N

∗, then C(A)
is isomorphic to C(N∗).

Proposition 1.14 ([20, page 577]). Suppose that A is an almost clopen subset of
N

∗ and that B is its almost clopen complement. If C(N∗) is not homeomorphic
to either of C(A) or C(B), then l∞/c0 is not primary.

2. Asymmetric tie-points

In many of the applications mentioned in the introductory section, the tie-
points utilized were symmetric tie-points. In other applications for example the
primariness of l∞/c0, it may be useful to find examples where the witnessing sets
A,B for a tie-point are quite different. There are any number of local topological
properties that x may enjoy as a point in A that it may not share as a point in B.
We make the following definition in connection with simple Pκ-points.

Definition 2.1. Let κ be a regular cardinal. An almost clopen set A is simple
of type κ if IA has a ⊂∗-cofinal ⊂∗-increasing chain {aα : α ∈ κ} of type κ.

If {aα : α ∈ κ} is strictly ⊂∗-increasing and ⊂∗-cofinal in IA for an almost
clopen set A, then the family AA = {aα+1\aα : α ∈ κ} cannot be reaped. A family
A ⊂ [N]ℵ0 is reaped by a set c ⊂ N if |a \ c| = |a ∩ c| for all a ∈ A. We verify
that AA cannot be reaped. Let c ⊂ N and, by symmetry, assume that c is not
an element of the ultrafilter xA. Therefore c∗ ∩A is a compact subset of A \ {x}
and so is contained in a∗α for some α ∈ κ. Thus (c \ aα)∗ is disjoint from A and
so c ∩ (aα+1 \ aα) is finite. This proves that AA is not reaped by c.

The reaping number r is the minimum cardinal of a family that cannot be
reaped, see [11] and [18]. For any infinite set a ⊂ N, let next(a, ·) be the function
in N

N defined by next(a, k) = min(a \ {1, . . . , k}). As usual, for f, g ∈ N
N we say

that f <∗ g if {k : g(k) ≤ f(k)} is finite.

Proposition 2.2 ([11]). If A ⊂ [N]ℵ0 and if there is some g ∈ N
N such that

next(a, ·) <∗ g for all a ∈ A, then A can be reaped. In particular, b ≤ r.

If {aα : α ∈ κ} is strictly ⊂∗-increasing and ⊂∗-cofinal in IA for an almost
clopen set A, then the family {aα+1 \ aα : α ∈ κ} is an example of a converging

family of infinite sets.

Definition 2.3. Let A be a family of infinite subsets of N. We say that A
converges if there is an ultrafilter x on N such that for each U ∈ x, the set
{a ∈ A : a \ U 6=∗ ∅} has cardinality less than that of A.

We say that A is hereditarily unreapable if each reapable subfamily of A has
cardinality less than that of A.

Lemma 2.4. If for a cardinal κ, {aα : α ∈ κ} is a strictly ⊂∗-increasing family
of subsets of N, and if {aα+1 \ aα : α ∈ κ} converges, then the closure of

⋃
{a∗α :

α ∈ κ} is a simple almost clopen set of type κ.
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Proof: Suppose that {aα+1 \ aα : α ∈ κ} converges to x ∈ N
∗ and let A =

{x} ∪
⋃
{a∗α : α ∈ κ}. It suffices to prove that A is closed. Choose any y ∈ N

∗ \A
and let a be an element of x \ y. Choose β ∈ κ so that (aα+1 \ aα) ⊂∗ a for all
β ≤ α ∈ κ. By induction on α < κ, it follows that aα \ aβ ⊂∗ a. Therefore A is
contained in the clopen set (aβ ∪ a)∗ ⊂ N

∗ \ {y}. �

An ultrafilter x of N∗ is said to be an almost Pκ-point (or pseudo-Pκ-point)
if each set of fewer than κ many members of x have a pseudo-intersection (an
infinite set mod finite contained in each of them). Certainly a converging family
is hereditarily unreapable and converges to a point that is an almost Pκ-point
where κ is the cardinality of the family. Clearly the cardinality of any hereditarily
unreapable family will have cofinality not larger than the splitting number s.
Therefore if, for example, s = ℵ1 and r = c = ℵ2, there will be no hereditarily
unreapable family. If s = c, then there is a hereditarily unreapable family of
cardinality s. In the Mathias model of s = c = b = ℵ2, there is no converging
unreapable family because there is no almost Pℵ2

-point. In the Goldstern–Shelah
model of r = s = ℵ1 < u, see [11], there is (easily checked) no converging family
of cardinality r.

If there is a simple almost clopen set of type κ, are there restrictions on the be-
havior of its almost clopen complement and can there be simple almost clopen sets
of different types (including the complement)? These are the types of questions
that stimulated this study. The most compelling of these has been answered.

Theorem 2.5. If A is a simple almost clopen set of type κ and if the comple-
mentary almost clopen set B is simple, then it also has type κ.

We defer the proof of this, and the next two theorems, until the next section.
Similarly, there is restriction on what the type of a simple almost clopen set can
be that is shared by simple Pκ-points (as shown, for simple Pκ-points, by Nyikos
(unpublished), see [2]).

Theorem 2.6. If A is a simple almost clopen set of type κ, then κ is one of
{b, d}.

Now that we understand the limits on the behavior of a complementary pair
of simple almost clopen sets, we look to the properties of the complement B
when it is not assumed to be simple. The topological properties of character and
tightness of xB in B are natural cardinal invariants to examine. These correspond
to natural properties of IB as well. An indexed subset {xβ : β < λ} of a space
X is said to be a free sequence if the closure of each initial segment is disjoint
from the closure of its complementary final segment. A λ-sequence {xβ : β < λ}
is converging if there is a point x such that every neighborhood of x contains
a final segment of {xβ : β < λ}. A subset D of N∗ is said to be strongly discrete,
see [10] and [21], if there is a family of pairwise disjoint clopen subsets of N∗ each
containing a single point of D.

Theorem 2.7. If κ < λ are regular cardinals with c ≤ λ, then there is a countable
chain condition (ccc) forcing extension in which there is a simple almost clopen set
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A of type κ such that the almost clopen complement B contains a free λ-sequence
{xβ : β < λ} that converges to xA.

We finish this section by formulating some open problems about almost clopen
sets and possible asymmetries.

Question 2.8. Can there exist simple almost clopen sets of different types?

If A is a simple almost clopen set of type κ, then, as a point in A, xA is
a P-point with a linear neighborhood base of clopen sets. Therefore the next two
questions seem natural. See also the remark about Nyikos’ result, see [2], about
simple Pκ-points preceding Theorem 2.6.

Question 2.9. If there is a simple almost clopen set of type κ is there a point of
N

∗ of character κ? Is there a simple Pκ-point?

Question 2.10. Is a simple almost clopen set of type ℵ1 necessarily homeomor-
phic to N

∗?

Question 2.11. If A is a simple almost clopen set of type κ, is there a simple
almost clopen set B′ contained in the almost clopen complement B of A such that
xA = xB′? Is there a family of κ-many members of IB that converges to xA?

3. Proofs

Our analysis of simple almost clopen sets depends on the connection between
the type of the clopen set and the ultrafilter ordering of functions from N to N.
For an ultrafilter x on N the ordering <x is defined on N

N by the condition that
f <x g if {n ∈ N : f(n) < g(n)} ∈ x. Since x is an ultrafilter, a set F ⊂ N

N

is cofinal in (NN, <x) if it is not bounded. Of course a subset of NN that is un-
bounded with respect to the <x-ordering is also unbounded with respect to the
mod finite ordering <∗.

Fix a <∗-unbounded family {fξ : ξ < b} ⊂ N
N such that each fξ is strictly

increasing and such that fη <∗ fξ for all η < ξ < b. The following well-known
fact will be useful.

Proposition 3.1. For each infinite b ⊂ N and each unbounded Γ ⊂ b, the family
{fξ ↾ b : ξ ∈ Γ} is <∗-unbounded in N

b.

Proof: For each η < b, there is a ξ ∈ Γ\η such that fη <∗ fξ, hence {fξ : ξ ∈ Γ}
is <∗-unbounded. If g ∈ N

b, then g ◦ next(b, ·) ∈ N
N. So there is a ξ ∈ Γ such

that fξ 6<∗ g ◦ next(b, ·). Since fξ is strictly increasing, fξ ↾ b 6<∗ g. �

Lemma 3.2. If a family A ⊂ [N]ℵ0 converges to an ultrafilter x and if {fξ : ξ ∈ b}
is bounded mod <x, then A has cardinality b.

Proof: Choose g ∈ N
N so that fξ <x g for all ξ < b. Since A cannot be reaped,

Proposition 2.2 implies that b ≤ |A|. For each ξ, let Uξ = {n ∈ N : fξ(n) <
g(n)} ∈ x. If b < |A|, then there is a b ∈ A such that b ⊂∗ Uξ for all ξ < b
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(i.e. x is an almost Pb+ -point). However we would then have that fξ ↾ b <∗ g ↾ b
for all ξ < b, and by Proposition 3.1, there is no such set b. This completes the
proof. �

Concerning this next result, we do not know if it is consistent to have a family
in [N]ℵ0 of singular cardinality that is converging.

Lemma 3.3. If a family A ⊂ [N]ℵ0 of regular cardinality converges to an ultra-
filter x and if {fξ : ξ ∈ b} is unbounded mod <x, then A has cardinality equal
to d.

Proof: Since we are assuming that {fξ : ξ ∈ b} is <x-unbounded, it is actually
<x-cofinal. Also, we check that the family {fξ ◦next(a, ·) : ξ < b, a ∈ A} is a <∗-
dominating family. Take any strictly increasing g ∈ N

N and choose ξ < b such
that U = {n : g(n) < fξ(n)} ∈ x. Since A converges to x, there is an a ∈ A such
that a ⊂∗ U . Since g is strictly increasing, it is clear that g < fξ ◦ next(U, ·) <∗

fξ ◦next(a, ·). Again, since A cannot be reaped, we have b ≤ |A| and this implies
that d ≤ |A|. Assume that {gβ : β < d} ⊂ N

N is a <∗-dominating family. For each
a ∈ A, there is a βa < d such that next(a, ·) <∗ gβa

. Now since A is hereditarily
unreapable, Proposition 2.2 implies that the mapping a 7→ βa is <|A|-to-1. Since
we assume that |A| is regular, this implies that |A| ≤ d. �

Corollary 3.4. If A is a simple almost clopen set of type κ, then κ = b if
{fξ : ξ < b} is <xA

-bounded. Otherwise κ = d.

Proof: Let {aα : α ∈ κ} be the family contained in IA witnessing that A has
type κ. Set A equal to the family {aα+1 \ aα : α ∈ κ} which converges to xA. If
{fξ : ξ < b} is <xA

-bounded, then by Lemma 3.2, κ = b. Otherwise, since κ is
a regular cardinal, we have by Lemma 3.3, κ = d. �

Proof of Theorem 2.5: Assume that A and its complementary almost clopen
set B are both simple and let x = xA. If {fξ : ξ < b} is <x-bounded then, by
Corollary 3.4 they both have type b; otherwise they both have type d. �

Proof of Theorem 2.6: Immediate from Corollary 3.4. �

We can improve Theorem 2.5. First we recall that a family A ⊂ [N]ℵ0 is
a splitting family if for all infinite b ⊂ N, there is an a ∈ A such that |b∩a| = |b\a|.
We say that b is split by a. The splitting number s is the least cardinality of
a splitting family and s ≤ d, see [11].

Proposition 3.5. There is no almost Ps+ -point in N
∗.

Proof: Let A be a splitting family of cardinality s. We may assume that A is
closed under complements. Let x be any point of N∗. It is easily seen that any
pseudointersection of x∩A is not split by any member of A. Since A is splitting,
x ∩ A has no pseudointersection, and so x is not an almost Ps+ -point. �

Now we improve Theorem 2.5.
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Theorem 3.6. If A is a simple almost clopen set of type κ then xA is not an
almost Pκ+ -point.

Proof: We first note that by Proposition 3.5 we must have that κ < d. Therefore,
by Lemma 3.3, {fξ : ξ < b} is <xA

-bounded. Choose any g ∈ N
N so that fξ <xA

g
for all ξ < b. For each ξ, let Uξ = {n ∈ N : fξ(n) < g(n)}. By Proposition 3.1,
we have that the collection {Uξ : ξ < b} ⊂ x has no pseudointersection. By
Theorem 2.5, b ≤ κ and this proves the theorem. �

Proof of Theorem 2.7: We first prove the easier special case when κ = ℵ1.
An α-length finite support iteration sequence of posets, denoted (〈Pβ : β ≤ α〉,

〈Q̇β : β < α〉), will mean that 〈Pβ : β ≤ α〉 is an increasing chain of posets, Q̇β is
a Pβ-name of a poset for each β < α, and members p of Pα will be functions
with domain a finite subset, supp(p), of α satisfying that p ↾ β ∈ Pβ forces that

p(β) ∈ Q̇β. As usual, p2 < p1 providing p2 ↾ β Pβ
“ p2(β) < p1(β)” for all

β ∈ supp(p1). Since P0 is the trivial poset, we will allow ourselves to simply
specify a poset Q0 in such an iteration sequence rather than the P0-name of that
poset.

Definition 3.7. Let A = {aβ : β < α} be a ⊂∗-increasing chain of subsets of ω,
and let I be an ideal contained in A⊥. We define the poset Q = Q(A; I) where
q ∈ Q if q = (Fq, σq, bq) where

(1) Fq ∈ [ω]<ℵ0 ;
(2) bq ∈ I is disjoint from Fq;
(3) σq : Hq → ω and Hq ∈ [α]<ℵ0 ;
(4) for each β ∈ Hq, aβ \ σq(β) is disjoint from bq.

For r, q ∈ Q we define r < q providing Fr ⊃ Fq, σr ⊃ σq, and br ⊃ bq.

Definition 3.8. If Q is Q(A; I) for some ⊂∗-increasing chain of subsets of ω
and ideal I ⊂ A⊥, then the Q-generic set ȧQ is defined as the natural name
{(ň, q) : q ∈ Q and n ∈ Fq}, i.e. for each Q-generic filter G, valG(ȧQ) is equal to
the union of the family {Fq : q ∈ G}.

Lemma 3.9. Let A = {aβ : β < α} and I be as given in the definition of
Q(A; I) and let Q = Q(A; I). Then 1 Q “ ȧQ ∈ I⊥”, and for all q ∈ Q(A; I)
and β ∈ dom(σq), q Q “ aβ \ σq(β) ⊂ ȧQ”.

Proof: Let q ∈ Q, β ∈ σq and b ∈ I. Since qb = (Fq , σq, bq ∪ (b \ Fq)) forces
that ȧQ is disjoint from b, this proves that 1 Q “ ȧQ ∈ I⊥”. Choose any
k ∈ aβ \ σq(β) and let r ≤ q. By condition (4), k /∈ br. It is easily checked that
r′ = (Fr ∪ {k}, σr, br) < r and that r′ Q “ k ∈ ȧQ”. �

For constructing our models, we will need instances of Q(A; I) that are ccc.
This first result is sufficient to produce simple almost clopen sets of type ℵ1.

Lemma 3.10. Let A = {aβ : β < α} be a ⊂∗-increasing chain of subsets of ω
and let I be an ideal contained in A⊥. If α is countable or if I = [ω]<ℵ0 , then
Q(A; I) is σ-centered.
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Proof: Let b, F ∈ [ω]<ℵ0 and H ∈ [α]<ℵ0 and σ : Hq → ω. Then each of the
sets {q ∈ Q(A; I) : Fq = F and σq = σ} and {q ∈ Q(A; I) : Fq = F and bq = b}
is centered. �

Lemma 3.11. If λ is a regular cardinal with c ≤ λ, then there is a ccc forcing
extension in which there is a simple almost clopen set A of type ℵ1 such that
there is a strongly discrete free λ-sequence converging to xA.

Proof: There are ccc posets of cardinality λ that add a strictly ⊂∗-increasing
sequence {bζ : ζ < λ} of infinite subsets of ω (e.g. [17, II Example 22]). Alter-
natively, by Definition 3.7 and Lemma 3.10, we could let Q0 be a λ-length finite
support sequence of posets of the form Q({bβ : β < ζ}; [ω]<ω) and recursively let
bζ be the resulting ȧQ as in Definition 3.8. In each of these models we obtain that
c = λ.

For convenience we now work in such a ccc forcing extension in which λ = c and
we construct a finite support ccc iteration sequence of cardinality λ and length
ω1 that will add a strictly ⊂∗-increasing sequence {aα : α ∈ ω1} of infinite subsets
of ω so that the closure A of

⋃
{a∗α : α ∈ ω1} is almost clopen. Suppose that we

do this in such a way that {bζ : ζ < λ} is contained in {aα : α ∈ ω1}⊥ and for
all U ∈ xA and all ζ < λ there is an η < λ such that U ∩ (bη \ bζ) is infinite.
We check that there is then a strongly discrete free λ-sequence converging to xA.
Let {Uζ : ζ < λ} enumerate the members of xA. Recursively define a strictly
increasing function g from λ into λ satisfying that Uζ ∩ (bg(δ) \bδ) is infinite for all
ζ < δ ∈ λ. Choose any cub C ⊂ λ satisfying that the family {Uξ : ξ < δ} is closed
under finite intersections. For each δ ∈ C, the family {Uζ ∩ (bg(δ) \ bδ) : ζ < δ} is
closed under finite intersections, so we may choose an ultrafilter xδ extending it.
Pass to a cub subset C1 ⊂ C satisfying that g(η) < δ for all η < δ in C1. Since
the family {bζ : ζ < λ} is mod finite increasing and bδ \bη ∈ xη for all η < δ in C1,
it follows that {xδ : δ ∈ C1} is strongly discrete and free. Similarly, the sequence
converges to xA since Uζ ∈ xδ for all ζ < δ ∈ C1.

Now we construct the iteration sequence to define the ⊂∗-increasing chain
{aα : α ∈ ω1} that will be cofinal in IA. We will use iterands of the form Q̇α =

Q({ȧβ : β < α}; İα) for 0 < α < ω1, and will recursively let ȧα be the standard
Pα+1-name for aQ̇α

(as in Definition 3.8). Clearly the only choices we have for

the construction are the definition of a0 and, by recursion, the definition of İα.
By recursion on γ < α < ω1 we ensure that Pα forces each of the following:

(1) İγ+1 ⊂ İα ⊂ {ȧβ : β < α}⊥;

(2) {bζ : ζ < λ} is a ⊂∗-unbounded subset of İγ+1;

(3) if α = γ + 1, then İα ∪ {ȧβ : β < α} generates a proper maximal ideal.

To start the recursion, using Lemma 1.6, we can choose a proper maximal
ideal I1 extending the ideal generated by {bζ : ζ < λ} ∪ {bζ : ζ < λ}⊥. There is
no ⊂∗-bound for {bζ : ζ < λ} in I1 since the complement of any such bound is
in I1. Very likely {bζ : ζ < λ}⊥ is simply [ω]<ω, so we let a0 be exceptional and
equal the emptyset. We now have our definition (working in the extension by Q0)
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of Q1 = Q({a0}; I1) and the generic set ȧ1 = ȧQ1
is forced to be almost disjoint

from every member of I1 (it is a pseudointersection of the ultrafilter dual to I1).
Now assume that α < ω1 and that we have defined İβ for all β < α. For the

definition of İα we break into two cases.
If α is a limit ordinal, then we define İα to be the Pα-name of the ideal {ȧβ :

β < α}⊥. By induction we have for γ < α that Pα
“ İγ ⊂ {ȧβ : β < α}⊥ = İα”

as required in (1). Condition (2) holds by induction and (3) is vacuous.
In the case that α = γ + 1, we note that, by the genericity of ȧγ and the

induction hypothesis (1), Pα forces that the family {ȧγ} ∪
⋃
{İη+1 : η < γ} gen-

erates a proper ideal J̇α. Furthermore, hypotheses (2) (and the definition of ȧγ)

ensures that Pα forces that {bζ : ζ < λ} is ⊂∗-unbounded in J̇α. Again using

Lemma 1.6, we can choose J̇ ′
α to be the Pα-name of any proper maximal ideal

that contains J̇α ∪ (J̇α)
⊥. Just as in the first inductive step, Pα again forces

that {bζ : ζ < λ} is ⊂∗-unbounded in J̇ ′
α. The definition of İα is the Pα-name of

{b ∈ J̇ ′
α : b ∩ ȧγ =∗ ∅}. The set ȧα \ ȧγ will be forced by Pα+1 to be an infinite

pseudointersection of the ultrafilter that is dual to J̇ ′
α. For convenience, let ẏα

denote the Pα-name of this ultrafilter.
This completes the definition of the poset Pω1

. Now we establish some addi-
tional properties. It will be convenient to observe that for each α = γ + 1 < ω1

the Pα-name for {ω \ (b∪ ȧγ) : b ∈ İα} is forced to be a base for ẏα. Let Ȧ denote
a Pω1

-name of the closure in ω∗ of
⋃
{ȧ∗α : α ∈ ω1}.

Claim 1. For each β < α < ω1, Pα+1 forces that ȧα \ ȧβ is a pseudointersection
of the filter ẏβ+1.

Proof: We prove the claim by induction on α ≥ β + 1. For α = β + 1, ȧα is
almost disjoint from each member of İα, and so ȧα \ ȧβ is almost disjoint from

every member of J̇ ′
α. Thus ȧα \ ȧβ is forced to be mod finite contained in every

member of the dual filter, namely ẏβ+1. Similarly, for α > β + 1, ȧα is forced to

be almost disjoint from each member of İα. This means that ȧα is almost disjoint
from each member of İβ+1, and so ȧα \ ȧβ+1 is also almost disjoint from every

member of J̇ ′
β+1. �

Claim 2. The family {ẏβ+1 : β < ω1} is a family of Pω1
-names and the union

is forced to generate an ultrafilter ẋȦ that is indeed the unique boundary point

of Ȧ.

Proof: Since, for each β < α < ω1, İβ+1 is contained in İα+1 and ȧβ is forced to

be a mod finite subset of ȧα, the filter dual to the ideal generated by {ȧβ}∪ İβ+1

is contained in the filter dual to the ideal generated by {ȧα}∪ İα+1. This implies
that Pω1

forces that
⋃
{ẏβ+1 : β < ω1} is a filter. Furthermore, since Pω1

is ccc,
every Pω1

-name of a subset of ω is forced to be equal to a Pβ-name for some
β < ω1. Since Pβ+1 forces that ẏβ+1 is an ultrafilter, this shows that Pω1

forces
that ẋȦ is an ultrafilter. Finally, it follows from the previous claim and Lemma 2.4

that ẋȦ is the unique boundary point of Ȧ. �
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We now verify the final property required of the construction.

Claim 3. Let Pω1
are forces that for each U ∈ ẋȦ and each ζ < λ, there is an

η < λ such that U ∩ (bη \ bζ) is infinite.

Proof: Let U̇ be any Pω1
-name and assume that p ∈ Pω1

forces that U̇ ∈ ẋȦ.

Since Pω1
is ccc and p Pω1

“ U̇ ⊂ ω”, we may suppose there is an α < ω1 such

that p ∈ Pα+1 and U̇ is a Pα+1-name. By Claim 2, p Pα+1
“ U̇ ∈ ẏα+1”. Let Ẇ be

the Pα+1-name of ω \ (U̇ ∪ ȧα), and note that p Pα+1
“ Ẇ ∈ İα+1”. Therefore,

by induction hypothesis (2), p Pα+1
“ (∃ η < λ) bη \ (bζ ∪ Ẇ ) 6=∗ ∅”. Since

Pα+1 is ccc and λ has uncountable cofinality, we may choose an η < λ such that

p Pα+1
“ bη \ (bζ ∪ Ẇ ) 6=∗ ∅”. Finally we have that p Pα+1

“ (bη \ bζ) ∩ U̇ 6=∗ ∅”
since p Pα+1

“ ȧα ∩ bη =∗ ∅”. �

This completes the proof of Lemma 3.9. �

Now we return to the complete proof of Theorem 2.7.

Definition 3.12. We say thatA is a pre-ccc sequence if A = {aβ : β < α} ⊂ [ω]ℵ0

is ⊂∗-increasing and for each sequence {bξ : ξ ∈ ω1} ⊂ A⊥, and sequence {γξ :
ξ ∈ ω1} ⊂ α there are ξ < η such that either aγξ

∩ bξ 6= ∅ or (aγξ
∪ aγη

) ∩
(bξ ∪ bη) = ∅.

Lemma 3.13. If A is a pre-ccc sequence, then Q(A; I) is ccc for any ideal
I ⊂ A⊥.

Proof: Let A = {aβ : β < α} ⊂ [ω]ℵ0 be ⊂∗-increasing. Let {qξ : ξ ∈ ω1} ⊂
Q = Q(A; I). By passing to a subcollection we can suppose there is a single
F ∈ [ω]<ℵ0 such that Fqξ = F for all ξ. For each ξ, let bξ = bqξ , σξ = σqξ , and
Hξ = dom(σξ). By passing to an uncountable subcollection, we can assume that
the family {Hξ : ξ ∈ ω1} is a ∆-system with root H . Similarly, we can assume
that for all ξ, η, σξ ↾ H = ση ↾ H . For each ξ, let γξ be the maximum element
of Hξ.

Next, we choose an integer m sufficiently large so that there is again an un-
countable I ⊂ ω1 and a subset b̄ of m such that for all ξ ∈ I and all β ∈ Hξ

σξ(β) < m, aβ \m ⊂ aγξ
, and bξ ∩m = b̄. Now we apply the pre-ccc property

for the family {γξ : ξ ∈ I} and the sequence {bξ \m : ξ ∈ I}. Since aγξ
is disjoint

from bξ \m for all ξ ∈ I, there must be ξ < η from I so that (aγξ
∪aγη

) is disjoint
from ((bξ ∪ bη) \m).

We claim that r = (F, σξ ∪ ση, bξ ∪ bη) is in Q and is an extension of each of
qξ and qη. It suffices to prove that for β ∈ Hξ, aβ \ σξ(β) is disjoint from bη, and
similarly, that aβ \ση(β) is disjoint from bξ for β ∈ Hη. Since bξ∩m = bη∩m = b̄,
it suffices to consider aβ \m in each case. For β ∈ Hξ, we have aβ \m ⊂ aγξ

and
aγξ

is disjoint from bη \m. For β ∈ Hη, we similarly have that aβ \m ⊂ aγη
and

aγη
is disjoint from bξ \m. �

For the remainder of the section, κ < λ are regular cardinals with c ≤ λ (as in
Theorem 2.7).
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Definition 3.14. A is the class of triples (P,A, I) such that, there is an ordinal
0 < α ≤ κ, and the following holds for each γ < β < α:

(1) P = (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉) is a finite support iteration sequence of
ccc posets, and has cardinality λ;

(2) A is an α-sequence {ȧβ : β < α} and ȧ0 = ∅;

(3) I is an α-sequence {İβ : β < α};
(4) ȧβ is a Pβ+1-name, and Pβ+1

“ ȧγ ⊂∗ ȧβ ⊂ ω”;

(5) P1 forces that İ1 is an ideal on ω that has a cofinal ⊂∗-increasing chain
of type λ;

(6) İβ is a Pβ-name, and Pβ
“ İβ ⊂ {ȧξ : ξ < β}⊥ is an ideal ”;

(7) Pβ
“ İγ+1 ⊂ İβ”, and Pβ

“ İ1 is ⊂∗ -unbounded in İγ+1”;

(8) Pβ
“ Q̇β = Q({ȧξ : ξ < β}; İβ)”;

(9) Pγ+1 forces that {ȧγ} ∪ İγ+1 generates a maximal ideal;
(10) ȧβ is the Pβ+1-name for ȧQ({ȧξ : ξ<β};İβ)

;

(11) if cf(β) = ω, then Pβ
“ İβ =

⋃
{İξ+1 : ξ < β}”.

We omit the routine modifications of the proof of Lemma 3.11 needed to prove
the following.

Lemma 3.15. If (P,A,J ) ∈ A and P = (〈Pβ : β ≤ κ〉, 〈Q̇β : β < κ〉), and
A = {ȧβ : β < κ}, then Pκ is a ccc poset that forces that the closure A of⋃
{ȧ∗β : β < κ} is a simple almost clopen set of type κ and that there is a strongly

discrete free λ-sequence converging to xA.

To finish the proof of Theorem 2.7 we have to prove there is an element of A of
length κ. Towards doing so, we let <A denote the obvious coordinatewise ordering
on the elements of A. Using Zorn’s lemma, we let C ⊂ A be a maximal <A-chain.
It is easily checked that the maximality of C implies that it has a maximal element
which we denote

(P,A,J ) = (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉), {ȧβ : β < α}, {İβ : β < α})

and we prove that α = κ.

Lemma 3.16. If α < κ then (P,A,J ) is not maximal.

Proof: In order to extend (P,A,J ) we have to define a Pα-name İα and to then

let Q̇α be the Pα-name of Q(A; İα). We then set Pα+1 = Pα ∗ Q̇α and let ȧα be

the Pα+1-name for ȧQ(A;İα). We must show that (P⌢{(〈Pα+1〉, 〈Q̇α〉)},A⌢{ȧα},

J⌢{İα}) is in A to complete the proof. We defer to the end of the proof that

our choice of İα will result in the fact that Pα forces that Q(A; İα) is ccc.
First we assume that α is a limit ordinal and explain the construction of İα. If

α has uncountable cofinality, we let İα simply be the Pα-name for A⊥. If α has
countable cofinality, then define İα =

⋃
{İξ+1 : ξ < α} as required in item (11).

These definitions ensure that items (2)–(11) in the definition of A are fulfilled.
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In the case that α is a successor, let α = δ + 1. We proceed exactly as in the
successor case in the proof of Lemma 3.11. By property (7) of A, Pα forces that

İ1 is unbounded in İγ+1 for all γ < δ. In this case, A has a maximal element ȧα
and we follow the steps in Lemma 3.11 to define a Pα-name of an ideal İα that
is forced to contain for each γ < δ, İγ+1 as an ⊂∗-unbounded subset, and in such
a way that every member is almost disjoint from ȧα and the ideal generated by
{ȧα}∪ İα is a maximal ideal. This ensures that properties (2)–(11) of A will hold
in this successor case.

Now to finish the proof, we have to prove that Pα forces that Q(A; İα) is ccc.
By Lemma 3.13, it suffices to prove that Pα forces that A is a pre-ccc sequence.
To prove this we consider, as in the definition of pre-ccc, Pα-names {γ̇ξ : ξ ∈ ω1}

and {ḃξ : ξ ∈ ω1} such that there is some p0 ∈ Pα forcing that for each ξ < ω1,

γ̇ξ ∈ α, ḃξ ∈ Ȧ⊥ and ȧγξ
∩ ḃξ is empty.

Assume first that, by possibly passing to an extension of p0 and to an uncount-
able subsequence, there is some β < α such that p0 forces that γ̇ξ < β for all
ξ < ω1. For each 0 < ξ < ω1 choose pξ < p0, an integer mξ and a γξ < β so that

aγξ
\ aβ ⊂ mξ and pξ Pα

“ γ̇ξ = γξ and aβ ∩ ḃξ ⊂ mξ”. We may also assume

that there is some dξ ⊂ mξ such that pξ Pα
“ ḃξ ∩mξ = dξ”. There is a pair m, d

so that S = {ξ : mξ = m and dξ = d} is uncountable. Since Pα is ccc, we may
choose ξ < η from S so that pξ and pη are compatible. Let q ∈ Pα be any common
extension of pξ and pη. Note that q forces that ȧγ̇ξ

∪ ȧγ̇η
is contained in aβ ∪m

and that (ḃξ ∪ ḃη)\m is disjoint from aβ . Since q also forces that ḃξ ∩m = ḃη ∩m,

it should now be clear that q forces that ȧγ̇ξ
∪ ȧγ̇η

is disjoint from ḃξ ∪ ḃη. This
proves that p0 does not force this to be a violation of the pre-ccc property.

Now we may suppose that p0 forces that {γ̇ξ : ξ ∈ ω1} is strictly increasing
and cofinal in α. We may assume that p0 decides the value, γ0, of γ̇0. For each
ξ < ω1, choose any pξ < p0 that decides a value, γξ, of γ̇ξ and that ḃξ is a Pβ-name
for some β ∈ supp(pξ). Let g be a continuous strictly increasing function from
ω1 into α with cofinal range. Since Pα is ccc we have, for each δ ∈ ω1, the set
{ξ : γξ < g(δ)} is countable. Therefore there is a cub C ⊂ ω1 such that for all
δ ∈ C, g(δ) ≤ γδ and g(δ) is a limit ordinal with countable cofinality. We may
also arrange that for each δ ∈ C and ξ < δ, supp(pξ) ⊂ g(δ).

For each δ ∈ C, we may extend pδ so as to ensure that each of g(δ) and γδ are in

supp(pδ) and such that there is a β ∈ supp(pδ) such that ḃδ is a Pβ-name. We also
extend each pδ so that we can arrange a list of special properties (referred to as
“determined” in many similar constructions). Specifically, for each β ∈ supp(pδ)

(1) there are F δ
β ∈ [ω]<ℵ0 , Hδ

β ∈ [β]<ℵ0 , σδ
β : H

δ
β → ω, and a Pβ-name ḃδβ such

that pδ ↾ β Pβ
“ pδ(β) = (F δ

β , σ
δ
β , ḃ

δ
β)”;

(2) if g(δ) < γδ, then g(δ) ∈ Hδ
γδ
;

(3) Hδ
β ⊂ supp(pδ);
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(4) if β is a limit with countable cofinality, then there is a µδ
β < β such that

ḃδβ is a Pµδ
β
-name and supp(pδ) ∩ β ⊂ µδ

β ;

(5) if ι < β is in supp(pδ), then Hδ
ι ⊃ Hδ

β ∩ ι.

Let us note that, by our assumption on C, we have defined µδ
g(δ) < g(δ), as in

(4) for all δ ∈ C. By the pressing down lemma, there is a stationary set S ⊂ C
and a µ < α such that µδ

g(δ) < µ for all δ ∈ S and so g(δ) is the minimum element

of supp(pδ) \µ. Since Pµ+1 is ccc, it follows by a standard argument that there is

a p̄ ∈ Pµ+1 with the property that for all cub C̃ ⊂ C, the set {pξ ↾ µ : ξ ∈ S ∩ C̃}
is pre-dense below p̄. Pick such a p̄ and let p̄ ∈ Gµ+1 be Pµ+1-generic filter. Now
we work in V [Gµ+1]. In effect, p̄ has forced that {ξ ∈ S : pξ ↾ µ ∈ Gµ+1} is
stationary. By passing to a stationary subset S1 of this set, we may also arrange

that the values of the pair {F ξ

g(ξ), F
ξ
γξ
} is the same for all ξ ∈ S1. For all β ∈ µ+1,

we let aβ denote the valuation of ȧβ by Gµ+1. By further shrinking S1 we may
suppose there is an m ∈ ω and a b̄ ⊂ m, satisfying that for all δ ∈ S1

(1) for all β ∈ supp(pδ), F
δ
β ⊂ m, and for all ι ∈ Hδ

β , σ
δ
β(ι) < m;

(2) for all β ∈ supp(pδ) ∩ µ, aι \ aµ ⊂ m;

(3) b̄ = m ∩ bδ
g(δ), where bδ

g(δ) is the valuation of ḃδ
g(δ) by Gµ+1;

(4) bδ
g(δ) ∩ aµ ⊂ m.

Fix any ξ < η from S1. Define qξ so that supp(qξ) = supp(pξ) \ µ + 1, and for
β ∈ supp(qξ),

qξ(β) =

{
(F ξ

g(ξ), σ
ξ

g(ξ) ∪ {(µ,m)}, ḃξ
g(ξ) ∪ ḃη

g(η)) if β = g(ξ),

(F ξ
β , σ

ξ
β , ḃ

ξ
β ∪ bη

g(η) \m) if g(ξ) < β .

We prove by induction on β ∈ supp(qξ), that there is a condition rξβ ∈ Gµ+1 such

that rξβ ∪ (qξ ↾ β + 1) ≤ pξ ↾ β + 1. Evidently, for the case β = g(ξ), F ξ

g(ξ) and

m ∩ aι are disjoint from b̄ and so there is some condition in Gµ+1 that forces

that, they are disjoint from ḃη
g(η). Similarly, for ι ∈ Hξ

g(ξ), aι \m ⊂ aµ, and since

aµ \ m ∩ (bξ
g(ξ) ∪ bη

g(η)) is empty, there is a condition r in Gµ+1 that forces that

qξ(g(ξ)) ∈ Q̇g(ξ) and that qξ(g(ξ)) < pξ(g(ξ)). In addition, r ∪ qξ ↾ g(ξ) + 1 forces
that ȧg(ξ) is disjoint from bη

g(η) \ m. Now, suppose that g(ξ) < β ∈ supp(pξ),

and that r ∪ q ↾ β is a condition in Pβ that is below pξ ↾ β. We recall that

Hξ
β ⊂ supp(pξ), and so it follows that r ∪ qξ ↾ β forces that ȧι is disjoint from

bη
g(η) \m for all ι ∈ Hξ

β . This is the only thing that needs verifying when checking

that r ∪ qξ ↾ β + 1 < pξ ↾ β + 1.
Now that we have that r ∪ qξ forces that ȧγξ

is disjoint from bη
g(η) \m, we can

add {(γξ,m)} to ση

g(η) and still have a condition. Similarly, for all ι ∈ supp(pη)∩µ,

aι \m is contained in aµ, and r ∪ qξ forces that aµ \m, being a subset of ȧγξ
, is

disjoint from ḃξ. This implies that r ∪ qξ forces that (F
η

g(η), σ
η

g(η)∪{(γξ,m)}, bη
g(η)∪
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(ḃξ\m)) is a condition in Q̇g(η) and is less than pη(g(η)). Now we define a condition
qη so that supp(qη) = supp(pη) \ µ+ 1, and for β ∈ supp(qη),

qη(β) =

{
(F η

g(η), σ
η

g(η) ∪ {(γξ,m)}, ḃη
g(η) ∪ ḃγξ

) if β = g(ξ),

(F η
β , σ

η
β , ḃ

η
β ∪ (ḃγξ

\m)) if g(η) < β .

It again follows, by induction on β ∈ supp(qη), that r ∪ qξ forces that r ∪ qξ ∪
(qη ↾ β + 1) is a condition in Pβ+1 and is below pη ↾ β + 1. Finally, we observe
that r ∪ qξ ∪ qη forces that ȧγξ

⊂ ȧγη
because it forces that ȧγξ

∩m = ȧγη
∩m

and that ȧγξ
\m ⊂ ȧg(η) \m ⊂ ȧγη

. Similarly r∪ qξ ∪ qη forces that ȧγη
is disjoint

from ḃξ because ḃξ ∩m = b̄ and ȧγη
is disjoint from ḃξ \m. This completes the

proof that A is pre-ccc and the proof of the Lemma 3.16. �

This finishes the proof of the main theorem, Theorem 2.7. �
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