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ON QUANTILE OPTIMIZATION PROBLEM
BASED ON INFORMATION FROM CENSORED DATA

Petr Volf

Stochastic optimization problem is, as a rule, formulated in terms of expected cost func-
tion. However, the criterion based on averaging does not take in account possible variability
of involved random variables. That is why the criterion considered in the present contribution
uses selected quantiles. Moreover, it is assumed that the stochastic characteristics of opti-
mized system are estimated from the data, in a non-parametric setting, and that the data
may be randomly right-censored. Therefore, certain theoretical results concerning estimators
of distribution function and quantiles under censoring are recalled and then utilized to prove
consistency of solution based on estimates. Behavior of solutions for finite data sizes is studied
with the aid of randomly generated example of a newsvendor problem.

Keywords: optimization, censored data, product-limit estimator, empirical quantile,
newsvendor problem

Classification: 62N02, 62P25

1. INTRODUCTION

Let us consider an optimization problem with objective function ϕ(y, v), where v is an
input variable from certain feasibility set V and values y are the realizations of a random
variable Y with distribution function F . Standardly, corresponding stochastic optimiza-
tion problem can be formulated as infv EFϕ(Y, v), where EF stands for the expectation
w.r. to F . If F is known, we actually deal with a “deterministic” optimization case.
However, criterion based on averaging does not take in account possible variability of r.v.
Y and is actually reasonable for optimization of actions repeated regularly over a long
time period. Even then the variability of solution can be large. That is why the present
paper is devoted to the optimization of quantiles of random criterion Z(v) = ϕ(Y, v).
Alternatively, we can be interested in a multi-objective optimization task, reducing both
the expectation and the variability of solution (measured by its variance, or by certain
inter-quantile range). Further, our information on probability distribution could be non-
complete, we have to employ nonparametric estimate of F . Then, as a rule, the estimate
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is used instead F . Hence, we have to analyze both the bias and variability of obtained
solution (compared to the ideal solution when F is known).

The investigation of utilization of empirical (estimated) characteristics in stochastic
optimization problems started already in 70-ties. A number of papers has dealt with
these tasks, let us mention here just Kaňková [4] offering also a historical overview
containing a number of other references. In the present paper we consider even more
complicated case when the distribution function F should be estimated from the data
censored randomly from the right side. Such a situation is quite frequent in the analysis
of demographic, survival or insurance data. The lack of information leads to higher
variability of estimates and, consequently, to lower accuracy of optimal solutions. The
approach to statistical data analysis in the cases when the data are censored or even
truncated is also provided by a number of authors. The most of results were derived
in the framework of statistical survival analysis and collected in several monographs
(c.f. Kalbfleisch and Prentice [3], or Andersen et al. [1] ).

In the next section, theoretical properties of estimates under random right censoring
will be recalled briefly. We shall consider the product-limit estimator as a generalization
of the empirical distribution function, and a corresponding estimator of quantiles. Their
properties in cases with and without censoring will be compared. In Section 3 these
properties are utilized to asses the almost sure consistency of optimal solutions, i. e.
the convergence of the solution based on a data sample (eventually with random right-
censoring) to the solution obtained under full information on probability distribution.
It is proved that the asymptotic rate is comparable with the cases without censoring.
Finally, in Section 4, it is shown how, in a finite data case, the lack of information leads
to higher variability and bias of estimates. Behavior of solutions for finite data sizes is
studied and illustrated on a simple case of the newsvendor optimization problem.

2. ESTIMATORS OF DISTRIBUTION AND QUANTILE FUNCTIONS

Let us consider a continuous-type random variable Y characterizing for instance a ran-
dom time to certain event. Let another continuous random variable Z be a censoring
variable, both be positive and mutually independent. Further, let f(y), g(z), F (y),
G(z), F (y) = 1 − F (y), G(z) = 1 − G(z) denote the density, distribution and survival
functions of both variables. It is assumed that we observe just X = min(Y,Z) and
δ = 1[Y ≤ Z], i. e. δ indicates whether Y is observed or censored from the right side.
The data are then given as a random sample (Xi, δi, i = 1, . . . , N). Notice that the
case without censoring is obtained when G(t) ≡ 0 on the region where F (t) < 1. One of
standard assumptions to prevent the censoring variable cutting off a part of domain of
Y is that sup{t : F (t) < 1} ≤ sup{t : G(t) < 1}. Here the notation sup{t : . . .} means
the supremum of the set of t having given property. Let us remark here that in some
cases we can deal, for instance, with the logarithm of time. Then the domain of data
can be the whole real line.

A generalization of the empirical distribution function is the well known Kaplan–
Meier “Product Limit Estimate” (PLE) of survival function. Let us first sort (re-index)
the data in increasing order, X1 ≤ X2 ≤ · · · ≤ XN , then the PLE of F (t) has the form
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FN (t) =

N∏
i=1

(
N − i

N − i+ 1

)δi·1[Xi≤t]
. (1)

Again, notice that when all δi = 1, we obtain the empirical survival function. The
following proposition is due to Breslow and Crowley [2]:

Proposition 1. Let T > 0 be such that still F (T ) · G(T ) > 0. Then the random
process

VN (t) =
√
N

(
FN (t)

F (t)
− 1

)
=
√
N
F (t)− FN (t)

F (t)
(2)

converges, on [0, T ], when N → ∞, to the Gauss martingale with zero mean and the
variance function

C(t) =

∫ t

0

dF (s)

F (s)2G(s)
. (3)

Here, FN (t) = 1−FN (t). In other words, VN (t) converges in distribution on [0, T ] to
the process W (C(t)), where W (·) denotes the Wiener process. The asymptotic variance
function can be estimated by its empirical version:

CN (t) =

N∑
i=1

Nδi
(N − i+ 1)2

· 1[Xi ≤ t].

Both the PLE and its estimated variance function CN (t) are consistent in probability,
uniformly w.r. to t ∈ [0, T ] (see again Breslow and Crowley [2]).

Let us now recall also some properties of empirical quantiles. ’True’ p-quantile, for
any p ∈ (0, 1), is defined as Q(p) = min{x : F (x) ≥ p}, and is obtained as a unique
solution of equation F (x) = p provided F is strictly increasing. Empirical quantile is
then defined as QN (p) = min{x : FN (x) ≥ p}. Let now p ∈ (0, F (T )), where T is from
Proposition 1. Notice that QN (p) is well defined only if FN (x) ≥ p for some x. However,
from the consistency of the PLE it follows that with probability tending to one, when
N grows to infinity, there exists x < T such that FN (x) ≥ p. The following statement
can be found for instance in Andersen et al. [1], Ch.IV.3.

Proposition 2. Let f(x) > 0 in the neighborhood ofQ(p). Then the empirical quantile
QN (p) is P-consistent and asymptotically normal, namely, for each c < 1/2

N c · (QN (p)−Q(p))→P 0,
√
N(QN (p)−Q(p))→d N(0, S(p)),

and the asymptotic variance equals

S(p) =
(1− p)2 · C(Q(p))

f(Q(p))2
.
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It follows that the variance of (QN (p)−Q(p)) can be estimated by

SN (p)

N
=

(1− p)2 · CN (QN (p))

N · fN (QN (p))2
, (4)

which is complicated by inevitable estimation of density function, as a rule with the aid
of kernel method.

If we denote DN (t) = VN (t)
/

(1 + C(t)), then for the case without censoring we

obtain that C(t) = F (t)
/
F (t) and DN (t) =

√
N(F (t)− FN (t)) leading to the standard

Kolmogorov–Smirnov statistics. Notice also that then we obtain a well known result

asvar[
√
N(QN (p)−Q(p))] = p(1−p)

f(Q(p))2 .

Further, from (3) it is also seen that the variance in the case with censoring (when
G(t) ≤ 1) is larger than without it (i. e. when G(t) = 1 on the whole [0, T ]).

However, in the sequel we shall need results on strong (a.s.) consistency of the P.L.E.
and of corresponding sample quantiles. In the case without censoring, the well known
results (Glivenko–Cantelli theorem and its consequences) yield that almost surely, for
t ∈ (−∞,∞),

sup
t
|FN (t)− F (t)| = O

(
N

−1
2

)
.

A similar result for quantiles is due to the Bahadur representation of sample quantile.
Namely, let p ∈ (0, 1), F be twice differentiable at Q(p) with F ′(Q(p)) = f(Q(p)) > 0.
Then almost surely

|QN (p)−Q(p)| = O
(
N

−1
2

)
.

The case of censoring is complicated by the fact that the censoring rate increases in
the right end of the domain of values of censored random variable Y . Nevertheless, there
are also results on uniform convergence of the PLE on the whole line. Let us quote here
the following:

Proposition 3 (Rejto [9]) Let us consider the random right-censoring model with
distribution functions F,G being continuous. Let there exist α, β ∈ (0, 1] and a real τ
such that αF (t)β ≤ G(t) on [τ,∞). Then almost surely

sup
t
|FN (t)− F (t)| = O

([
log N

N

] 1
2+β

)
.

Again, FN (t) = 1−FN (t), FN (t) denotes the PLE of survival function F (t) of random
variable Y .

In the sequel, we shall utilize a weaker result, namely the strong uniform consistency
of the PLE with rate O(N−1/2) on (−∞, T ], where T is as in Proposition 1. Such an
assertion has been proved for instance in Peterson [7].

Let us now derive the strong consistency of empirical quantiles without using the
Bahadur representation result mentioned above.
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Lemma 1. Let p ∈ (0, 1). Further, let there exists an interval [a, b] such that a <
Q(p) < b, and for x ∈ [a, b] it holds that f(x) ≥ d > 0. Then

|QN (p)−Q(p)| = O(N−1/2) a.s.

P r o o f . From assumptions of Lemma 1 it follows that b ≤ T and therefore

supx∈[a,b] |FN (x)− F (x)| = O(N−1/2) a.s.

Let us then consider a sequence CN → ∞ such that CN/
√
N → 0 (for instance

CN = Nγ , γ < 1/2). Then, a.s. and uniformly for x ∈ [a, b], to each ε > 0 there exists
such N0 that for N > N0

FN (x) ∈ [F (x)− ε/CN , F (x) + ε/CN ].

Hence if we take x1 = Q(p) − 2ε/(CNd), x2 = Q(p) + 2ε/(CNd) (both in (a, b) for
sufficiently large N), we get that FN (x1) < p, FN (x2) > p. Therefore QN (p) ∈ (x1, x2),
i. e.

QN (p) ∈ [Q(p)− 2 · ε
d · CN

, Q(p) +
2 · ε
d · CN

].

�

Remark 1. The same result holds also in the case when F (y) is not continuous but
still uniformly increasing, i. e. F (x2) − F (x1) ≥ d · (x2 − x1) for some d > 0 and all
x1, x2 from [a, b] such that x1 < Q(p) < x2. The difference is that then for some p it
may occur that F (Q(p)) > p. However, in fact, the equality F (Q(p)) = p was not used
in the Lemma 1 proof.

Further, notice that Lemma 1 concerns also the case with random right censoring,
due the assumption made above that sup{x : F (x) < 1} ≤ sup{x : G(x) < 1}.

3. CONSISTENCY OF SOLUTION BASED ON EMPIRICAL QUANTILES

Let us return to the optimization problem formulated as the minimization of a p-quantile
of distribution of the random variable Z(v) = ϕ(Y, v).

Let the following assumptions hold. The first just recapitulates assumptions made in
previous section, the second is actually a standard one used in stochastic optimization
setting (see for instance Kaňková [4]).

Assumption A1. The distribution of r.v. Y is of continuous type with its density
function continuous and positive on interval (inf{y : F (y) > 0}, sup{y : F (y) < 1}).
Further, in the case of censoring, sup{y : F (y) < 1} ≤ sup{y : G(y) < 1}.
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Assumption A2. Let v ∈ V , V be compact in R, and let the function ϕ(y, v) be
continuous in R × V . Further, let ϕ(y, v) be Lipschitz w.r. to y ∈ R, with a constant
L > 0 not depending on v, for each v ∈ V .

First, we are interested in the distribution of r.v. Z(v). Let us denote its distribution
function for given v Fv(z), its quantiles Qv(p). Notice that Fv(z) = P (ϕ(Y, v) ≤ z) and
that the set {ϕ(y, v) ≤ z} = ∪Kk=1Ik, where Ik are disjoint intervals in R. Naturally,
they, as well as their number K = K(z, v), depend on z, v.

Lemma 2. For each v ∈ V the distribution function Fv(z) is strictly increasing in
z ∈ Zv = (infy ϕ(y, v), supy ϕ(y, v)), y ∈ R.

P r o o f . Let z2 > z1, both in Zv. Then there is at least one couple of points y1, y2
at which ϕ(y, v) crosses levels z1, z2. The distance |y2 − y1| ≥ (z2 − z1)/L, hence
Fv(z2) − Fv(z1) ≥ (z2 − z1)/L · min{f(y) : y ∈ (y1, y2)}. As this minimum of f(y) is
positive, the assertion is proved. �

Let us denote by FN,v(z) the estimate of distribution function Fv(z), based on the

PLE or EDF FN (y). Namely, FN,v(z) =
∑K
k=1(FN (Rk) − FN (Lk)),, where Lk, Rk are

left and right endpoints of interval Ik from above.

Proposition 4. Let function ϕ(y, v) be such that the number of crossing points of
each level z, for each v, is bounded, i. e. K(z, v) ≤ K∗ <∞. Then, for z ∈ Zv, v ∈ V ,

sup
(z,v)

|FN,v(z)− Fv(z)| = O
(
N

−1
2

)
a.s.

P r o o f . As the number of crossing points, and therefore of intervals in decomposition
of the set {ϕ(Y, v) ≤ z}, is bounded, uniformly, then, a.s.,

sup
(z,v)

|FN,v(z)− Fv(z)| ≤ 2K∗ sup
y≤T
|FN (y)− F (y)| = O

(
N

−1
2

)
.

The condition of the proposition is fulfilled for instance when functions ϕ(y, v) are convex
or concave in y; then K∗ = 2. �

A similar result can be proved for consistency of empirical quantiles, however, at least
for now, separately for each v ∈ V . Quantiles of r.v. Zv are defined in a standard way,
i. e. for p ∈ (0, 1) Qv(p) = min{z : Fv(z) ≥ p}, while corresponding empirical quantile is
QN,v(p) = min{z : FN,v(z) ≥ p}. The following statement follows then from Lemma 1
and Remark 1 dealing with non-continuous but strictly increasing distribution functions.

Proposition 5. Under conditions of Proposition 4, for each v ∈ V and p ∈ (0, 1),

|QN,v(p)−Qv(p)| = O
(
N

−1
2

)
a.s.

However, in the sequel, in order to prove the main result, we shall need a stronger
conditions ensuring that the increase of Fv(z) is uniform w.r. to v ∈ V :
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Assumption A3. Let p ∈ (0, 1) be such that distribution functions Fv(z) are strictly
increasing in a neighborhood of Qv(p), uniformly w.r. to v ∈ V .

In other words, there exist z1, z2 such that z1 < Qv(p) < z2 and d > 0 such that
Fv(z2)− Fv(z1) ≥ d(z2 − z1), for all v ∈ V .

Corollary 1. If Assumption A3 is added, then the result of Proposition 5 holds uni-
formly w.r. to v ∈ V .

Main results

The main objective is to show that the minimum of Qv(p) over v ∈ V can be approached
by optimal results based on empirical estimates. As the set V is compact, there exist
Q∗(p) = minv Qv(p) which is achieved in at least one point v∗ ∈ V . Let us denote the
set of all such solutions V ∗ ⊂ V . Further, the same holds for the task of minimization
of QN,v(p) over v, for each N . Namely, the minimum Q∗N (p) = minv QN,v(p) is achieved
in some set of (random) points v∗N with values in V . Let us denote this set V ∗N . Again,
it is random, depending on realized data.

Theorem 1. Let the assumptions A1, A2, A3, and conditions of Proposition 4 hold,
p ∈ (0, 1). Then a.s.

|Q∗N (p)−Q∗(p)| = O
(
N

−1
2

)
.

P r o o f . Consider any sequence CN → ∞ such that CN/
√
N → 0, any v∗ ∈ V ∗, any

sequence v∗N ∈ V ∗N . From Corollary 1 it follows that a.s.

CN |QN,v∗(p)−Q∗(p)| → 0, CN |QN,v∗N (p)−Qv∗N (p)| → 0.

Further, QN,v∗N (p) ≤ QN,v∗(p) and Q∗(p) ≤ Qv∗N (p). Hence also CN |QN,v∗N (p) −
Q∗(p)| → 0. �

We are also interested whether there exists a sequence of “empirical” solutions v∗N
converging towards “true” solutions in V ∗. To prove it, we shall utilize the following
proposition taken from Kibzun and Kan [5], see also Timofeeva [10]. Its assumptions
are in fact covered by assumptions A1 and A2:

Proposition 6. Let A1, A2 hold, further let P{|ϕ(Y, v) − z| ≤ ε} > 0 for each
ε > 0, v ∈ V, y ∈ R and z ∈ (infy ϕ(y, v), supy ϕ(y, v)). Then

Qv(p) is continuous in v, for each p ∈ (0, 1).

Again, from the compactness of V the uniform continuity of Qv(p) follows. The
assumption that P{|ϕ(Y, v)− z| ≤ ε} > 0 follows from A2, namely from the Lipschitz
continuity of ϕ(y, v) in y.
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Theorem 2. Let the conditions of Theorem 1 hold. Then there exists a subsequence
Nk such that corresponding optimal solutions v∗Nk ∈ V ∗Nk converge a.s. to a v0 having
values in V ∗.

P r o o f . Existence of a converging subsequence inside each sequence in V follows from
its compactness. Hence there exists also converging subsequence v∗Nk selected from
v∗N ∈ V ∗N . We have to show that its (random) limit v0 belongs a.s. to V ∗. From
Proposition 6, Corollary 1 and Theorem 1 it follows that a.s.

|Qv∗Nk (p)−Qv0(p)| → 0, |QNk,v∗Nk (p)−Qv∗Nk (p)| → 0, |QNk,v∗Nk (p)−Q∗(p)| → 0.

Hence Qv0(p) = Q∗(p) and v0 ∈ V ∗ a.s. �

Thus, except the convergence of optimal values of quantiles we showed also the exis-
tence of a random sequence of solutions converging towards the set of optimal solutions
{v∗}. If v∗ is unique, then v0 = v∗ a.s.

4. EXAMPLE, OPTIMIZATION IN NEWSVENDOR PROBLEM

Let us consider the following rather simple example of optimization problem in standard
newsvendor model, in order to show the behavior of optimal solutions based on estimated
quantiles and to study the influence of censoring.

Let D be a (nonnegative) random variable with distribution function F represent-
ing the demand (of units of certain commodity), let each unit be sold for price q and
purchased for price c < q, S be the number of units stocked, i. e. purchased to be sold.
In the simplest case c and q are fixed, we search the solution to the optimal stocking
quantity S which maximizes the profit

Z = q ·min(S,D)− c · S.

As D and therefore Z are random, we have a choice which criterion to maximize. As the
newsvendor’s actions are repeated regularly, the expectation of profit could be preferred,
however quantiles could also be of interest. It is well known and can be shown easily that
to get maxS EZ, the optimal solution is S = SE = ((q − c)/q)-quantile of distribution
of D. It follows from the maximization of

EZ = (q − c)S − q
∫ S

0

F (x) dx.

Hence, the mean profit is achieved through the quantile of underlying distribution. Let
us add that for the maximization of α-quantile of Z the optimal stock equals S = Sα =
QD(α), the α-quantile of D, and achieved maxS QZ(α) = QD(α)(q−c). See for instance
Petruzzi and Dada [8] and also Kim and Powell [6].

In the simulation study let us assume that the underlying demand distribution is
D ∼ N(µ = 150, σ = 20), the prices are q = 15, c = 10. Optimal value of S maximizing
the mean profit is SE = QD(1/3) = 141.386, maximal mean profit then achieves EZ =
640.92. However, the demand is observed just through data. We can imagine that the
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data on demand were collected from the past newsvendor’s experience, the censoring
occurred when the stock was smaller than demand. Let us consider two cases:

A) Fully observed data Xi = Di, i = 1, . . . , N, (N =50 or 200).

B) Randomly right-censored data, censored by a random variable Z. In this case we
observe Xi = min(Di, Zi). Let the distribution of Z be uniform on (120, 200), such a
selection leads to approximately 40% censoring.

Each generation of data was repeated K = 100-times in order to obtain a represen-
tation (sample distribution) of results. From each sample the PLE (the EDF in the
case A) FN of the distribution function of demand was computed and S taken optimal
w.r. to it, i. e. S = SN = QN (1/3) = min{Xi : FN (Xi) ≥ 1/3}. Results, namely the
values SN and corresponding achieved mean profits EZ when S = SN are displayed in
Figure 1.
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Fig. 1. Empirical distribution of mean profits at “sub-optimal” SN

based on estimated distribution of demand, for data extent N = 50

and 200, each repeated 100 times.
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Two rather expected phenomena are observed, first, that the variability decreases
with growing data sample, and second, that the censoring really leads to smaller infor-
mation and therefore larger uncertainty of achieved expected profit.

5. CONCLUSION

We have studied the impact of variability of statistical estimates to uncertainty of so-
lution in a stochastic optimization problem formulated via certain quantile of objective
function. We compared two cases: In the first case, stochastic characteristics of the prob-
lem were estimated, in a non-parametric way, from fully observed data. In the second
case the estimates of the same characteristics were based on randomly right-censored
data. Theoretical properties of estimators of distribution function and quantiles from
censored data were recalled. Then, the convergence of solutions based on estimated
quantiles to optimal solutions was proven, the rate of convergence established. The be-
havior of estimates in real situations was studied with the aid of a simple optimization
problem example and randomly generated data.
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