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Abstract. This paper is concerned with mathematical and numerical analysis of the
system of radiative integral transfer equations. The existence and uniqueness of solution
to the integral system is proved by establishing the boundedness of the radiative integral
operators and proving the invertibility of the operator matrix associated with the system.
A collocation-boundary element method is developed to discretize the differential-integral
system. For the non-convex geometries, an element-subdivision algorithm is developed
to handle the computation of the integrals containing the visibility factor. An efficient
iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is
also established. Numerical experiment results are also presented to verify the effectiveness
and accuracy of the proposed method and algorithm.
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1. Introduction

Radiative heat transfer is a major form of energy transport in many scientific and

engineering fields such as astrophysics, nuclear reactors, reentry of space vehicles, and

combustion in gas turbine combustion chambers. Interest in radiative heat transfer

research has been very strong in several past decades due to its wide applications in

those fields.

Mathematically, two types of models have been developed to describe the radiative

heat transfer process. The first is the integro-differential radiative transfer equation

(IDRTE) and the other is the radiative integral transfer equations (RITEs). The
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IDRTE model has been comprehensively investigated both mathematically and nu-

merically in the past decades (cf. [2], [16], [22]). Due to its strong nonlinearity,

developing fast iterative algorithms is critical for computing its solutions (cf. [1] and

the references therein). Moreover, in the IDRTE model, the thermal radiation de-

pends not only on the space and time variables but also on the angular variable which

lives in a very high dimension space. This high dimensionality makes its approxi-

mation a very challenging task. On the other hand, the RITEs model is obtained

by integrating the IDRTE model in the angular variable over all possible angles. As

a result, the RITEs model is defined only in the space-time domain and it is angle-

free. This technique eliminates the high dimension difficulty at a cost of dealing

with integral operators with singular kernels and with linear and nonlinear systems

of dense matrices.

Formulations and numerical simulation for RITEs have been carried out by several

researchers. Crosbie [11], [12] derived a multi-dimensional RITEs model in bounded

rectangular domain. Thynell [26] formulated a RITEs model in bounded two-

dimensional cylindrical, absorbing, emitting, and linear-anisotropically scattering

media. A set of integral equations for thermal radiative transmission in anisotropic

scattering media was formulated in [25] and a product-integration teachnique was

also used to discretize the model. Based on the alternative formulation of [25],

Sun [24] developed a modified boundary element method for the thermal radiation

problems. Li et al. [20] adopted the Galerkin boundary element method to discretize

the thermal radiation problem without scattering. Altac [3], [4] used a singularity

removal method to calculate the surface and volume integrals from the RITEs model.

In contrast to the situation for numerical simulation, very little attention has been

paid to mathematical analysis for the RITEs model. To the best of our knowledge,

the theoretical investigation for the RITEs model is mainly confined to the radiosity

equation, which is the simplest case of the RITEs model. The radiosity equation has

been extensively studied in [5], [6], [15], [23] and a collocation method for approxi-

mating the equation was proposed and analyzed in [5], where the unique solvability

of the radiosity equation was proved by establishing some useful properties of the

radiosity integral operator. We also refer the reader to [6] for a detailed discussion

about numerical integrations required for the implementation of the proposed collo-

cation method and to [15] for a regularity analysis of the solution of the radiosity

equation on polyhedral surfaces. In [23], the authors presented a convergence and

error analysis of the Galerkin boundary element method for the radiosity equation

in both convex and non-convex domains. In addition, the coupling of heat radia-

tion with other heat transfer mechanisms was studied in [19], [27]. The existence

of a weak solution to the heat equation on a bounded non-convex domain with

the Stefan-Boltzmann radiation boundary condition was proved by Laitinen in [19]
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and some theoretical results for the coupled conduction-radiation heat transfer in

semitransparent materials were obtained later in [27]. However, it seems that the

mathematical analysis for the RITEs model in scattering media has not been in-

vestigated in the literature, such an analysis is important for understanding more

complicate coupled energy transfer models. Filling this void is one of primary goals

of this paper.

Moreover, for bounded non-convex domains, the detection of the shadow zone

significantly affects the accuracy of the final results, and the detection simulation

is very time-consuming. As a result, it became a bottleneck for the heat radiation

simulation. Extensive research on this topic has been done in the past decades. We

refer the reader to two monographs [10], [30] for a detailed exposition on the topic

and to [14] for a summary and comparison of existing algorithms used in the heat

radiation computation. In [8], the authors considered a two-dimensional problem

with the subdivision of the current element based on the visibility of the all Gaussian

nodes in the element. But the discrete distribution of Gaussian nodes contributes

an additional (but unnecessary) error in this step. The algorithm proposed in [20]

is based on the Galerkin boundary element method. It is well-known [7] that the

Galerkin method requires the computation of surface and volume double integrations.

To calculate the entries of the stiffness matrices, expensive integrations in four, five

or six dimensions must be computed using the standard zoning method. To overcome

this difficulty, in this paper we propose an efficient algorithm based on the idea of

[8]. Moreover, in order to improve the accuracy of the computation, we introduce an

element-subdivision technique to handle the visibility factor in the integral operators.

The remainder of this paper is organized as follows. In Section 2, we first present

the formulation and physical background of the RITEs model. We then prove some

properties for four radiative integral operators associated with the model. Section 3

is devoted to showing the existence and uniqueness theorem for the RITEs model.

This is done by establishing the invertibility of the operator matrix associated with

the model. In Section 4, we propose an iteration algorithm to be used as a nonlinear

solver for solving the discretized nonlinear algebraic system, and prove its conver-

gence by exploiting the properties of the radiative integral operators. In Section 5, we

formulate a collocation-boundary element method to discretize the RITEs model. We

also propose a new high-precision visibility algorithm to handle the computation of

the integrals containing the visibility factor. In Section 6, we present some numerical

experiment results to verify the effectiveness and accuracy of the proposed method

and algorithms. Finally, the paper is completed with a few concluding remarks in

Section 7.
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2. Operator equation formulation for the RITEs model

We consider radiation transport in the bounded domain V ⊂ R
3 with boundary S.

The boundary is assumed to be diffuse and gray, which means that the emissivity and

absorptivity of the surface are independent of the direction and wavelength of the

radiation. In addition, we assume that the medium in the domain is homogeneous

and isotropic.

Under the above assumptions, the RITEs model in an absorbing, emitting, and

scattering medium can be written as follows (cf. [3]):

q(p) + εEb(p)(2.1)

= ε

∫

S

(

Eb(r) +
1− ε

ε
q(r)

)

exp(−β|p− r|)
cosφp cosφr

π|p− r|2
χ(p, r) dS(r)

+ εσa

∫

V

Ib(r) exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r)

+
εσs

4π

∫

V

G(r) exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r), p ∈ S,

G(p) =

∫

S

1

π

(

Eb(r) +
1− ε

ε
q(r)

)

exp(−β|p− r|)
cosφr

|p− r|2
χ(p, r) dS(r)(2.2)

+ σa

∫

V

Ib(r) exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r)

+
σs

4π

∫

V

G(r) exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r), p ∈ V,

where q(p), Eb(p), Ib(p), G(p) denote the radiative flux, blockbody emissive power,

blockbody intensity of radiation and the incident energy at p, respectively. The

quantity ε represents the emissivity of the boundary. The functions σa, σs, β are

the absorptivity, scattering coefficient, extinction coefficient with β = σa + σs. The

symbol φ stands for the angle between the direction of the incoming ray and the

outward normal direction of the boundary.

The Boolean function χ in equations (2.1)–(2.2), named the shadow zone function,

is defined as

χ(p, r) =

{

1 if r can be seen by p,

0 otherwise.

Here the statement “r can be seen by p” means that there is no opaque material

between r and p (i.e., rp
⋂

S = ∅).

Blockbody emissive power can be computed from the Stefan-Boltzmann law

Eb(p) = σT 4(p), Ib(p) =
σT 4(p)

π

,
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where σ denotes the Stefan-Boltzmann constant and T (p) is the temperature at p.

So, once the temperatures of both the medium and the bounding surface are

known, equations (2.1)–(2.2) can be rewritten in operator form as

(2.3) Ku = f ,

where

K =

(

I −K1 −K2

−K4 I −K3

)

, u =

(

q

G

)

, f =

(

f1

f2

)

,

(K1q)(p) =
(1− ε)

π

∫

S

exp(−β|p− r|)
cosφp cosφr

|p− r|2
χ(p, r)q(r) dS(r),

(K2G)(p) =
εσs

4π

∫

V

exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r)G(r) dV (r),

(K3G)(p) =
σs

4π

∫

V

exp(−β|p− r|)
1

|p− r|2
χ(p, r)G(r) dV (r),

(K4q)(p) =
1− εre

επ

∫

S

exp(−β|p− r|)
cosφr

|p− r|2
χ(p, r)q(r) dS(r),

f1(p) = ε

∫

S

Eb(r) exp(−β|p− r|)
cosφp cosφr

π|p− r|2
χ(p, r) dS(r)− εEb(p),

+ εσa

∫

V

Ib(r) exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r),

f2(p) =

∫

S

Eb(r) exp(−β|p− r|)
cosφr

π|p− r|2
χ(p, r) dS(r),

+ σa

∫

V

Ib(r) exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r),

and I denotes the identity operator.

In the next section, the properties of the four radiative integral operators K1, K2,

K3, K4 will be analyzed separately.

3. Mathematical analysis of the RITEs model

In the existing references, the theoretical research about RITEs is confined to the

radiosity equation, which does not take into account the scattering effect. One of

the purposes of this paper is to make some contributions to this point. The integral

system (2.3) is a coupled Fredholm integral system of the second kind. As is said

in [18]: “Existence and uniqueness of a solution to an operator equation can be

equivalently expressed by the existence of the inverse operator.” So one way to
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establish the existence and uniqueness of solution to the system (2.3) is to prove the

existence of the inverse operator of K. In the following, we prove the boundness of

radiative integral operatorsK1, K2, K3, K4. Based on these properties, the existence

of the inverse operator of K is obvious.

In this paper, we first extend Lemma 2.1 in [5] to non-convex domains and prove

the following lemma.

Lemma 3.1. Suppose V is a bounded domain of R3 and has a Lipschitz bound-

ary S. Let p ∈ S, and let S be smooth in an open neighborhood of p. Besides, p

can see all other points in the closure V . Then

(3.1)

∫

S

cosφp cosφr

|p− r|2
dS(r) = π.

P r o o f. Let δ be a sufficiently small number. Exclude a δ-neighborhood of p

from V and denote the remaining set by V ′:

V ′ = V \ {r ∈ V : |r− p| 6 δ}.

Let S′ denote the boundary of V ′ and let Sδ denote the boundary of V \V ′. Then

(3.2)

∫

S

cosφp cosφr

|p− r|2
dS(r) =

∫

S′

cosφp cosφr

|p− r|2
dS(r) +

∫

Sδ

cosφp cosφr

|p− r|2
dS(r).

For a continuously differentiable vector function v(r) defined on V ′, the divergence

theorem reads

(3.3)

∫

S′

v(r) · nr dS(r) = −

∫

V ′

∇ · v(r) dV (r).

Let

(3.4) v(r) =
(p− r) · np

|r− p|4
(r− p),

then the following result is obvious:

(3.5) ∇ · v(r) = 0, r ∈ V ′.

Making use of equations (3.3)–(3.5), the first integral on the right-hand side of equa-

tion (3.2) can be computed as follows:

(3.6)

∫

S′

cosφp cosφr

|p− r|2
dS(r) =

∫

S′

[(p− r) · np][(r− p) · nr]

|p− r|4
dS(r) = 0.
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For the second integral on the right-hand side of (3.2), the integral domain Sδ can

be decomposed into two parts

Sδ = Tδ ∪Wδ,

where

Tδ = {r ∈ S : |r− p| 6 δ}, Wδ = {r ∈ V : |r− p| = δ}.

Then we have

(3.7)

∫

Sδ

cosφp cosφr

|p− r|2
dS(r) =

∫

Tδ

cosφp cosφr

|p− r|2
dS(r) +

∫

Wδ

cosφp cosφr

|p− r|2
dS(r).

According to the assumption that p can see all other points in the closure V , the

following inequalities are valid:

0 6 φp, φr 6
π

2
,

which imply the inequality
cosφp cosφr

|p− r|2
> 0.

Besides, from [12] we have

cosφp cosφr

|p− r|2
6 c for p, r ∈ S, p 6= r,

where c is independent of p and r.

Then

0 6

∫

Tδ

cosφp cosφr

|p− r|2
dS(r) 6 c

∫

Tδ

1 dS(r) = O(δ2).

For the first integral on the right-hand side of (3.7), one obtains

(3.8) lim
δ→0

∫

Tδ

cosφp cosφr

|p− r|2
dS(r) = 0.

For any r ∈ Wδ, we have

nr =
r− p

|r− p|
, nr ·

r− p

|r− p|
= 1.

Consequently,
∫

Wδ

cosφp cosφr

|p− r|2
dS(r)

=

∫

Wδ

[(p− r) · np][(r− p) · nr]

|p− r|4
dS(r) =

∫

Wδ

(p− r) · np

|p− r|3
dS(r)

=
1

δ3

∫

Wδ

(p− r) · np dS(r) =
1

δ3

∫ 2π

0

∫

π/2

0

δ cosϕδ2 sinϕdϕdθ.
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By means of a simple calculation to the above last integral, the following result holds:

(3.9)

∫

Wδ

cosφp cosφr

|p− r|2
dS(r) = π.

Substituting equations (3.8) and (3.9) into equation (3.7), one obtains

(3.10) lim
δ→0

∫

Sδ

cosφp cosφr

|p− r|2
dS(r) = π.

Combining equations (3.6) and (3.10), equation (3.2) can be computed as

∫

S

cosφp cosφr

|p− r|2
dS(r) = π.

This is the desired result and the proof is complete. �

Lemma 3.2. Assume S is a piecewise smooth surface of a bounded domain V

in R
3. Let p ∈ S be a point at which S is smooth. Then

∫

S

exp(−β|p− r|)
cosφp cosφr

|p− r|2
χ(p, r) dS(r) 6 π,(3.11)

∫

V

exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r) 6

π

β
.(3.12)

P r o o f. For any two points p, r, the following inequality holds:

exp(−β|p− r|) 6 1.

As a consequence, the following inequality is valid:

(3.13)

∫

S

exp(−β|p− r|)
cosφp cosφr

|p− r|2
χ(p, r) dS(r) 6

∫

S

cosφp cosφr

|p− r|2
χ(p, r) dS(r).

For any p ∈ S, we can always find a bounded domain V ′ ⊂ V with Lipschitz

boundary S′ such that p can see all other points in the closure V ′. Then,

(3.14)

∫

S

cosφp cosφr

|p− r|2
χ(p, r) dS(r) =

∫

S′

cosφp cosφr

|p− r|2
dS(r).

Applying the result of Lemma 3.1 to the right-hand side of (3.14), we have

(3.15)

∫

S′

cosφp cosφr

|p− r|2
dS(r) = π.
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Based on equations (3.13)–(3.15), the inequality (3.11) holds.

As shown in [29],

(3.16) dLrp(r
′)
dS(r) cosφr

|r− p|2
=

dV (r′)

|r′ − p|2
.

Adopting the above equality (3.16) and the idea of (3.14), we have
∫

V

exp (−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r)

=

∫

S

(
∫

Lrp

exp(−β|p− r′|) dLrp(r
′)

)

cosφp cosφr

|p− r|2
χ(p, r) dS(r)

=

∫

S′

(
∫

Lrp

exp(−β|p− r′|) dLrp(r
′)

)

cosφp cosφr

|p− r|2
dS(r)

=
1

β

∫

S′

(1− exp(−β|p− r|))
cosφp cosφr

|p− r|2
dS(r) 6

1

β

∫

S′

cosφp cosφr

|p− r|2
dS(r).

With help of the above last inequality and (3.15), the following result can be

obtained: ∫

V

exp(−β|p− r|)
cosφp

|p− r|2
χ(p, r) dV (r) 6

π

β
.

The proofs are complete. �

Lemma 3.3. Assume S is a piecewise smooth surface of a bounded domain V

in R
3. Let p ∈ S be a point at which S is smooth. Let d denote the diameter of V .

Then
∫

V

exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r) 6

4π

β
(1− exp(−βd)),(3.17)

∫

S

exp(−β|p− r|)
cosφr

|p− r|2
χ(p, r) dS(r) 6 4π.(3.18)

P r o o f. For any point p ∈ V , we can always find a bounded domain V ′ ⊂ V with

Lipschitz boundary S′, in which p can see all other points in the closure V ′. Then
∫

V

exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r) =

∫

V ′

exp(−β|p− r|)
1

|p− r|2
dV (r).(3.19)

Let δ be a sufficiently small value and denote by B(p; δ) a δ-neighborhood of p.

Exclude B(p; δ) from V ′, and denote the remaining domain by V ′
δ . Then we have

(3.20)

∫

V ′

exp(−β|p− r|)
1

|p− r|2
dV (r)

=

∫

B(p;δ)

exp(−β|p− r|)
1

|p− r|2
dV (r) +

∫

V ′

δ

exp(−β|p− r|)
1

|p− r|2
dV (r).
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For the first integral on the right-hand side of (3.20),

∫

B(p;δ)

exp(−β|p− r|)
1

|p− r|2
dV (r) =

∫

B(0;δ)

exp(−β|r|)
1

|r|2
dV (r)

=

∫ δ

0

(
∫

∂B(0;r)

exp(−β|r|)
1

|r|2
dS

)

dr

= 4π

∫ δ

0

exp(−βr) dr =
4π

β
(1 − exp(−βδ)).

Thus the following conclusion holds:

(3.21) lim
δ→0

∫

B(p;δ)

exp(−β|p− r|)
1

|p− r|2
dV (r) = 0.

For the second integral on the right-hand side of (3.20),

∫

V ′

δ

exp(−β|p− r|)

|p− r|2
dV (r) 6

∫

B(p;d)\B(p;δ)

exp(−β|p− r|)

|p− r|2
dV (r)

=

∫

B(0;d)\B(0;δ)

exp(−β|r|)
1

|r|2
dV (r)

=

∫ d

δ

(
∫

∂B(0;r)

exp(−β|r|)
1

|r|2
dS

)

dr

= 4π

∫ d

δ

exp(−βr) dr

=
4π

β
(exp(−βδ)− exp(−βd)).

Hence,

(3.22) lim
δ→0

∫

V ′

δ

exp(−β|p− r|)
1

|p− r|2
dV (r) 6

4π

β
(1− exp(−βd)).

Making use of equations (3.19)–(3.22), one obtains

∫

V

exp(−β|p− r|)
1

|p− r|2
χ(p, r) dV (r) 6

4π

β
(1− exp(−βd)).

Thus the inequality (3.17) holds.

For the second inequality (3.18), a similar idea is adopted. First, we have

(3.23)

∫

S

cosφr

|p− r|2
χ(p, r) dS(r) =

∫

S′

cosφr

|p− r|2
dS(r)

=

∫

S′

δ

(r − p) · nr

|r− p|3
dS(r) +

∫

∂B(p,δ)

(r− p) · nr

|r− p|3
dS(r).
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Making use of the divergence theorem, one obtains
∫

S′

δ

(r− p) · nr

|r− p|3
dS(r) = −

∫

V ′

δ

∇ ·
( r− p

|r− p|3

)

dV (r).

And the following result is obvious

∇ ·
( r− p

|r− p|3

)

= 0 for r ∈ V ′
δ .

Therefore,

(3.24)

∫

S′

δ

(r− p) · nr

|r− p|3
dS(r) = 0.

For any r ∈ ∂B(p, δ), we have

nr =
r− p

|r− p|
, nr ·

r− p

|r− p|
= 1.

Hence,
∫

∂B(p,δ)

(r− p) · nr

|r− p|3
dS(r) =

∫

∂B(p,δ)

1

|r− p|2
dS(r) =

1

δ2

∫

∂B(p,δ)

1 dS(r).

A simple calculation shows that

(3.25)

∫

∂B(p,δ)

(r− p) · nr

|r− p|3
dS(r) = 4π.

Making use of equations (3.23)–(3.25), one obtains
∫

S

cosφr

|r− p|2
χ(p, r) dS(r) = 4π.

Hence,
∫

S

exp(−β|p− r|)
cosφr

|p− r|2
χ(p, r) dS(r) 6 4π.

The proofs are complete. �

With the aid of Lemmas 3.2 and 3.3, some important conclusions are summarized

in the following corollary.

Corollary 3.1. The operators K1,K2,K3,K4 are non-negative, and

‖K1‖Lp(S) < 1− ε, ‖K2‖Lp(S) <
εσs

4β
,

‖K3‖Lp(V ) <
σs

β
(1− exp(−βd)), ‖K4‖Lp(V ) <

4(1− ε)

ε
,

for p ∈ [1,∞].
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P r o o f. Let

k1(p, r) =
1− ε

π

exp(−β|p− r|)
cosφp cosφr

|p− r|2
χ(p, r).

Let 1 < p < ∞ and u ∈ Lp(S). Referring to [28], the following conclusion holds:

|K1u(p)| =

∣

∣

∣

∣

∫

S

k
1/p+1/q
1 (p, r)u(r) dS(r)

∣

∣

∣

∣

6

(
∫

S

k1(p, r) dS(r)

)1/q(∫

S

k1(p, r)|u(r)|
p dS(r)

)1/p

.

Using the inequality (3.11) in Lemma 3.2, we have

∫

S

|K1u(p)|
p dS(p) 6 (1− ε)p/q

∫

S

∫

S

k1(p, r)|u(r)|
p dS(r) dS(p)

= (1− ε)p/q
∫

S

|u(r)|p
∫

S

k1(p, r) dS(p) dS(r)

= (1− ε)1+p/q

∫

S

|u(r)|p dS(r).

Hence,

‖K1‖Lp(S) = sup
‖u‖Lp(S)=1

‖K1u‖Lp(S) 6 1− ε.

The cases with p = 1 and p = ∞ are straightforward.

Similarly, the other three inequalities can also be proved. �

For practical physical problem, the material parameters satisfy

0 < ε < 1, β > 0.

Then, we always have

(3.26) ‖K1‖Lp(S) < 1, ‖K3‖Lp(V ) < 1.

With the help of the conclusions in Corollary 3.1, we are now in a position to

prove the existence and uniqueness of solution to (2.3).

Theorem 3.1. Let us assume that there exists a constant 0 < ε0 < 1 such that

0 < ε0 6 ε 6 1. If σs/(β + σs) < ε0, then (2.3) has unique solution.
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P r o o f. The unique solvability of (2.3) is equivalent to the reversibility of oper-

ator matrix

K =

(

I −K1 −K2

−K4 I −K3

)

.

Using the inequalities (3.26) and the Neumann series theorem, the operators I−K1

and I −K3 are invertible on Lp(S), Lp(V ) respectively. Then we have

(

I 0

K4(I −K1)
−1 I

)

K =

(

I −K1 −K2

0 (I −K3)(I − (I −K3)
−1K4(I −K1)

−1K2)

)

.

Now, we only need to prove the reversibility of the operator I − (I − K3)
−1K4 ×

(I −K1)
−1K2.

Adopting the Neumann series theorem, we have

‖(I −K1)
−1‖Lp(S) 6

1

1− ‖K1‖Lp(S)
, ‖(I −K3)

−1‖Lp(V ) 6
1

1− ‖K3‖Lp(V )
.

Then

‖(I −K3)
−1K4(I −K1)

−1K2‖Lp(V ) 6
‖K2‖Lp(S)‖K4‖Lp(V )

(1− ‖K1‖Lp(S))(1− ‖K3‖Lp(V ))

6
1− ε

ε

σs

σa + σs exp(−βd)

6
1− ε0
ε0

σs

σa + σs exp(−βd)
.

According to the Neumann series theorem, the operator I − (I − K3)
−1K2 ×

(I − K1)
−1K4 is reversibility if ‖(I − K3)

−1K2(I − K1)
−1K4‖Lp(V ) < 1, that

is,
1− ε0
ε0

σs

σa + σs exp(−βd)
< 1.

This equality is equivalent to

1− ε0
ε0

<
σa

σs
+ exp(−βd).

Further, we have
σa

σs
+ exp(−βd) <

σa

σs
+ 1 =

β

σs
.

So, if
σs

β + σs
< ε0
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holds, the reversibility of the operator I − (I −K3)
−1K2(I −K1)

−1K4 is obtained.

The reversibility of the operator matrix

(

I 0

K4(I −K1)
−1 I

)

is obvious.

To sum up, we obtain that

K =

(

I −K1 −K2

−K4 I −K3

)

.

is invertible. �

We note that the assumptions in Theorem 3.1 are satisfied in most situations.

First, Theorem 3.1 is valid for radiative heat transfer within black-body boundary

of pure absorbing-emitting media. Besides, when the scattering coefficient is small

enough, Theorem 3.1 is suitable for any situations with diffuse and gray boundary.

For the situation with black boundary, the solvability of the RITEs in any semitrans-

parent media is guaranteed by Theorem 3.1.

4. Convergence analysis of an iteration scheme

In order to simulate the coupled integral system (2.3), which is involved in the

radiative heat flux and the incident radiation, an iteration scheme is constructed as

(4.1)

{

q(n) −K1q
(n) = K2G

(n) + f,

G(n+1) = K3G
(n) +K4q

(n) + g,

where the superscript denotes the number of iteration.

For the iteration scheme (4.1), the following convergence conclusion holds.

Theorem 4.1. Under the hypotheses in Theorem 3.1, the iteration scheme (4.1)

is convergent.

P r o o f. We first solve the first equation in (4.1), and the solution is given by

(4.2) q(n) = (I −K1)
−1K2G

(n) + (I −K1)
−1f,

where we take advantage of the invertibility of the operator I −K1.

Substituting equation (4.2) into the second equation in (4.1), we have

(4.3) G(n+1) = K3G
(n) +K4((I −K1)

−1K2G
(n) + (I −K1)

−1f) + g.
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Rearranging the right-hand side of (4.3), we have

(4.4) G(n+1) = (K3 +K4(I −K1)
−1K2)G

(n) + g̃,

where g̃ = K4(I −K1)
−1f + g.

For (4.4), the corresponding error equation can be obtained as

(4.5) e(n+1) = (K3 +K4(I −K1)
−1

K2)e
(n),

where e(n+1) = G(n+1) −G.

According to (4.5), it is obvious that the convergence of the iteration scheme (4.1)

is equivalent to the contractibility of the operator K3 +K4(I −K1)
−1K2:

‖K3 +K4(I −K1)
−1

K2‖Lp(V ) 6 ‖K3‖Lp(V ) + ‖K4(I −K1)
−1

K2‖Lp(V )

6
σs

β
(1− exp(−βd)) +

σs

β

1− ε

ε

=
σs

β

(1

ε
−

1

exp(βd)

)

<
σs

β

1− ε0
ε0

.

According to the assumption, we have

(4.6) ‖K3 +K4(I −K1)
−1K2‖Lp(V ) < 1.

The inequality (4.6) implies that the iteration scheme (4.1) is convergent. �

Theorem 4.1 shows that the iteration scheme (4.1) is convergent under the as-

sumptions of Theorem 3.1.

5. Numerical discretization and implementation

5.1. Discretization. BEM, as a discrete method of a boundary integral equation,

is the proper tool to deal with RITEs. In this paper, BEM based on the collocation

scheme is used to discretize RITEs.

An alternative integral formula of RITEs can be obtained upon substituting the

geometric relationship (3.16) into equations (2.1)–(2.2). The results can be written
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as

q(p) + εEb(p)(5.1)

= ε

∫

S

(

Eb(r) +
1− ε

ε
q(r)

)

P1(p, r) dS(r)

+ ε

∫

S

(
∫

Lrp

Ib(r
′) exp(−β|p− r′|) dLrp(r

′)

)

P2(p, r) dS(r)

+ ε

∫

S

(
∫

Lrp

G(r′) exp(−β|p− r′|) dLrp(r
′)

)

P3(p, r) dS(r), p ∈ S,

G(p) =

∫

S

(

Eb(r) +
1− εr
εr

q(r)

)

P4(p, r) dS(r)(5.2)

+

∫

S

(
∫

Lrp

Ib(r
′) exp(−β|p− r′|) dLrp(r

′)

)

P5(p, r) dS(r)

+

∫

S

(
∫

Lrp

G(r′) exp(−β|p− r′|) dLrp(r
′)

)

P6(p, r) dS(r), p ∈ V,

where the kernel functions are defined as

P1(p, r) = exp(−β|p− r|)
cosφp cosφr

π|p− r|2
χ(p, r),

P2(p, r) = σa
cosφp cosφr

|p− r|2
χ(p, r),

P3(p, r) =
σs

4π

cosφp cosφr

|p− r|2
χ(p, r),

P4(p, r) = exp(−β|p− r|)
cosφr

π|p− r|2
χ(p, r),

P5(p, r) = σa
cosφr

|p− r|2
χ(p, r),

P6(p, r) =
σs

4π

cosφr

|p− r|2
χ(p, r).

To solve equations (5.1)–(5.2) numerically, we use the standard boundary element

discretization method [7] in this paper. The boundary of the computational domain

is discretized to a set of plane elements denoted by {Sk}
Ne

k=1. And q is approximated

by linear interpolation on each element. For example, on an element Sk, we have

q(p) = q(ξ, η) =

M
∑

α=1

Fα(ξ, η)q
α,

where ξ, η are the intrinsic coordinates, and Fα(ξ, η), q
α denote the bilinear shape

function and the value of q at a local node α on the element Sk. Denote by M the

number of nodes on each element.
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Let p in (5.1) be given (in turn) by pi for i = 1, . . . , Np (where Np is the number

of collocation points on the boundary). Let p in (5.2) be given (in turn) by pj for

j = 1, . . . , Ni (where Ni is the number of collocation points in the interior of the

domain). Then equations (5.1)–(5.2) can be approximately written as

qi −
Ne
∑

k=1

M
∑

α=1

gαikq
α =

Ne
∑

k=1

L
∑

l=1

f l
ikS

l + hi, i = 1, 2, . . . , Np,(5.3)

Gj =
Ne
∑

k=1

L
∑

l=1

ul
jkG

l +
Ne
∑

k=1

M
∑

α=1

vαjkq
α + tj , j = 1, 2, . . . , Ni,(5.4)

where qi, Gj are the abbreviations of q(pi), G(pj) and

gαik = (1 − ε)

∫

Sk

FαP1(pi, r) dS(r),

f l
ik = ε

∫

Sk

(
∫

Ll
rp

exp(−β|pi − r′|) dL(r′)

)

P3(pi, r) dS(r),

hi = ε

Ne
∑

k=1

∫

Sk

M
∑

α=1

FαE
α
b (r)P1(pi, r) dS(r)− εEb(pi)

+ ε

Ne
∑

k=1

∫

Sk

L
∑

l=1

(
∫

Ll
rp

Ib(r
′) exp(−β|pi − r′|) dL(r′)

)

P2(p, r) dS(r),

ul
jk =

∫

Sk

(
∫

Ll
rp

exp(−β|pj − r′|) dL(r′)

)

P6(pj , r) dS(r),

vαjk =
1− ε

ε

∫

Sk

FαP4(pj , r) dS(r),

tj =

Ne
∑

k=1

∫

Sk

M
∑

α=1

FαE
α
b (r)P4(p, r) dS(r)

+

Ne
∑

k=1

∫

Sk

L
∑

l=1

(
∫

Ll
rp

Ib(r
′) exp(−β|pj − r′|) dL(r′)

)

P5(pj , r) dS(r),

where {Ll
rp}

L
l=1 denotes the subdivision of the line Lrp.

Then system (5.3)–(5.4) is solved by the iteration scheme (4.1).

The computational domain is covered by the regular grid of cuboid cells in order to

calculate the line integral. When the temperature and incident radiation within each

small cuboid cell are assumed to be constants, the line integrals in f l
ik, hi, u

l
jk, tj can

be calculated analytically. The nearly singular term, 1/|p− r|2, can be handled by

the technique proposed by Eberwien et al. [13]. The idea in [13] allows us to ensure

that the error introduced by numerical integration is nearly constant, regardless of
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the proximity of the source point. The detailed procedure is not repeated here. We

refer the interested readers to [13].

Note that the Boolean function in integral kernels needs to be determined by

an effective visualization algorithm. This procedure is very time-consuming. In

addition, the accurate detection of the shadow regions is an arduous and crucial task

and affects greatly the accuracy of the numerical simulation. The aim of the next

subsection is to develop a high-precision visualization algorithm.

5.2. The algorithm for the shadow detection. For the three dimensional

problem, the present algorithm is valid for the plane elements. Due to the pro-

hibitively long computing time, the discretization strategy with non-plane elements

is not applied to the calculation of thermal radiation.

First, some symbols need to be explained. The quantity p denotes the source

point. The unit outward normal vector at p will be denoted by np. The symbols

Sk and Sb represent the current element on which the integration may be performed

and the third party element which may prevent the radiation ray from reaching its

destination, respectively. Let nk denote the unit outward normal vector of the plane

element Sk. Let r, ri (i = 1, 2, 3, . . .) denote the centre point and vertices of Sk.

The key step in the present algorithm is to create two lists. One is the list of active

elements, from which the radiation energy is emitted to the destination point p. The

other is the list of blocking elements, in which the element prevents the radiation ray

from reaching its designated destination. Finally, for the active element, which can

be seen totally, the integration is carried out directly, while the active element, which

is shaded partially, needs to be subdivided. The element, which is shaded totally, is

discarded.

Now the detailed detection-subdivision procedure is described as follows:

Step 1. Creation of the list of active elements.

This list is built as the procedure proceeds.

Let

d1 = np · (p− r), d2 = nk · (r− p).

If the signs of d1, d2 are both positive, the current element Sk is viewed as an active

element and it is added to the list of active elements. Repeating this operation for

all boundary elements, we have created the initial list of active elements for p.

Step 2. Creation of the list of blocking elements.

For any potential active element, the list of blocking elements is established by

scanning all other elements by the following operations.

First, the potential active elements which are coplanar with p, are excluded. For

the other elements, a cylinder window is created as in Figure 1, of which the diameter
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is the sum of diameters of the potential active element and the potential blocking

element, and the height is |p− r|.

r

p

Sk

Figure 1. The cylinder window for point p and the potential active element Sk.

A potential blocking element Sb, if its center lies outside of this cylinder, is dis-

carded and then the next element is considered. If the center of Sb lies in this

cylinder, the following operations are performed on this element.

A cone window is constructed as in Figure 2. The bottom diameter of the cone is

equal to the diameter of Sk and its height is |p− r|. If one of the vertices of Sb lies

in this cone, Sb is put into the list of blocking elements about p and Sk. Otherwise,

more operations are needed to exclude the situation as shown in Figure 3.

r

p

Sk

Figure 2. The cone window for point p and
the potential active element Sk.

r

p

r2

r3

r1

Sk

Sb

Figure 3. The sight from p to Sk is
shaded totally.
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The line segment pr is constructed. If pr intersects with Sb, we can conclude

that Sk cannot be viewed from p. The element Sk is discarded from the initial list

of active elements and then we go back to the beginning of step 2. If pr does not

intersect with Sb, the line segments connecting the source point p and the vertices

of Sk (pr1,pr2,pr3, . . . ) are constructed. If one of these segments intersects with

Sb, Sb is put into the list of blocking elements. If none of these segments intersects

Sb, Sb is discarded.

The above operations are repeated for all the boundary elements. Then the list of

blocking elements is established for p and Sk.

A possible case is that Sk may be shaded by the union of some adjacent blocking

elements. A further operation is needed in order to check this situation. We first

need to determine whether the line segments connecting the source point p and the

vertices of Sk intersect with some blocking element in the list of blocking elements

or not. If the proposition is true for all these segments, Sk is discarded from the list

of active elements. Otherwise, no operation is performed.

Step 3. Subdivision of the active element.

After the previous steps, a list of active elements for point p is established. Mean-

while, a list of blocking elements about any active element is established. For any

active element, if its list of blocking elements is empty, the numerical integration is

performed directly. For the remaining active elements, a subdivision is performed as

follows.

First, this active element is subdivided into four sub-elements as shown in Figure 4.

1 2

3

4

Triangle Element

1 2

3 4

Quadrilateral Element

Figure 4. Subdivision of element.

For all the sub-elements, step 2 above is performed throughout its list of blocking

elements. When some sub-element is blocked partially, it is subdivided into four

smaller sub-elements. For sub-element totally visible, the integration on this sub-

element is performed. On the contrary, the sub-element totally shaded is discarded.

The subdivision procedure is terminated when the area of the sub-element reaches

a preset minimum value. The accuracy of the present algorithm increases as the
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preset minimum value reduces. The preset minimum value can be set to be an

arbitrary small quantity. In the following numerical examples, it takes 10−4.

Although the present algorithm is described based on 3D geometry, it can be

applied to 2D geometries naturally. For 2D problems, the two windows in step 2 are

rectangle and triangle, respectively.

6. Numerical experiments

6.1. Test 1. In this subsection, a 3D L-shaped domain is considered (see Figure 5).

The dimensions of this tested geometry areW ×L×H = 1×3×3 (m3). The domain

contains an emitting-absorbing medium at a temperature of 1000K. The walls are

black (ε = 1) at 500K. Figure 6 shows the effect of the absorbing coefficient of the

medium on the predicted net radiative heat flux along the AA line.

A
A

x

y
z

W

H
H1

L1

L

Figure 5. The L-shaped enclosure.

The present model uses 2200 boundary elements. The comparisons with the exist-

ing results are shown in Figure 6. From the comparisons, the validity of the present

algorithm is verified. The proposed numerical procedure can be viewed as a good

alternative technique for the simulation of thermal radiation in complex enclosures.

6.2. Test 2. The analysis of radiative transfer of multidimensional rectangular

geometries has been associated with the design of combustion chambers and furnaces.

For this test we refer to [28]. As shown in Figure 7, a standard unit cube is considered.
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YIX [17]
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Figure 6. Net radiative heat flux along line AA.

All six walls of the cube are black (ε = 1). The scattering albedo of medium is equal

to unity (Ω = σs/β = 1). All the walls, as well as the medium in the enclosure, are

kept cold (T = 0K). Only the emissive power of the bottom wall is taken 1.0W/m2.

x

y

z

C1

C2

B1

B2

A1

A2

O

Figure 7. System geometry.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 8. Non-dimensional net radiative heat flux in z-direction along with C1C2.

As in [28], we also consider the dimensionless heat flux at A1A2, C1C2 and the

average incident radiation at B1B2. The numerical comparisons are shown in Fig-

ures 8–10. The present model uses 1350 boundary elements and 1331 cuboid cells

in the medium. From the comparative results, the present results are similar to the

references compared with the FV+ME.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91
BEM
FV+ME [28]
ZM+MC (Reference)

Figure 9. Non-dimensional net radiative heat flux in x-direction along with A1A2.
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Figure 10. Non-dimensional average incident radiation in z-direction along with B1B2.

7. Conclusions

In this paper we first analyzed the properties of the four integral operators as-

sociated with the RITEs model. Those properties allow us to prove the existence

and uniqueness of solutions to the RITEs model. We then proposed an iteration

algorithm, which serves as a nonlinear solver for our simulation of the RITEs model,

and established its convergence. An improved high-precision visibility algorithm was

developed to overcome the difficulty caused by geometries of non-convex domains.

Finally, we presented two numerical experiments to verify the effectiveness and ac-

curacy of the proposed numerical method and algorithms. Admittedly, the amount

of computation involved in the realization of our method and algorithms are still

huge for three-dimensional simulations. One of our near term research projects is

to improve efficiency of the proposed numerical method and to develop more effec-

tive methods and algorithms which are better suited for implementation on high

performance computers.
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