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Abstract. Let (A,B) be a complete and hereditary cotorsion pair in the category of left
R-modules. In this paper, the so-called Gorenstein projective complexes with respect to the
cotorsion pair (A,B) are introduced. We show that these complexes are just the complexes
of Gorenstein projective modules with respect to the cotorsion pair (A,B). As an applica-
tion, we prove that both the Gorenstein projective modules with respect to cotorsion pairs
and the Gorenstein projective complexes with respect to cotorsion pairs possess stability.
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1. Introduction

Let (A,B) be a complete and hereditary cotorsion pair in the category of left

R-modules. Then there are two induced cotorsion pairs (Ã, dg B̃) and (dg Ã, B̃) ([8]),

and both of them are complete and hereditary ([17], [14]). Recently, among others,

the Gorenstein category G(A) with respect to the cotorsion pair (A,B) was intro-

duced and studied by Yang and Chen in [16], see Definition 2.3. In this paper, we

generalize this notion to the category of complexes of left R-modules, namely, we in-

troduce the Gorenstein projective complexes with respect to the cotorsion pair (A,B),

see Definition 3.1. The class of these complexes will be denoted by G(Ã). It con-

tains Gorenstein projective complexes [4], F-Gorenstein flat complexes, see [10], and

Gorenstein flat complexes [7] over right coherent rings as its special cases. By us-
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ing the techniques of Bravo and Gillespie in [3], we prove the following result, see

Theorem 3.5.

Theorem 1.1. A complex C of left R-modules belongs to G(Ã) if and only if

each Cn belongs to G(A).

Theorem 1.1 generalizes [10], Theorem 4.7. and [18], Theorems 2.2, 3.1, and it

provides interesting relationships between the Gorestein projectivity with respect to

the cotorsion pair (A,B) of a complex and that of all its terms. By this connection,

we prove the following results, see Theorem 4.1 and Theorem 4.2, respectively.

Theorem 1.2. A left R-module M belongs to G(A) if and only if there exists

a HomR(−,A∩B)-exact exact sequence . . . → G1 → G0 → G−1 → . . . in G(A) such

that M ∼= Im(G0 → G−1).

Theorem 1.3. A complex C of left R-modules belongs to G(Ã) if and only if there

exists a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence . . . → G1 → G0 → G−1 → . . .

in G(Ã) such that C ∼= Im(G0 → G−1).

These two results imply that the categories G(A) and G(Ã) possess stability, re-

spectively.

The contents of this paper are summarized as follows. In Section 2, we review some

basic notation and notions for use throughout the paper. Section 3 is devoted to

introducing the notion of Gorenstein projective complexes with respect to cotorsion

pairs and giving the proof of Theorem 1.1. By using Theorem 1.1, in Section 4 we

give the proof of Theorem 1.2 and Theorem 1.3.

2. Preliminaries

Throughout this article, R denotes an associative ring with identity, modules are

assumed to be unitary, and the default action of the ring is on the left. Right modules

over R are hence treated as (left) modules over the opposite ring R◦. We use R-Mod

to denote the category of R-modules, C(R) to denote the category of complexes of

R-modules and P , F , C to denote the class of projective, flat, cotorsion R-modules,

respectively.

A complex

. . . // Cn+1
δn+1

// Cn

δn
// Cn−1

// . . .

will be denoted by (C, δ) or simply C. The nth cycle, boundary, homology of C is de-

noted by Zn(C), Bn(C), Hn(C), respectively. We will use superscripts to distinguish
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complexes. So if {Ci}i∈I is a family of complexes, C
i will be complex

. . . // Ci
n+1

δi
n+1

// Ci
n

δi
n

// Ci
n−1

// . . .

Given an R-module M , we will denote by M the complex

. . . // 0 // M
id

// M // 0 // . . .

withM in 1st and 0th degrees. Given a C ∈ C(R) and an integerm, C[m] denotes the

complex such that C[m]n = Cn−m and whose boundary operators are (−1)mδn−m.

Given C,D ∈ C(R), we use HomC(R)(C,D) to present the group of all morphisms

from C to D, and Exti
C(R)(C,D) denotes the groups one gets from the right derived

functor of Hom for i > 0.

Let C ∈ C(R◦) and D ∈ C(R). The tensor product C ⊗R D is the Z-complex

whose underlying graded module is given by (C ⊗R D)n =
⊕

i+j=n

Ci ⊗R Dj , and

whose differential is defined by specifying its action on an elementary tensor of ho-

mogeneous elements as δC⊗RD(x ⊗ y) = δC(x) ⊗ y + (−1)|x|x ⊗ δD(y), where |x|

is the degree of x in C. Let C⊗RD = C ⊗R D/B(C ⊗R D), that is, C⊗RD is the

complex of abelian groups with nth entry (C⊗RD)n = (C ⊗R D)n/Bn(C ⊗R D) and

boundary map δC⊗RD(x⊗ y) = δC(x) ⊗ y, where x⊗ y is used to denote the coset

in (C ⊗R D)n/Bn(C ⊗R D). This gives us a new right exact bifunctor −⊗R− which

has left derived functor Tori(−,−).

For C,D ∈ C(R), HomR(C,D) is the complex of abelian groups with the

degree-n term HomR(C,D)n =
∏
i∈Z

HomR(Ci, Dn+i), and its boundary operators are

δ
HomR(C,D)
n ((fi)i∈Z) = (δDn+ifi − (−1)nfi−1δ

C
i )i∈Z for any (fi)i∈Z ∈ HomR(C,D)n.

Let HomR(C,D) = Z(HomR(C,D)), that is, HomR(C,D) is the complex of abelian

groups with nth entry HomR(C,D)n = Zn(HomR(C,D)) = HomC(R)(C,D[−n])

and boundary map δ
Hom

R
(C,D)

n ((fi)i∈Z) = ((−1)nδDn+ifi)i∈Z for any (fi)i∈Z ∈

HomR(C,D)n. Then we get new functors HomR(C,−) and HomR(−, D) which

are both left exact. The book [7] is a standard reference for complexes.

Let D be an abelian category. A pair (A,B) of classes of objects of D is called

a cotorsion pair if A⊥ = B and A = ⊥B, where A⊥ = {D ∈ D : Ext1D(A,D) = 0

for all A ∈ A} and ⊥B = {D ∈ D : Ext1D(D,B) = 0 for all B ∈ B}. A special

A-precover or special B-preenvelope of an object D ∈ D is a short exact sequence

0 → B → A → D → 0 or 0 → D → B′ → A′ → 0, where A ∈ A and B ∈ B or A′ ∈ A

andB′ ∈ B, respectively. A cotorsion pair (A,B) is said to be complete if every object

D ∈ D has a special A-precover and a special B-preenvelope. A cotorsion pair (A,B)

in D is said to be hereditary if ExtiD(A,B) = 0 for all A ∈ A, B ∈ B and all i > 1.

119



If we choose D = R-Mod for some ring R, the most obvious example of a complete

hereditary cotorsion pair is (P , R-Mod). Perhaps one of the most useful complete

hereditary cotorsion pairs is the flat cotorsion pair (F , C). For a good reference on

cotorsion pairs see [6].

Definition 2.1 ([8], Definition 3.3). Let (A,B) be a cotorsion pair in R-Mod

and X an R-complex.

(1) X is called an A complex if it is exact and Zn(X) ∈ A for all n ∈ Z.

(2) X is called a B complex if it is exact and Zn(X) ∈ B for all n ∈ Z.

(3) X is called a dg-A complex if eachXn ∈ A and HomR(X,B) is exact wheneverB

is a B complex.

(4) X is called a dg-B complex if eachXn ∈ B and HomR(A,X) is exact whenever A

is an A complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dg Ã.

Similarly, the B complexes are denoted by B̃ and the class of dg-B complexes is

denoted by dg B̃. Sometimes A complexes and dg-A complexes are called complexes

by the name of the class A. For example, the projective and dg-projective complexes

are actually the P and dg-P complexes, respectively. It follows from [8], Proposition

3.6, that (Ã, dg B̃) and (dg Ã, B̃) are cotorsion pairs in C(R). Moreover, by [8],

Corollary 3.13, [17], Theorem 2.4 and Corollary 2.7, or [14], Theorem 3.5, we have

the following facts.

Lemma 2.2. Let (A,B) be a complete hereditary cotorsion pair in R-Mod. Then

the induced cotorsion pairs (Ã, dg B̃) and (dg Ã, B̃) in C(R) are both complete and

hereditary. Furthermore, dg Ã ∩ E = Ã and dg B̃ ∩ E = B̃, where E is the class of

exact complexes.

Let D be an abelian category and H a full subcategory of D. Recall that a se-

quence S in D is HomD(−,H)-exact (resp., HomD(H,−)-exact) if the sequence

HomD(S, H) (resp., HomD(H,S)) is exact for any H ∈ H.

Definition 2.3 ([16], Definition 3.1). Let (A,B) be a complete and hereditary

cotorsion pair in R-Mod. An R-module M is called Gorenstein projective with

respect to the cotorsion pair (A,B) if there exists a HomR(−,A ∩ B)-exact exact

sequence . . . → A1 → A0 → A−1 → . . . with each Ai ∈ A, such that M ∼= Im(A0 →

A−1). We let G(A) be the class of Gorenstein projective R-modules with respect to

the cotorsion pair (A,B).

Remark 2.4. (1) By completeness of the cotorsion pair (A,B), an R-module M

is in G(A) if and only if Exti>1
R (M,N) = 0 for any N ∈ A ∩ B and there exists
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a HomR(−,A ∩ B)-exact exact sequence 0 → M → A0 → A−1 → . . . with each

Ai ∈ A.

(2) This definition unifies the following notions: Gorenstein projective mod-

ules [5], [9] (in the case (A,B) = (P , R-Mod)); F-Gorenstein flat modules [10] (when

(A,B) = (F , C)); and Gorenstein flat modules [7] (when (A,B) = (F , C) and R is

a right coherent ring), see [10], Lemma 3.2.

In what follows, we always assume that (A,B) is a complete and hereditary cotor-

sion pair in R-Mod.

3. Gorenstein projective complexes with respect to cotorsion pairs

Definition 3.1. An R-complex C is called Gorenstein projective with respect to

the cotorsion pair (A,B) if there exists a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence

. . . → A1 → A0 → A−1 → . . . with each Ai ∈ Ã such that C ∼= Im(A0 → A−1).

We denote the class of Gorenstein projective R-complexes with respect to the

cotorsion pair (A,B) by G(Ã).

Remark 3.2. (1) It is clear that Ã ⊆ G(Ã). If A = . . . → A1 → A0 →

A−1 → . . . is a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence of complexes in Ã, then

by symmetry, all the images, the kernels and the cokernels of A are in G(Ã).

(2) If (A,B) = (P , R-Mod), then Gorenstein projective complexes with respect to

the cotorsion pair (A,B) are exactly the Gorenstein projective complexes in [4].

(3) If (A,B) = (F , C), the flat cotorsion pair, then Gorenstein projective complexes

with respect to the cotorsion pair (A,B) are just F-Gorenstein flat complexes in [10].

Recall from [7] that a short exact sequence 0 → S → C → C/S → 0 in C(R)

is pure if the sequence 0 → D⊗RS → D⊗RC → D⊗RC/S → 0 is exact for any

D ∈ C(R◦). According to [7], an R-complex C is called Gorenstein flat if there

exists an exact sequence of flat complexes . . . → F 1 → F 0 → F−1 → . . . with

C ∼= Im(F 0 → F−1) which remains exact after applying I⊗R− for any injective

R◦-complex I. The next result shows that Gorenstein projective complexes with

respect to the cotorsion pair (F , C) over right coherent rings are just Gorenstein flat

complexes.

Proposition 3.3. If R is a right coherent ring, then C is an F-Gorenstein flat

complex if and only if C is Gorenstein flat.

P r o o f. ⇒: Assume that C is an F-Gorenstein flat complex. Then there exists

a HomC(R)(−, F̃ ∩ dg C̃)-exact exact sequence . . . → F 1 → F 0 → F−1 → . . . of flat
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complexes such that C ∼= Im(F 0 → F−1). Let I be an injective complex of right

R-modules. Then I+[−n] ∈ F̃ ∩ dg C̃ for any n ∈ Z since R is right coherent, where

I+ = HomZ(I,Q/Z). Thus the sequence

. . . → HomC(R)(F
−1, I+[−n]) →

→ HomC(R)(F
0, I+[−n]) → HomC(R)(F

1, I+[−n]) → . . .

is exact for any n ∈ Z, and so

. . . → HomR(F
−1, I+) → HomR(F

0, I+) → HomR(F
1, I+) → . . .

is exact. Hence the sequence

. . . → I⊗RF
1 → I⊗RF

0 → I⊗RF
−1 → . . .

is exact by [7], Proposition 4.2.1 (1). Therefore C is Gorenstein flat.

⇐: Suppose that C is a Gorenstein flat complex. Then there is an exact sequence

. . . → F 1 → F 0 → F−1 → . . . of flat complexes with C ∼= Im(F 0 → F−1) which re-

mains exact after applying I⊗R− for any injective R
◦-complex I. Let K ∈ F̃ ∩ dg C̃.

Then we have a pure exact sequence 0 → K → K++ → K++/K → 0 by [7],

Proposition 5.1.4 (4). Since K ∈ F̃ , we get K++ ∈ F̃ . So K++/K ∈ F̃ by [8],

Lemma 4.7. Thus the sequence 0 → K → K++ → K++/K → 0 is split. By [7],

Proposition 4.2.1 (1), we have the commutative diagram

. . . // (K+⊗RF
−1)+

∼=

��

// (K+⊗RF
0)+

∼=

��

// (K+⊗RF
1)+

∼=

��

// . . .

. . . // HomR(F
−1,K++) // HomR(F

0,K++) // HomR(F
1,K++) // . . . ,

where the top row is exact since K+ is injective. So the lower row is exact. Hence

the sequence

. . . → HomR(F
−1,K) → HomR(F

0,K) → HomR(F
1,K) → . . .

is exact. In particular, the sequence

. . . → HomC(R)(F
−1,K) → HomC(R)(F

0,K) → HomC(R)(F
1,K) → . . .

is exact. So C is an F-Gorenstein flat complex. �
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The following result will be used in the sequel.

Lemma 3.4. Let . . . → X1 → X0 → X−1 → . . . be a HomC(R)(−, Ã ∩ dg B̃)-

exact sequence of complexes, then the sequence . . . → X1
n → X0

n → X−1
n → . . . is

HomR(−,A ∩ B)-exact for any n ∈ Z.

P r o o f. Let K ∈ A ∩ B and n ∈ Z. Then K[n] ∈ Ã ∩ dg B̃ by [8], Lemma 3.4.

So we have the exact sequence

. . . → HomC(R)(X
−1,K[n]) → HomC(R)(X

0,K[n]) → HomC(R)(X1,K[n]) → . . .

Using the standard adjunction of [8], Lemma 3.1 (2), we get the exact sequence

. . . → HomR(X
−1
n ,K) → HomR(X

0
n,K) → HomR(X

1
n,K) → . . .

This completes the proof. �

Now, we are in position to prove our main result, which gives a characterization

of complexes in G(Ã) and unifies [10], Theorem 4.7.

Theorem 3.5. Let C be an R-complex. Then C ∈ G(Ã) if and only if Cn ∈ G(A)

for any n ∈ Z.

P r o o f. ⇒: Assume that C ∈ G(Ã). Then there exists a HomC(R)(−, Ã ∩ dg B̃)-

exact exact sequence . . . → A1 → A0 → A−1 → . . . with each Ai ∈ Ã such that

C ∼= Im(A0 → A−1). Now for any but fixed n ∈ Z, by Lemma 3.4, we have the

HomR(−,A ∩ B)-exact exact sequence of modules in A

. . . → A1
n → A0

n → A−1
n → A−2

n → . . .

such that Cn = Im(A0
n → A−1

n ). Hence Cn ∈ G(A).

⇐: Suppose that Cn ∈ G(A) for all n ∈ Z. Then for any n ∈ Z there exists an

exact sequence

0 → Cn → An → Ln → 0,

where An ∈ A and Ln ∈ G(A). These exact sequences induce a short exact sequence

of complexes

0 →
⊕

n∈Z

Cn[n] →
⊕

n∈Z

An[n] →
⊕

n∈Z

Ln[n] → 0.

Put A−1 =
⊕
n∈Z

An[n]. It is easy to see that A
−1 ∈ Ã. On the other hand, there is

an obvious (degreewise split) short exact sequence

0 // C
(1δ)

//
⊕
n∈Z

Cn[n]
(−δ,1)

// C[1] // 0,
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where δ is the differential of C. Now let α : C → A−1 be the composite

C →
⊕

n∈Z

Cn[n] →
⊕

n∈Z

An[n].

Then α is monoic since it is the composite of two monomorphisms. Denote Cokerα

by C−1. Then by the Snake lemma, we have a short exact sequence

0 → C[1] → C−1 →
⊕

n∈Z

Ln[n] → 0.

Since each degree of
⊕
n∈Z

Ln[n] and C[1] is in G(A), each degree of C−1 belongs

to G(A) by [16], Proposition 3.3 (1). Let K ∈ Ã ∩ dg B̃. Then K ∈ Ã ∩ B̃ = Ã ∩ B

by [8], Theorem 3.12. Thus K ∼=
∏
n∈Z

Zn(K)[n] by [11], Lemma 4.1. Hence

Ext1C(R)(C
−1,K) ∼=

∏

n∈Z

Ext1C(R)(C
−1,Zn(K)[n]) ∼=

∏

n∈Z

Ext1R(C
−1
n ,Zn(K)) = 0,

where the second isomorphism follows from [8], Lemma 3.1 (2), and the last equality

follows from Remark 2.4 (1). This implies that 0 → C → A−1 → C−1 → 0 is

HomC(R)(−, Ã ∩ dg B̃)-exact. Notice that C−1 has the same property as C, so we can

use the same procedure to construct a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence

of complexes

(†) 0 → C → A−1 → A−2 → . . . ,

where each Ai is an A-complex.

Since (Ã, dg B̃) is a complete cotorsion pair, we have a short exact sequence 0 →

C1 → A0 → C → 0, where A0 ∈ Ã and C1 ∈ dg B̃. Note that Cn ∈ G(A) for any

n ∈ Z, this sequence is HomC(R)(−, Ã ∩ dg B̃)-exact by a discussion similar to the

above. Also, it follows from the exact sequence and [16], Proposition 3.3 (1), that

each C1
n ∈ G(A) for any n ∈ Z. Thus we can continuously use the same method to

construct a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence

(‡) . . . → A1 → A0 → C → 0,

where each Ai is an A-complex.

Finally, gluing the sequences (†) and (‡) together, one has aHomC(R)(−, Ã ∩ dg B̃)-

exact exact sequence of complexes

. . . → A1 → A0 → A−1 → A−2 → . . .

with all Ai ∈ Ã such that C ∼= Im (A0 // A−1). Hence C ∈ G(Ã). �
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Let D be an abelian category with enough projective objects and injective objec-

tives. Recall that a class X of objects of D is said to be projectively resolving or

injectively resolving if it is closed under extensions and kernels of surjections or cok-

ernels of injections, and contains all projective or injective objects of D, respectively.

Corollary 3.6. G(Ã) is projectively resolving.

P r o o f. Clearly, P̃ ⊆ Ã ⊆ G(Ã). Let 0 → C′ → C → C′′ → 0 be a short exact

sequence of complexes with C′′ ∈ G(Ã). Then for any n ∈ Z, in the exact sequence

0 → C′
n → Cn → C′′

n → 0, C′′
n ∈ G(A) by Theorem 3.5. So C′

n ∈ G(A) if and only if

Cn ∈ G(A) by [16], Proposition 3.3 (1). Hence C′ ∈ G(Ã) if and only if C ∈ G(Ã)

by Theorem 3.5. Now the result follows. �

Corollary 3.7. Let 0 → C′ → C → C′′ → 0 be an exact sequence of complexes.

If C′, C belong to G(Ã), then C′′ ∈ G(Ã) if and only if Ext1C(R)(C
′′,K) = 0 for any

K ∈ Ã ∩ dg B̃.

P r o o f. ⇒: It is obvious.

⇐: Let n ∈ Z. Consider the exact sequence of R-modules

0 → C′
n → Cn → C′′

n → 0.

By Theorem 3.5, C′
n, Cn belong to G(A). LetK ∈ A∩B. ThenK[n] ∈ Ã∩dg B̃. Thus

Ext1R(C
′′
n ,K) ∼= Ext1C(R)(C

′′,K[n])=0 by [8], Lemma 3.1 (2), and the hypothesis.

Hence C′′
n ∈ G(A) by [16], Proposition 3.3 (2). Therefore C′′ ∈ G(Ã) by Theorem 3.5.

�

By Proposition 3.3, Theorem 3.5 and [10], Lemma 3.2, we immediately get:

Corollary 3.8 ([18], Theorem 3.1). Let C be an R-complex. If R is a right

coherent ring, then C is Gorenstein flat if and only if Cn is a Gorenstein flat R-module

for any n ∈ Z.

4. Stability of Gorenstein categories with respect to

cotorsion pairs

The stability of Gorenstein categories was initiated by Sather-Wagstaff, Sharif

and White [12]. They proved that if R is a commutative ring, then an R-module M
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is a Gorenstein projective or injective module if and only if there exists an exact

sequence of Gorenstein projective or injective R-modules G = . . . −→ G1
δ1−→ G0

δ0−→

G−1 −→ . . . such that the complexes HomR(H,G) and HomR(G,H) are exact for

each Gorenstein projective or injective R-module H , respectively, and M = Imδ0.

This was developed by Bouchiba [1], Xu and Ding [13], respectively. They showed,

via different methods, that over any ring R, an R-moduleM is Gorenstein projective

or injective if and only if there exists an exact sequence of Gorenstein projective or

injective R-modules G = . . . −→ G1
δ1−→ G0

δ0−→ G−1 −→ . . . such that the complex

HomR(G,H) or HomR(H,G) is exact for any projective or injective R-module H ,

respectively, and M = Im δ0. For more details, see [1]. The stabiltity of Gorenstein

flat R-module has been treated by Bouchiba and Khaloui [2], Xu and Ding [13], Yang

and Liu [15], respectively. By using totally different techniques, they showed that

over a left GF-closed ring R (a ring R over which the class of the Gorenstein flat

R-modules is closed under extensions), an R-moduleM is Gorenstein flat if and only

if there exists an exact sequence of Gorenstein flat R-modules G = . . . −→ G1 δ1

−→

G0 δ0

−→ G−1 −→ . . . such that the complex I ⊗R G is exact for each Gorenstein

injective (or injective) R◦-module I and M = Im δ0. By using Theorem 3.5, in this

section we investigate the stability of G(A) and G(Ã).

The next result shows that the category G(A) possesses stability, which is a gen-

eralization of [12], Theorem A, [13], Theorem A, and [10], Theorem 3.8.

Theorem 4.1. LetM be an R-module. Then the following statements are equiv-

alent:

(1) M ∈ G(A).

(2) There exists a both HomR(G(A),−)-exact and HomR(−,G(A))-exact exact se-

quence

. . . // G1
// G0

// G−1
// . . .

in G(A) so that M ∼= Im(G0 → G−1).

(3) There exists a HomR(−,G(A))-exact exact sequence

. . . // G1
// G0

// G−1
// . . .

in G(A) such that M ∼= Im(G0 → G−1).

(4) There exists a HomR(−,A)-exact exact sequence

. . . // G1
// G0

// G−1
// . . .

in G(A) such that M ∼= ImG0 → G−1).
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(5) There exists a HomR(−,A∩ B)-exact exact sequence

. . . // G1
// G0

// G−1
// . . .

in G(A) such that M ∼= Im(G0 → G−1).

P r o o f. (1)⇒(2)⇒(3)⇒(4)⇒(5) are clear.

(5)⇒(1): Assume that there is a HomR(−,A∩ B)-exact exact sequence

G = . . . // G1
// G0

// G−1
// G−2

// . . .

in G(A) such that M ∼= Z−1(G). Then G ∈ G(Ã) by Theorem 3.5. Thus there exists

a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence

. . . // A1 σ1

// A0 σ0

// A−1 σ−1

// A−2 // . . .

with each Ai ∈ Ã such that G ∼= Kerσ−1. Set Ki = Kerσi for i ∈ Z. Then

Ki ∈ G(Ã) and Ki is exact for any i ∈ Z since K−1 = G and all Ai are exact. So,

by [11], Lemma 4.15 (1), we have the exact sequence

(♮) . . . // Z−1(A
1)

Z
−1(σ

1)
// Z−1(A

0)
Z
−1(σ

0)
// Z−1(A

−1) // . . .

with each Z−1(A
i) ∈ A, such that M ∼= Z−1(G) = Ker(Z−1(σ

−1)). To show M ∈

G(A), we need only to show that the sequence (♮) is HomR(−,A∩ B)-exact.

Let H ∈ A∩B, it suffices to show that Ext1R(Z−1(K
i), H) = 0 for all i ∈ Z. Since

each Ki ∈ G(Ã), all Ki
n ∈ G(A) by Theorem 3.5. Thus, for any i ∈ Z, the sequence

0 // HomR(K
i−1, H) // HomR(A

i, H) // HomR(K
i, H) // 0

is exact. By the hypothesis, HomR(K
−1, H) is exact. Note that HomR(A

i, H)

is exact for each i ∈ Z, then HomR(K
i, H) is exact for any i ∈ Z. Hence

Ext1R(Z−1(K
i), H) = 0 since each Ki

0 ∈ G(A). Thus the sequence (♮) is HomR(−,

A ∩ B)-exact, as desired. �

Finally, by applying Theorem 3.5 and Theorem 4.1, we can achieve the follow-

ing stability result for G(Ã), which is a unification of [13], Theorem 3.1, and [10],

Theorem 4.11.

Theorem 4.2. Let C be a complex of R-modules. Then the following statements

are equivalent:
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(1) C ∈ G(Ã).

(2) There exists a both HomC(R)(G(Ã),−)-exact and HomC(R)(−,G(Ã))-exact ex-

act sequence

. . . // G1 // G0 // G−1 // . . .

in G(Ã) such that C ∼= Im(G0 → G−1).

(3) There is a HomC(R)(−,G(Ã))-exact exact sequence

. . . // G1 // G0 // G−1 // . . .

in G(Ã) such that C ∼= Im(G0 → G−1).

(4) There is a HomC(R)(−, Ã)-exact exact sequence

. . . // G1 // G0 // G−1 // . . .

in G(Ã) such that C ∼= Im(G0 → G−1).

(5) There is a HomC(R)(−, Ã ∩ dgB̃)-exact exact sequence

. . . // G1 // G0 // G−1 // . . .

in G(Ã) such that C ∼= Im(G0 → G−1).

P r o o f. (1)⇒(2)⇒(3)⇒(4)⇒(5) are trivial.

(5)⇒(1): Suppose that there exists a HomC(R)(−, Ã ∩ dg B̃)-exact exact sequence

. . . // G1 σ1

// G0 σ0

// G−1 σ−1

// G−2 // . . .

in G(Ã) such that C ∼= Im σ0. Then for any n ∈ Z, by Lemma 3.4 we have the

HomR(−,A ∩ B)-exact exact sequence of modules

. . . // G1
n

σ1
n

// G0
n

σ0
n

// G−1
n

σ−1
n

// G−2
n

// . . .

such that Cn
∼= Im σn

0 . By Theorem 3.5, G
i
n ∈ G(A) for each i ∈ Z. Thus Cn ∈ G(A)

by Theorem 4.1. Hence C ∈ G(Ã) by Theorem 3.5. �
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