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Abstract. By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing
coefficients with c sign changes and p sign preservations in the sequence of its coefficients
(c + p = d) has pos 6 c positive and neg 6 p negative roots, where pos ≡ c (mod 2)
and neg ≡ p (mod 2). For 1 6 d 6 3, for every possible choice of the sequence of signs of
coefficients of P (called sign pattern) and for every pair (pos,neg) satisfying these conditions
there exists a polynomial P with exactly pos positive and exactly neg negative roots (all
of them simple). For d > 4 this is not so. It was observed that for 4 6 d 6 8, in all
nonrealizable cases either pos = 0 or neg = 0. It was conjectured that this is the case for
any d > 4. We show a counterexample to this conjecture for d = 11. Namely, we prove
that for the sign pattern (+,−,−,−,−,−,+,+,+,+,+,−) and the pair (1, 8) there exists
no polynomial with 1 positive, 8 negative simple roots and a complex conjugate pair.
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1. Introduction

The classical Descartes’ rule of signs says that the real polynomial P (x, a) :=

xd+ad−1x
d−1+ . . .+a0 does not have more positive roots than the number c of sign

changes in the sequence of its coefficients. This rule has been announced by René

Descartes (1596–1650) in his work La Géométrie published in 1637. When the roots

are counted with multiplicity, then the number of positive roots has the same parity

as c. (As indicated in [1], 18th century authors used to count roots with multiplicity

while omitting the parity conclusion; later this conclusion was attributed (see [2])

to a paper of Gauss of 1828 (see [6]), although it is absent there, but was published

by Fourier in 1820, see page 294 in [5].) When applied to P (−x), these results give

an upper bound on the number of negative roots of P . It is proved in [1] that all
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possible cases (i.e. of c, c−2, c−4, . . . positive roots) are realizable by suitably chosen

polynomials P with c sign changes. Notice that here we do not impose restrictions

on the number of negative roots.

In what follows we consider polynomials P without zero coefficients. Denoting

by p the number of sign preservations in the sequence of coefficients of P , and by

posP and negP the number of positive and negative roots of P , respectively, one can

write:

(1.1) posP 6 c, posP ≡ c (mod 2), negP 6 p, negP ≡ p (mod 2).

We call a finite sequence σ of ± signs a sign pattern; we assume that the leading

sign of σ is +. For a given sign pattern of length d + 1 with c sign changes and p

sign preservations, we call (c, p) its Descartes pair, c + p = d. For a given sign

pattern σ with Descartes pair (c, p) we call (pos, neg) an admissible pair for σ if

conditions (1.1), with posP = pos and negP = neg, are satisfied.

One could ask the question whether given a sign pattern σ of length d+ 1 and an

admissible pair (pos, neg) one can find a degree d real monic polynomial the signs

of whose coefficients define the sign pattern σ and which has exactly pos simple

positive and exactly neg simple negative roots. In such a case we say that the couple

(σ, (pos, neg)) is realizable.

It turns out that for d = 1, 2 and 3 the answer is positive, but for d = 4 the answer

is negative; this is due to Grabiner, see [7]. Namely, for the sign pattern σ∗ :=

(+,+,−,+,+) (with Descartes pair (2, 2)), the pair (2, 0) is admissible, see (1.1),

but the couple (σ∗, (2, 0)) is not realizable. The proof of this is easy—for a monic

polynomial P4 := x4 + a3x
3 + . . . + a0 with signs of the coefficients defined by σ

∗

and having exactly two positive roots u < v, one has aj > 0 for j 6= 2, a2 < 0 and

P4(
1
2 (u+v)) < 0. Hence, P4(−

1
2 (u+v)) < 0 because aj(

1
2 (u+v))

j = aj(−
1
2 (u+v))

j ,

j = 0, 2, 4 and 0 < aj(
1
2 (u + v))j = −aj(−

1
2 (u + v))j , j = 1, 3. As P4(0) = a0 > 0,

there are two negative roots ξ < − 1
2 (u + v) < η as well.

Modulo the standard (Z2 ×Z2)-action described below, Grabiner’s example is the

only nonrealizable couple (sign pattern, admissible pair) for d = 4. The (Z2 × Z2)-

action is defined on such couples by two generators. Denote by σ(j) the jth compo-

nent of the sign pattern σ. The first of the generators replaces the sign pattern σ

by σr , where σr stands for the reverted (i.e. read from the back) sign pattern mul-

tiplied by σ(0), and keeps the same pair (pos, neg). This generator corresponds to

the fact that the polynomials P (x) and xdP (1/x)/P (0) are both monic and have the

same number of positive and negative roots. The second generator exchanges pos

with neg and changes the signs of σ corresponding to the monomials of odd (or even)

powers if d is even (or odd); the rest of the signs are preserved. We denote the new
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sign pattern by σm. This generator corresponds to the fact that the roots of the

polynomials (both monic) P (x) and (−1)dP (−x) are mutually opposite, and if σ is

the sign pattern of P , then σm is the one of (−1)dP (−x). For a given sign pat-

tern σ and an admissible pair (pos, neg), the couples (σ, (pos, neg)), (σr, (pos, neg)),

(σm, (neg, pos)) and ((σm)r, (neg, pos)) are simultaneously realizable or not. (One

has (σm)r = (σr)m.)

All cases of couples (sign pattern, admissible pair) for d = 5 and d = 6 which

are not realizable are described in [1]. For d = 7, this is done in [3] and for d = 8

in [3] and [8]. For d = 5 there is a single nonrealizable case (up to the (Z2 × Z2)-

action). The sign pattern is (+,+,−,+,−,−, ) and the admissible pair is (3, 0). For

n = 6, n = 7 and n = 8 there are 4, 6, and 19, respectively, nonrealizable cases. In

all of them one of the numbers pos or neg is 0. It is conjectured in [3] that this is

the case for any d.

In the present paper we show that the conjecture fails for d = 11.

N o t a t i o n 1. For d = 11 we denote by σ0 the following sign pattern (we give

on the first and third lines below the sign patterns σ0 and σ0
m, respectively, while

the line in the middle indicates the positions of the monomials of odd powers):

σ0 = ( + − − − − − + + + + + − )

11 9 7 5 3 1

σ0
m = ( + + − + − + + − + − + + )

In a sense σ0 is centre-antisymmetric—it consists of one plus, five minuses, five pluses

and one minus.

Theorem 1. The sign pattern σ0 is not realizable with the admissible pair (1, 8).

The next section contains comments concerning the above result and realizability

of sign patterns and admissible pairs in general. Section 3 contains some technical

lemmas which allow to simplify the proof of Theorem 1. The method of the proof is

explained in Section 4. Section 5 contains the proofs of lemmas used in Section 4.

2. Comments

Theorem 1 shows that the problem of classifying all nonrealizable cases (sign

pattern, admissible pair) for any degree d is a difficult one. At present, an exhaustive

conjectural answer is not known. One could try to find sufficient conditions for

realizability expressed, say, in terms of the ratios between d, c and p. In papers [3]

and [9] series of nonrealizable cases were found (defined either for every degree d or
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for every odd or even degree sufficiently large). In all of them either pos = 0 or

neg = 0. The construction of such series with pos 6= 0 6= neg and the proof of their

nonrealizability seems to be sufficiently hard for d > 9.

One of the series of nonrealizable cases considered in [3] and [4] concerns sign

patterns with exactly two sign changes, consisting of m pluses followed by n minuses

followed by q pluses, m+ n+ q = d+ 1. Set

κ :=
d−m− 1

m

d− q − 1

q
.

Lemma 1. For κ > 4, such a sign pattern is not realizable with the admissible pair

(0, d− 2). The sign pattern is realizable with any admissible pair of the form (2, v)

except for the case v = 0, n = 1, m and q being even.

Lemma 1 coincides with Proposition 6 of [3]. One of the tools for constructing

new realizable cases is the following concatenation lemma (also proved in [3]):

Lemma 2. Suppose that the monic polynomials Pj of degrees dj and with sign

patterns of the form (+, σj), j = 1, 2 (where σj contains the last dj components of

the corresponding sign pattern) realize the pairs (posj , negj). Then

(1) if the last position of σ1 is +, then for any ε > 0 small enough, the poly-

nomial εd2P1(x)P2(x/ε) realizes the sign pattern (+, σ1, σ2) and the pair

(pos1 +pos2, neg1 +neg2);

(2) if the last position of σ1 is −, then for any ε > 0 small enough, the poly-

nomial εd2P1(x)P2(x/ε) realizes the sign pattern (+, σ1,−σ2) and the pair

(pos1 +pos2, neg1 +neg2) (here −σ2 is obtained from σ2 by changing each +

into − and vice versa).

It is clear that if Theorem 1 were true, then one should not be able to deduce the

realizability of the sign pattern σ0 with the admissible pair (1, 8) with the help of

Lemma 2. Now we show that this is indeed impossible. It suffices to check the cases

degP1 > 6, degP2 6 5 due to the centre-antisymmetry of σ0 and the possibility to

use the (Z2 × Z2)-action.

In all these cases the sign pattern of the polynomial P1 has exactly two sign

changes (it comprises the first sign +, the five minuses that follow and the next

between one and five pluses). These cases are (we use the notation from Lemma 1)

m = 1, n = 5, q = 1, . . . , 5. The values of κ are 16, 10, 8, 7 and 32
5 , respectively, all

of them are greater than 4. By Descartes’ rule, the polynomial P1 can have either 0

or 2 positive roots. Should it have 2, then its concatenation with P2 should have at

least 2 positive roots (by Lemma 2) which is impossible. So P1 has no positive roots.

The sign patterns defined by P1 and P2 have 4+(q− 1) and 5− q sign preservations,
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respectively. By Lemma 1 the polynomial P1 has less than or equal to (2 + (q − 1))

negative roots, and as P2 has less than or equal to (5 − q) ones, the concatenation

of P1 and P2 has less than or equal to 6 negative roots. Therefore a polynomial

realizing the couple (σ0, (1, 8)) (if it exists) cannot be represented as a concatenation

of two polynomials P1 and P2.

Still this does not exclude the existence of such a polynomial. In [3], certain

examples of polynomials realizing given sign patterns and admissible pairs had to be

constructed directly. Before passing to the proof of Theorem 1 we explain the role

that the concatenation lemma could play in solving the problem of realizability of

sign patterns with admissible pairs.

If in the process of solving this problem one arrives at a situation when there exists

d0 ∈ N such that for d > d0 the realizability of all realizable cases can be deduced

from some general statements and from the concatenation lemma, then it would be

sufficient to find the exhaustive list of realizable cases for d < d0 and the problem

would be solved. One could interpret as a general statement Lemma 1 or the fact,

that for even d, a sign pattern consisting of d + 1 pluses is realizable with the pair

(0, 0), see [3], etc. The (non)existence of such a degree d0 is not self-evident, and if it

exists, it is not a priori clear how many new general statements of (non)realizability

have to be proved.

3. Preliminaries

N o t a t i o n 2. We denote by S the subset of R11 such that if a ∈ S, then the

signs of the coefficients of the polynomial P (x, a) = x11 + a10x
10 + . . . + a0 define

the sign pattern σ0 and the polynomial P realizes the pair (1, 8).

By T we denote the subset of S for which a10 = −1. For a polynomial from S

one can obtain the conditions a11 = 1, a10 = −1 by rescaling and multiplication by

a nonzero constant (a11 stands for the leading coefficient).

Lemma 3. For a ∈ S one has aj 6= 0 for j = 9, 8, 7, 4, 3, 2, and one does not have

a6 = 0 and a5 = 0 simultaneously.

Indeed, for aj = 0 (where j is one of the indices 9, 8, 7, 4, 3, 2) there are less than 8

sign changes in the sign pattern σ0
m, hence by Descartes’ rule of signs the polynomial

P (·, a) has less than 8 negative roots counted with multiplicity. The same is true for

a5 = a6 = 0.

Lemma 4. For a ∈ S one has a0 6= 0.
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R em a r k 1. A priori the set S can contain polynomials with all roots real and

nonzero. The positive ones can either be a triple root or a double root and a simple

root (but not three simple roots).

P r o o f of Lemma 4. Consider first the case aj 6= 0, j 6= 0, a0 = 0. Hence,

the polynomial P has a root at 0, either 0 or 2 positive roots and 8 negative roots.

Suppose that P has no positive roots. Then the degree 10 polynomial P/x defines

a sign pattern with exactly two sign changes and 8 negative roots. There exists no

such polynomial. Indeed, if it has distinct negative roots and no positive roots, then

this would contradict Lemma 1 (in notation of Lemma 1, one has κ = 32
5 > 4). If

it has 8 negative roots counted with multiplicity, then one can make them distinct

by a series of perturbations which do not change the signs of the coefficients of the

polynomial, which increase the number of distinct negative roots while keeping their

total multiplicity equal to 8 and which do not introduce new positive roots.

More exactly, suppose that P has a negative root −b of multiplicity r, 1 < r 6 8.

Set P 7→ P + εP1, where ε ∈ (R, 0), ε > 0 and if P = (x + b)rxQ1Q2, where Q1, Q2

are polynomials, Q2 having a complex conjugate pair of roots, Q1 having 8 − r

negative roots counted with multiplicity, then P1 = (x + b)r−1xQ1 (this decreases

the multiplicity of the root −b by l and introduces a new simple negative root).

If the polynomial P/x has two positive roots, then, in fact, this must be a positive

double root g because a ∈ S. In this case the perturbations are with P1 of the

form (x + b)r−1xQ1(x − g)2; after having thus obtained P with 8 negative simple

roots and a double root at g, one makes another perturbation P 7→ P ± εx (the

sign of ε depends on whether P has a minimum or maximum at g) after which the

degree 10 polynomial P/x has 8 negative simple roots and no other real root which

is a contradiction with Lemma 1.

Suppose now that aj 6= 0, j > 2 and a1 = a0 = 0. In the same way one considers

the degree 9 polynomial P/x2 to obtain a contradiction with Lemma 1. In this case

one has κ = 7.

Suppose now that exactly one of the coefficients a5 or a6 is 0 (we assume this

is a5, for a6 the reasoning is analogous) and either a1 6= 0, a0 = 0 or a1 = a0 = 0

(all other coefficients aj being nonzero). Then in the perturbations we set P1 =

(x+ b)r−1x(x+h1)(x+h2)Q1, where the real numbers hi are distinct, different from

any of the roots of P and chosen in such a way that the coefficient δ of x5 of P1 is 0.

Such choice is possible because all coefficients of the polynomial (x + b)r−1Q1 are

positive, hence δ is of the form A + (h1 + h2)B + Ch1h2, where A > 0, B > 0 and

C > 0. �

From now on we consider mainly T (and not S) in order not to take into account

the possibility for a10 to vanish at some points of S.
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R em a r k 2. Lemmas 3 and 4 imply that for a polynomial in T exactly one of

the following possibilities exists:

(1) all its coefficients are nonvanishing;

(2) exactly one of them is vanishing, and this coefficient is either a1 or a5 or a6;

(3) exactly two of them are vanishing, and these are either a1 and a5 or a1 and a6.

Lemma 5. There exists no real degree 11 polynomial the signs of whose coeffi-

cients define the sign pattern σ0 and which has a single positive simple root, negative

roots of total multiplicity 8 and a complex conjugate pair with nonpositive real part.

P r o o f. Suppose that such a monic polynomial exists. One can represent it in

the form P = P1P2P3, where degP1 = 8, all roots of P1 are negative, hence

P1 =
8∑

j=0

αjx
j , αj > 0, α8 = 1;

P2 = x− w, w > 0;

P3 = x2 + β1x+ β0, βj > 0, β2
1 − 4β0 < 0.

By Descartes’ rule of signs, the polynomial P1P2 =
9∑

j=0

γjx
j , γ9 = 1, has exactly

one sign change in the sequence of its coefficients. It is clear that as 0 > a10 = γ8+β1,

and as β1 > 0, one must have γ8 < 0. But then γj < 0 for j = 0, . . . , 8. For

j = 4, . . . , 8, one has aj = γj−2+β1γj−1+β0γj < 0 which means that the signs of aj

do not form the sign pattern σ0. �

R em a r k 3. Lemma 5 implies that the set T can contain only polynomials with

negative roots of total multiplicity 8 and positive roots of total multiplicity 1 or 3

(i.e. either one simple, or one simple and one double, or one triple positive root), and

no root at 0 (Lemma 4). Indeed, when approaching the boundary of T , the complex

conjugate pair can coalesce into a double positive (but never nonpositive) root; the

latter might eventually coincide with the simple positive root.

4. The method of the proof

Consider R10 as the space of the coefficients of the polynomial P (x, a)|a10=−1.

Suppose that there exists a monic polynomial P (x, a∗) with signs of its coefficients

defined by the sign pattern σ0 (with a10 = −1) with 8 distinct negative, a simple

positive and two complex conjugate roots. Then for a close to a∗ ∈ R
10, all poly-

nomials P (x, a) share with P (x, a∗) these properties. Therefore the interior of the

set T is nonempty. In what follows we denote by Γ the connected component of T

which a∗ belongs to. Denote by −δ the value of a9 for a = a∗ (recall that this value

is negative).

45



Lemma 6. There exists a compact set K ⊂ Γ containing all points of Γ with

a9 ∈ [−δ, 0). Hence, there exists δ0 > 0 such that for every point of Γ one has

a9 6 −δ0, and for at least one point of K and for no point of Γ \ K, the equality

a9 = −δ0 holds.

P r o o f. Suppose that there exists an unbounded sequence {an} of values a ∈ Γ

with an9 ∈ [−δ, 0). Hence, one can perform rescalings x 7→ βnx, βn > 0 such

that the largest of the moduli of the coefficients of the monic polynomials Qn :=

(βn)
−11P (βnx, a

n) equals 1. These polynomials belong to S, not necessarily to T

because a10 after the rescalings, in general, is not equal to −1. The coefficient of x9

in Qn equals a
n
9 (βn)

−2. The sequence {an} being unbounded, there exists a sub-

sequence βnk
tending to ∞. This means that the sequence of monic polynomials

Qnk
∈ S with bounded coefficients has a polynomial in S with a9 = 0 as one of its

limit points which contradicts Lemma 3.

Hence, the tuple of coefficients aj of P (x, a) ∈ Γ with a9 ∈ [−δ, 0) remains bounded

(hence, the same holds true for the moduli of the roots of P ) from which the existence

of K and δ0 follows. �

The above lemma implies the existence of a polynomial P0 ∈ Γ with a9 = −δ0. We

say that P0 is a9-maximal. Our aim is to show that no polynomial of Γ is a9-maximal

which is the contradiction that will be used in the proof of Theorem 1.

Definition 1. A real univariate polynomial is hyperbolic if it has only real (not

necessarily simple) roots. We denote byH ⊂ Γ the set of hyperbolic polynomials in Γ.

Hence, these are monic degree 11 polynomials having positive and negative roots of

respective total multiplicities 3 and 8 (vanishing roots are impossible by Lemma 3).

By U ⊂ Γ we denote the set of polynomials in Γ having a complex conjugate pair,

a simple positive root and negative roots of total multiplicity 8. Thus, Γ = H ∪ U

and H ∩ U = ∅. We denote by U0, U2, U2,2, U3 and U4 the subsets of U for which

the polynomial P ∈ U has 8 simple negative roots, one double and 6 simple negative

roots, at least two negative roots of multiplicity greater than or equal to 2, one triple

and 5 simple negative roots and a negative root of multiplicity greater than or equal

to 4, respectively.

The following lemma on hyperbolic polynomials will be used further in the proofs.

Lemma 7. Suppose that V is a hyperbolic polynomial of degree d > 2 with no

root at 0. Then:

(1) V does not have two or more consecutive vanishing coefficients.

(2) If V has a vanishing coefficient, then the signs of its surrounding two coefficients

are opposite.
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(3) The number of positive (or negative) roots of V is equal to the number of sign

changes in the sequence of its coefficients (or coefficients of V (−x)).

The proofs of the lemmas of this section except Lemma 6 are given in Section 5

(Lemmas 7–12), in Section 6 (Lemma 13) and in Section 7 (Lemmas 14–16).

Lemma 8.

(1) No polynomial of U2,2 ∪ U4 is a9-maximal.

(2) For each polynomial of U3 there exists a polynomial of U0 with the same values

of a9, a6, a5 and a1.

(3) For each polynomial of U0 ∪ U2 there exists a polynomial of H ∪ U2,2 with the

same values of a9, a6, a5 and a1.

Lemma 8 implies that if there exists an a9-maximal polynomial in Γ, then there

exists such a polynomial in H . So from now on, we aim at proving that H contains

no such polynomial, hence H and Γ are empty.

Lemma 9. There exists no polynomial inH having exactly two distinct real roots.

Lemma 10. The set H contains no polynomial having one triple positive root

and negative roots of total multiplicity 8.

Lemma 10 and Remark 1 imply that a polynomial in H (if any) satisfies the

following condition:

Condition A. It has a double and a simple positive roots and negative roots of

total multiplicity 8.

Lemma 11. There exists no polynomial P ∈ H having exactly three distinct real

roots and satisfying the conditions {a1 = 0, a5 = 0} or {a1 = 0, a6 = 0}.

It follows from the lemma and from Lemma 3 that a polynomial P ∈ H having

exactly three distinct real roots (hence a double and a simple positive and an 8-fold

negative one) can satisfy at most one of the conditions a1 = 0, a5 = 0 and a6 = 0.

Lemma 12. No polynomial in H having exactly three distinct real roots is a9-

maximal.

Thus, an a9-maximal polynomial in H (if any) must satisfy Condition A and have

at least four distinct real roots.

Lemma 13. The set H contains no polynomial having a double and a simple

positive roots and exactly two distinct negative roots of total multiplicity 8, and

satisfying either the conditions {a1 = a5 = 0} or {a1 = a6 = 0}.
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At this point we know that an a9-maximal polynomial of H satisfies Condition A

and one of the two following conditions:

Condition B. It has exactly four distinct real roots and satisfies exactly one or

none of the equalities a1 = 0, a5 = 0 or a6 = 0.

Condition C. It has at least five distinct real roots.

Lemma 14. The set H contains no a9-maximal polynomial satisfying Condi-

tions A and B.

Therefore an a9-maximal polynomial in H (if any) must satisfy Conditions A

and C.

Lemma 15. The set H contains no a9-maximal polynomial having exactly five

distinct real roots.

Lemma 16. The set H contains no a9-maximal polynomial having at least six

distinct real roots.

Hence, the set H contains no a9-maximal polynomial at all. It follows from

Lemma 8 that there is no such polynomial in Γ. Hence Γ = ∅.

5. Proofs of Lemmas 7–12

P r o o f of Lemma 7. Part (1): Suppose that a hyperbolic polynomial V with

two or more vanishing coefficients exists. If V is degree d hyperbolic, then V (k) is

also hyperbolic for 1 6 k < d. Therefore we can assume that V is of the form xlL+c,

where degL = d − l, l > 3, L(0) 6= 0 and c = V (0) 6= 0. If V is hyperbolic and

V (0) 6= 0, then so is alsoW := xdV (1/x) = cxd+xd−lL(1/x) and alsoW (d−l), which

is of the form axl + b, a 6= 0 6= b. However, given that l > 3, this polynomial is not

hyperbolic.

Part (2): For the proof of part (2) we use exactly the same reasoning, but with

l = 2. The polynomial ax2 + b, a 6= 0 6= b is hyperbolic if and only if ab < 0.

Part (3): To prove part (3) we consider the sequence of coefficients of V :=
d∑

j=0

vjx
j ,

v0 6= 0 6= vd. Set Φ := ♯{k : vk 6= 0 6= vk−1, vkvk−1 < 0}, Ψ := ♯{k : vk 6= 0 6= vk−1,

vkvk−1 > 0} and Λ := ♯{k : vk = 0}. Then Φ + Ψ + 2Λ = d. By Descartes’

rule of signs the number of positive and negative roots of V is posV 6 Φ + Λ and

negV 6 Ψ+Λ, respectively. As posV +negV = d, one must have posV = Φ+Λ and

negV = Ψ+Λ. It remains to notice that Φ+Λ is the number of sign changes in the

sequence of coefficients of V (and Ψ+ Λ of V (−x)), see part (2) of the lemma. �
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P r o o f of Lemma 8. Part (1): A polynomial of U2,2 or U4 is, respectively,

representable in the form:

P † := (x+ u)2(x+ v)2S∆ and P ∗ := (x + u)4S∆,

where ∆ := (x2− ξx+ η)(x−w) and S := x4+Ax3+Bx2+Cx+D. All coefficients

u, u, v, w, ξ, η, A, B, C, D are positive and ξ2− 4η < 0 (see Lemma 5); for A, B, C

and D this follows from the fact that all roots of P †/∆ and P ∗/∆ are negative. (The

roots of x4 + Ax3 + Bx2 + Cx +D are not necessarily different from −u and −v.)

We consider the two Jacobian matrices

J1 :=
(∂(a10, a9, a1, a5)

∂(ξ, η, w, u)

)
and J2 :=

(∂(a10, a9, a1, a6)
∂(ξ, η, w, u)

)
.

In the case of P † their determinants equal

detJ1 = Π(CDv + 2CDu+ C2uv + 2BDv2 + 4BDuv

+ 2BDu2 + 2BCuv2 +BCu2v +ADv3 + 2ADuv2

+ 3ADu2v + Cu2v3 +ACuv3 + 2ACu2v2),

detJ2 = Π(BDv + 2BDu+Dv3 + 2Duv2 + 3Du2v +BCuv + 2ADv2

+ 4ADuv + 2ADu2 + Cuv3 + 2u2v2C + 2ACuv2 +ACu2v),

where Π := −2v(w + u)(−η − w2 + wξ)(ξu + η + u2).

These determinants are nonzero. Indeed, each of the factors is either a sum of

positive terms or equals −η−w2 +wξ < − 1
4ξ

2 −w2 +wξ = −(12ξ −w)2 6 0. Thus,

one can choose values of (ξ, η, w, v) close to the initial one (u, A, B, C and D remain

fixed) to obtain any values of (a10, a9, a1, a5) or (a10, a9, a1, a6) close to the initial

one. In particular, a10 = −1, a1 = a5 = 0 or a10 = −1, a1 = a6 = 0 while a9 can

have values larger than the initial one. Hence, this is not an a9-maximal polynomial.

(If the change of the value of (ξ, η, w, v) is small enough, the values of the coefficients

aj , j = 0, 2, 3, 4, 6 or 5, 7 and 8 can change, but their signs remain the same.) The

same reasoning is valid for P ∗ as well in which case one has

detJ1 =M(3CD + C2u+ 8BDu+ 3BCu2 + 6ADu2 + u4C + 3ACu3),

detJ2 =M(3BD + 6u2D +BCu+ 8ADu+ 3u3C + 3ACu2),

with M := −4u2(w + u)(−η − w2 + wξ)(ξu + η + u2).

Part (2): We observe that if the triple root of P ∈ U3 is at −u < 0, then in the

case when P is increasing (or decreasing) in a neighbourhood of −u, the polynomial
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P − εx2(x + u) (or P + εx2(x + u)), where ε > 0 is small enough, has three simple

roots close to −u; it belongs to Γ, its coefficients aj , 2 6= j 6= 3, are the same as the

ones of P , the signs of a2 and a3 are also the same.

Part (3): For the proof of part (3), we observe first that

⊲ for x < 0 the polynomial P has four maxima and four minima and

⊲ for x > 0 one of the following three things holds true: either P ′ > 0, or there is a

double positive root γ of P ′, or P ′ has two positive roots γ1 < γ2 (they are both

either smaller than or greater than the positive root of P ).

Suppose first that P ∈ U0. Consider the family of polynomials P − t, t > 0.

Denote by t0 the smallest value of t for which one of the three things happens: either

P − t has a double negative root v (hence a local maximum), or P − t has a triple

positive root γ, or P − t has a double and a simple positive roots (the double one is

at γ1 or γ2). In the second and third cases one has P − t0 ∈ H . In the first case, if

P − t0 has another double negative root, then P − t0 ∈ U2,2 and we are done. If not,

then consider the family of polynomials

Ps := P − t0 − s(x2 − v2)2(x2 + v2)2 = P − t0 − s(x8 − 2v4x4 + v8), s > 0.

The polynomial −(x8−2v4x4+v8) has double real roots at ±v and a double complex

conjugate pair. It has the same signs of the coefficients of x8, x4 and 1 as P − t0

and P . The rest of the coefficients of P − t0 and Ps are the same. As s increases,

the value of Ps for every x 6= ±v decreases. So for some s = s0 > 0 for the first time

one has either Ps ∈ U2,2 (another local maximum of Ps becomes a double negative

root) or Ps ∈ H (Ps has positive roots of total multiplicity 3, but not three simple

ones). This proves part (3) for P ∈ U0.

If P ∈ U2 and the double negative root is a local minimum, then the proof of

part (3) is just the same. If this is a local maximum, then one skips the construction

of the family P − t and starts constructing the family Ps directly. �

P r o o f of Lemma 9. Suppose that such a polynomial exists. Then it must be of

the form P := (x+ u)8(x−w)3, u > 0, w > 0. The conditions a10 = −1 and a1 > 0

read:

8u− 3w = −1 and u7w2(3u− 8w) > 0.

In the plane of the variables (u,w), the domain {u > 0, w > 0, 3u − 8w > 0} does

not intersect the line 8u− 3w = −1, which proves the lemma. �

P r o o f of Lemma 10. Represent the polynomial in the form P = (x + u1) . . .×

(x + u8)(x − ξ)3, where uj > 0 and ξ > 0. The numbers uj are not necessarily

distinct. The coefficient a10 then equals u1 + . . .+ u8 − 3ξ. The condition a10 = −1
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implies ξ = ξ∗ := 1
3 (u1 + . . . + u8 + 1). Denote by ã1 the coefficient a1 expressed

as a function of (u1, . . . , u8, ξ). Using computer algebra (say, MAPLE) one finds

27ã1|ξ=ξ∗ :

27ã1|ξ=ξ∗ = −(−u1 . . . u8 +X + Y )(u1 + . . .+ u8 + 1)2,

where Y := u1 . . . u8(1/u1 + . . . + 1/u8) and X := u1 . . . u8
∑

16i, j68, i6=j

ui/uj (the

sum X contains 56 terms). We show that a1 < 0, which by contradiction proves the

lemma. The factor (u1+ . . .+u8+1)2 is positive. The factor Ξ := −u1 . . . u8+X+Y

contains a single monomial with a negative coefficient, namely, −u1 . . . u8. Consider

the sum
−u1 . . . u8 + u21u3u4u5u6u7u8 + u22u3u4u5u6u7u8

= u3u4u5u6u7u8((u1 − u2)
2 + u1u2) > 0

(the second and third monomials are in X). Hence, Ξ is representable as a sum of

positive quantities, so Ξ > 0 and a1 < 0. �

P r o o f of Lemma 11. Suppose that such a polynomial exists. Then it must be

of the form (x + u)8(x − w)2(x − ξ), where u > 0, w > 0, ξ > 0, w 6= ξ. One checks

numerically (say, using MAPLE) for each of the two systems of algebraic equations

a10 = −1, a1 = 0, a5 = 0 and a10 = −1, a1 = 0, a6 = 0, that each real solution

(u,w, ξ) or (u, v, w) contains a nonpositive component. �

P r o o f of Lemma 12. Making use of Condition A formulated after Lemma 10,

we consider only polynomials of the form (x + u)8(x − w)2(x − ξ). Consider the

Jacobian matrix

J∗
1 :=

(∂(a10, a9, a1)
∂(u,w, ξ)

)
.

Its determinant equals 6u6(u+w)(u− 7w)(ξ −w)(k + u). All factors except u− 7w

are nonzero. Thus, for u 6= 7w one has detJ1 6= 0, so one can fix the values of

a10 and a1 and vary the one of a9 arbitrarily close to the initial one by choosing

suitable values of u, w and ξ. Hence, the polynomial is not a9-maximal. For u = 7w,

one has a3 = −117649w7(35w + 8ξ) < 0, which is impossible. Hence, there exist

no a9-maximal polynomials which satisfy only the condition a1 = 0 or none of the

conditions a1 = 0, a5 = 0 or a6 = 0. To see that there exist no such polynomials

satisfying only the condition a5 = 0 or a6 = 0 one can consider the matrices J∗
5 :=

(∂(a10, a9, a5)/∂(u,w, ξ)) and J
∗
6 := (∂(a10, a9, a6)/∂(u,w, ξ)). Their determinants

equal, respectively,

112u2(u+ w)(5u − 3w)(ξ − w)(ξ + u) and 112u(u+ w)(3u − w)(ξ − w)(ξ + u).
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They are nonzero respectively for 5u 6= 3w and 3u 6= w, in which cases in the

same way we conclude that the polynomial is not a9-maximal. If u = 3
5w, then

a1 = − 2187
390625w

9(−3w + 34ξ) and a10 = −ξ + 14
5 w. As a1 > 0 and a10 < 0, one

has w > 34
3 ξ and ξ >

14
5 w > 34

3
14
5 ξ, which is a contradiction. If w = 3u, then

a6 = 14u4(10u+ ξ) > 0, which is again a contradiction. �

6. Proof of Lemma 13

The multiplicities of the negative roots of P define the following a priori possible

cases:

(i) (7,1), (ii) (6,2), (iii) (5,3), (iv) (4,4).

In all of them the proof is carried out simultaneously for the two possibilities

{a1 = a5 = 0} and {a1 = a6 = 0}. In order to simplify the proof we fix one of the

roots to be equal to −1 (this can be achieved by a change x 7→ βx, β > 0, followed

by P 7→ β−11P ). This allows to deal with one parameter less. By doing so we can

no longer require that a10 = −1, but only that a10 < 0.

Case (i): We use the following parametrisation: P = (x + 1)7(sx + 1)(tx − 1)2 ×

(wx− 1), s > 0, t > 0, w > 0, t 6= w, i.e. the negative roots of P are at −1 and −1/s

and the positive ones at 1/t and 1/w.

The condition a1 = w + 2t− s− 7 = 0 yields s = w + 2t− 7. For s = w + 2t− 7

one has

a3 = a32w
2 + a31w + a30, a4 = a42w

2 + a41w + a40,

where

a32 = −2t+ 7, a31 = −(2t− 7)2, a30 = −2t3 + 28t2 − 98t+ 112,

a42 = t2 − 14t+ 21, a41 = 2t3 − 35t2 + 140t− 147,

a40 = −14t3 + 112t2 − 294t+ 21.

The coefficient a30 has a single real root 9.436 . . ., hence a30 < 0 for t > 9.436 . . ..

On the other hand,

a32w
2 + a31w = w(−2t+ 7)(w + 2t− 7) = w(−2t+ 7)s,

which is negative for t > 9.436 . . .. Thus, the inequality a3 > 0 fails for t > 9.436 . . ..

Observing that a41 = (2t− 7)a42, one can write

a4 = (w + 2t− 7)wa42 + a40 = swa42 + a40.
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The real roots of a42 (or a40) equal 1.708 . . . and 12.291 . . . (or 1.136 . . .). Hence,

for t ∈ [1.708 . . . , 12.291 . . .] the inequality a4 > 0 fails. It remains to consider the

possibility t ∈ (0, 1.708 . . .).

It is to be checked directly that for s = w + 2t− 7 one has

a10
t

= (7t− 2)w(w + 2t− 7) + t(7− 2t) = (7t− 2)ws+ t(7− 2t),

which is nonnegative (hence a10 < 0 fails) for t ∈ [ 27 ,
7
2 ]. Similarly,

a6 = a∗6w(w + 2t− 7) + a†6 = a∗6ws + a†6,

where

a∗6 = 21t2 − 70t+ 35, a†6 = −70t3 + 350t2 − 490t+ 140.

The real roots of a∗6 (or a
†
6) equal 0.612 . . . >

2
7 = 0.285 . . . and 2.720 . . . (or

0.381 . . . > 2
7 , 2 and 2.618 . . .), hence for t ∈

(
0, 27

)
one has a∗6 > 0 and a†6 > 0,

i.e. a6 > 0 and the equality a6 = 0 or the inequality a6 < 0 is impossible. This

finishes the proof of Case (i). �

Case (ii): We parametrise P as follows: P = (x + 1)6(Tx2 + Sx − 1)2(wx − 1),

T > 0, w > 0. In this case we presume S to be real, not necessarily positive. The

factor (Tx2 + Sx− 1)2 contains the double positive and negative roots of P .

From a1 = w + 2S − 6 = 0 one finds S = 1
2 (6 − w). For S = 1

2 (6− w) one has

a10
T

= (6w − 1)T + 6w − w2, a7 = a72T
2 + a71T + a70,

where
a72 = 15w − 20, a71 = −20w2 + 105w− 78,

4a70 = 15w3 − 162w2 + 468w− 192.

Suppose first that w > 1
6 . The inequality a10 < 0 is equivalent to T < (w2 − 6w)/

(6w − 1). As T > 0, this implies w > 6.

For T = (w2−6w)/(6w−1) one obtains a7 = 3C/4(6w−1)2, where the numerator

C := 40w5 − 444w4 + 1345w3 − 502w2 + 300w − 64 has a single real root 0.253 . . ..

Hence, for t > 6 one has C > 0 and a7|T=(w2−6w)/(6w−1) > 0. On the other hand,

a70 = a7|T=0 has roots 0.489 . . ., 4.504 . . . and 5.805 . . ., so for w > 6 one has

a7|T=0 > 0. For w > 6 fixed and for T ∈ [0, (w2 − 6w)/(6w − 1)], the value of

the derivative
∂a7
∂T

= (30w − 40)T − 20w2 + 105w − 78

is maximal for T = (w2 − 6w)/(6w − 1); this value equals

−
90w3 − 430w2 + 333w− 78

6w − 1
,
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which is negative because the only real root of the numerator is 3.882 . . .. Thus,

∂a7/∂T < 0 and a7 is minimal for T = (w2 − 6w)/(6w − 1). Hence, the inequality

a7 < 0 fails for w > 1
6 . For w = 1

6 one has a10 = 35
36T > 0.

So suppose that w ∈
(
0, 16

)
. In this case the condition a10 < 0 implies T >

(w2 − 6w)/(6w − 1). For T = (w2 − 6w)/(6w − 1) one gets

a4 =
3D

4(6w − 1)2
, where D := 64w5 − 300w4 + 502w3 − 1345w2 + 444w− 40

has a single real root 3.939 . . .. Hence, for w ∈
(
0, 16

)
one has D < 0 and

a4|T=(w2−6w)/(6w−1) < 0. The derivative ∂a4/∂T = −w2 − 2T − 6 being nega-

tive one has a4 < 0 for w ∈
(
0, 16

)
, i.e. the inequality a4 > 0 fails. This finishes the

proof of Case (ii). �

Case (iii): We use the following parametrisation: P = (x+1)5(xs+1)3(xt−1)2 ×

(xw−1). From a1 = w+2t−5−3s = 0 one gets s = 1
3 (w+2t−5). For s = 1

3 (w+2t−5)

one has 27a10 = tS(w + 2t− 5)2, where

(6.1) S := 10wt2 − 2t2 + 5w2t− 21wt+ 5t− 2w2 + 10w.

The factor S can be represented as a polynomial in w or in t; for each of the cases

we give its discriminant (and the latter’s real roots) as well:

S = (5t− 2)w2 + (10− 21t+ 10t2)w + 5t− 2t2,

D1 = 5(t− 2)(2t− 1)(10t2 − 13t+ 10), 0.5, 2

S = (10w − 2)t2 + (5w2 − 21w + 5)t− 2w2 + 10w,

D2 = 5(w2 − 5w + 1)(5w2 − w + 5), 0.208 . . . , 4.791 . . .

Hence, for t ∈ [0.5, 2] or for w ∈ [0.208 . . . , 4.791 . . .] one has D1 6 0 and D2 6 0,

respectively, hence S > 0 and the inequality a10 < 0 fails. The partial derivative

∂S

∂t
= 5w2 − 21w + 20wt− 4t+ 5 = 5w(w − 4.2) + (20w − 4)t+ 5

is positive for t > 2 and w > 4.791 . . .. Hence, S > 0 for t > 2 and w > 4.791 . . ..

For (t, w) ∈ (0, 0.5)× (0, 0.208 . . .) one has w+2t− 5 < 0, i.e. s < 0. Thus, Case (iii)

is impossible outside the two semi-strips

Σ1 := {(t, w) ∈ (0, 0.5)× (4.791 . . . ,∞)} and Σ2 := {(t, w) ∈ (2,∞)× (0, 0.208 . . .)}.

Lemma 17. The inequality a4 > 0 fails on Σ2.
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P r o o f. Indeed,

27a4 = w4 + s3w
3 + s2w

2 + s1w + s0,

where
s3 = −10t+ 25, s2 = −30t2 + 60t− 120,

s1 = −22t3 + 75t2 − 120t+ 175,

s0 = −20t4 + 110t3 − 300t2 + 350t− 410.

For (t, w) ∈ Σ2 one has

w4 + s3w
3 6 (0.208 . . .)4 + (−10× 2 + 25)× (0.208 . . .)3 < 0.05.

The trinomial s2 is negative (because its discriminant is negative), so s2w
2 < 0.

The quantity s0 is decreasing for t > 2 (because the only real root of its derivative

equals 1), so in Σ2 one has s0 < s0|t=2 = −350. Finally, the quantity s1 is decreasing

(its derivative has no real roots), hence in Σ2 the term s1w is less than s1|t=2w 6

59× 0.208 . . . < 13. Thus a4 < 0.05− 350 + 13 < 0 in Σ2. �

We define the sets

Σ3 := {(t, w) ∈ [0, 0.5]× [6.75 . . . ,∞)},

Σ4 := {(t, w) ∈ [0.25, 0.5]× [4.791 . . . , 6.75]},

Σ5 := {(t, w) ∈ [0, 0.25]× [5, 6.75]},

Σ6 := {(t, w) ∈ [0, 0.25]× [4.791 . . . , 5]}.

One can observe that Σ1 ⊂ (Σ3 ∪ Σ4 ∪Σ5 ∪ Σ6). For w = 6.75 one has

27a6 = 14t5 + 511.75t4 − 44.09375t3 − 6341.949214t2 − 4336.44531t+ 3760.50781.

Its real roots are −36.303 . . ., −3.058 . . ., −1.324 . . ., 0.503 . . . and 3.629 . . .. Hence,

for t ∈ (0, 0.5) and w = 6.75 one has a6 > 0. One can represent 27∂a6/∂w in the

form (4w − 5 + 2t)g, where

g := 4t4 + 4t3w + t2w2 − 35t2 − 20wt2 + 90t− 10w2t+ 20wt− 5− 40w + 10w2.

Hence, g|w=6.75 = 4t4 + 27t3 − 124.4375t2 − 230.625t + 180.625 with real roots

−9.360 . . ., −1.982 . . ., 0.610 . . . and 3.982 . . ., so g|w=6.75 > 0 for t ∈ (0, 12 ).

Lemma 18. The derivative ∂g/∂w = (2t2 − 20t+20)w+4t3 − 20t2 +20t− 40 is

positive on Σ3.
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Hence, this is the case of ∂a6/∂w and a6 as well, so the inequality a6 < 0 or the

equality a6 = 0 fails of Σ3.

P r o o f. On Σ3 one has

(2t2 − 20t+ 20)w > (−20t+ 20)w > 10× 6.75 = 67.5

and

4t3 − 20t2 + 20t− 40 > 4t3 − 40 > −40,

so ∂a6/∂w > 0. �

Lemma 19. One has a10 > 0 on Σ4.

P r o o f. One has a10 = 1
27 t(w+2t− 5)2S, see (6.1), hence S|t=0.25 = −0.75w2+

5.375w + 1.125, which is positive for w ∈ [4.791 . . . , 6.75]. The lemma follows from

∂S/∂t = (20w − 4)t+ 5w2 − 21w + 5 being positive for (t, w) ∈ Σ4. �

Lemma 20. One has a6 > 0 in Σ5.

P r o o f. We use the following expression for 27a6:

27a6 = h4w
4 + h3w

3 + h2w
2 + h1w + h0,

h4 = t2 − 10t+ 10,

h3 = 6t3 − 35t2 + 50t− 70,

h2 = 12t4 − 30t3 + 90t+ 90,

h1 = 8t5 − 20t4 − 70t3 + 355t2 − 460t+ 25,

h0 = −40t5 + 100t4 − 50t3 − 50t2 + 50t+ 260.

Hence, the values for w = 5 of the derivatives 27∂sa6/∂w
s are the following polyno-

mials:
27∂0a6
∂w0

= 300t4 − 400t3 − 2025t2 + 135,

27∂1a6
∂w1

= 8t5 + 100t4 + 80t3 − 1770t2 − 810t+ 675,

27∂2a6
∂w2

= 24t4 + 120t3 − 750t2 − 1320t+ 1080,

27∂3a6
∂w3

= 36t3 − 90t2 − 900t+ 780,

27∂4a6
∂w4

= 24t2 − 240t+ 240.

All of them are positive for t ∈ [0, 0.25], from which and from the Taylor series of a6
w.r.t. the variable w the lemma follows. �
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Lemma 21. One has a10 > 0 on Σ6.

P r o o f. Recall that the quantity S is defined by (6.1). The values for t = 0 of

the derivatives ∂sS/∂ts are:

∂0S

∂t0
= −2w2 + 10w,

∂1S

∂t1
= 5w2 − 21w + 5,

∂2S

∂t2
= 20w − 4.

They are all nonnegative for w ∈ [4.791, 5] from which and from the Taylor series

of S w.r.t. the variable t one gets S > 0 in Σ6 and the lemma follows. �

This finishes the proof of Case (iii). �

Case (iv): P = (x+ 1)4(sx+ 1)4(tx − 1)2(wx − 1). The condition a1 = w + 2t−

4s − 4 = 0 implies s = 1
4 (w + 2t − 4). For s = 1

4 (w + 2t − 4) one has 256a10 =

t(w + 2t− 4)3H∗, where

(6.2) H∗ := 8wt2 − 2t2 + 4w2t− 5wt+ 4t+ 8w − 2w2.

Lemma 22. The inequality H∗ > 0 (hence a10 > 0) holds in each of the two

cases t ∈ [ 12 , 2] and w ∈ [ 14 , 4]. It holds also for (t, w) ∈ [2,∞) × [4,∞), for (t, w) ∈

(0, 12 ]× (0, 14 ] and for (t, w) ∈ [0.3, 12 ]× [4, 6.71].

R em a r k 4. In other words, for t > 0, w > 0, the inequality a10 < 0 fails outside

the domain Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 := (2,∞)×
(
0, 14

)
, Ω2 :=

(
0, 12

)
× (6.71,∞), Ω3 := (0, 0.3)× (4, 6.71].

We set Ω3 = Ω−
3 ∪ Ω+

3 , where

Ω−
3 := (0, 0.3)× (4, 5], Ω+

3 := (0, 0.3)× (5, 6.71].

P r o o f of Lemma 22. We represent H∗ in two ways:

H∗ = H2ww
2 +H1ww +H0w,

H2w = 4t− 2, H1w = 8t2 − 5t+ 8, H0w = −2t2 + 4t

and

H∗ = H2tt
2 +H1tt+H0t,

H2t = 8w − 2, H1t = 4w2 − 5w + 4, H0t = −2w2 + 8w.

The first statement of the lemma follows from Hjw > 0, j = 1, 2, 3 for t ∈ [ 12 , 2] and

Hjt > 0, j = 1, 2, 3 for w ∈ [ 14 , 4]. The quantity H
∗ is a degree 2 polynomial in t.
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For t = 2 and w ∈ [4,∞) one has

H∗ = 30w + 6w2 > 0,
∂2H∗

∂t2
= 16w − 4 > 0

and

∂H∗

∂t
= 16wt− 4t+ 4w2 − 5w + 4 = (16w − 4)t+ w(4w − 5) + 4 > 0,

so by representing H∗ as a Taylor series in the variable t we see again that H∗ > 0

for (t, w) ∈ [2,∞)× [4,∞). Next, for (t, w) ∈ (0, 12 ]× (0, 14 ] one can write

H∗ = t(4− 2t− 5w) + 2w(4 − w) + 8wt2 + 4w2t > 0.

Finally, as ∂H∗/∂t = (16w− 4)t+4w2− 5w+4, where the polynomial 4w2 − 5w+4

has no real roots, one has ∂H∗/∂t > 0 in [0.3, 12 ] × [4, 6.71]. On the other hand,

for t = 0.3 the polynomial H∗ equals w(7.22 − 0.8w) + 1.02, which is positive for

w ∈ [4, 6.71]. Hence H∗ > 0 in [0.3, 12 ]× [4, 6.71]. �

Lemma 23. The inequality a5 > 0 fails for (t, w) ∈ [2,∞)× (0, 14 ] ⊃ Ω1.

P r o o f. The quantity a∗5 := 256a5 equals

1536t+ 768w − 1536t2 − 384w2 − 1536wt+ 768w2t+ 1280wt2

− 32w3t− 416w2t2 − 384wt3 − 16t3w2 + 16t4w − 72t2w3

− 22tw4 − 128w3 + 512t3 + 44w4 − 64t4 − 96t5 + w5.

The values vj for t = 2 of its partial derivatives ∂ja∗5/∂t
j, j = 0, . . . , 5 equal

v0 = − 3072− 640w2 − 480w3 + w5,

v1 = − 8192− 512w− 1088w2 − 320w3 − 22w4,

v2 = − 15360− 1280w− 1024w2 − 144w3,

v3 = − 23040− 1536w− 96w2,

v4 = − 24576 + 384w,

v5 = − 11520,

respectively. They are all negative for w ∈ (0, 14 ]. Hence, all coefficients of the Taylor

series w.r.t. t of the coefficient a5 for t = 2, w ∈ (0, 14 ], are negative and so is a5 for

(t, w) ∈ [2,∞). �

Lemma 24. The inequality a6 6 0 fails for (t, w) ∈ (0, 12 ] × [6.71,∞) ⊃ Ω2 and

for (t, w) ∈ (0, 0.3]× [5,∞) ⊃ Ω+
3 .
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Thus, after Lemmas 22, 23 and 24 it remains to prove that for (t, w) ∈ Ω−
3 the

sign(s) of some (of the) coefficient(s) aj is/are not the one(s) prescribed by the sign

pattern.

P r o o f of Lemma 24. One has

256a6 = 1024− 768w − 1536t− 576w2t+ 1920t2 + 864w2 − 352w3 − 1280t3

+ 800t4 − 256t5 + 26w4 + 4w5 − 16t6 + 384wt− 384wt2 + 400w3t

+ 720w2t2 + 448wt3 − 352t3w2 − 256t4w + 40t3w3 + 104t4w2

+ 64t5w − 272t2w3 − t2w4 − 56tw4 − 2tw5.

We list below the values of the functions uj := 256∂ja6/∂w
j , j = 0, . . . , 5 for

w = 6.71. They are all positive for t ∈ (0, 12 ] (this can be checked numerically).

From the Taylor series of a6 for w = 6.71 one concludes that a6 > 0 for (t, w) ∈

(0, 12 ]× [6.71,∞). Here is the list:

u0 := − 16t6 + 173.44t5 + 3764.7464t4 − 2037.93476t3 − 52440.84297t2

− 44774.66948t+ 35543.86077,

u1 := 64t5 + 1139.68t4 + 1127.0520t3 − 28669.71244t2 − 41261.71907t

+ 35244.43996,

u2 := 208t4 + 906.40t3 − 10051.0092t2 − 27388.66364t+ 25772.93608,

u3 := 240t3 − 1793.04t2 − 12021.1320t+ 12880.8240,

u4 := − 24t2 − 2954.40t+ 3844.80,

u5 := 240(2− t).

In the same way we consider the values for w = 5 of these same functions, see the

list below. One can check that they are all positive for t ∈ (0, 0.3] and by analogy

we conclude that a6 > 0 for (t, w) ∈ (0, 0.3]× [5,∞).

u0 := − 16t6 + 64t5 + 2120t4 − 2840t3 − 16625t2 − 5266t+ 3534,

u1 := 64t5 + 784t4 − 72t3 − 14084t2 − 9626t+ 6972,

u2 := 208t4 + 496t3 − 7020t2 − 10952t+ 8968,

u3 := 240t3 − 1752t2 − 7320t+ 7008,

u4 := − 24t2 − 2544t+ 3024,

u5 := 240(2− t).

�
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Lemma 25. For (t, w) ∈ (0, 12 ]× [4, 6.71] ⊃ Ω−
3 the coefficient a6 is a decreasing

function in t. For t = 0, w ∈ [4, 6.71] one has a6 > 0 with equality only for w = 4.

P r o o f. The second claim of the lemma follows from

256a6|t=0 = 4w5 + 26w4 − 352w3 + 864w2 − 768w+ 1024,

whose real roots are −13.978 . . ., 3.110 . . . and 4. To prove the first claim, we list the

derivatives ηj := 256∂ja6/∂t
j|t=0, j = 1, . . . , 6 and their real roots (η4 has no real

roots):

η1 := − 2w5 − 56w4 + 400w3 − 576w2 + 384w− 1536

− 34.115 . . . , 2.782 . . . , 4,

η2 := − 2w4 − 544w3 + 1440w2 − 768w+ 3840

− 274.626 . . . , 2.948 . . . ,

η3 := 240w3 − 2112w2 + 2688w− 7680, 7.894 . . . ,

η4 := 2496w2 − 6144w + 19200,

η5 := 7680w− 30720, 4,

η6 := − 11520.

As we see, for w ∈ [4, 6.71] one has η1 6 0, η2 < 0, η3 < 0, η4 > 0, η5 > 0 and η6 < 0.

One can majorize the Taylor series for t = 0 of

256
∂a6
∂t

= η1 + t
(
η2 +

1
2 tη3 +

1
6 t

2η4 +
1
24 t

3η5 +
1

120 t
4η6

)

by omitting the nonpositive terms η1,
1
2 t

2η3 and
1

120 t
5η6 and by giving to t inside

the brackets its maximal value 1
2 . This gives the polynomial

t
(
η2 +

1
24η4 +

1
192η5

)
= t(−2w4 − 544w3 + 1544w2 − 984w + 4480)

with real roots −274.815 . . . and 3.083 . . ., hence negative for w ∈ [4, 6.71]. �

Lemma 26. Consider the quantity H∗ (see (6.2)) as a polynomial in t. For

w ∈ [4, 6.71] it has a single root τ(w) ∈ [0, 12 ]:

τ =
−4w2 + 5w − 4 +

√
(4w2 + 19w + 4)(4w2 − 13w + 4)

4(4w − 1)
.

One has H∗ < 0 (hence a10 < 0) for t < τ and H∗ > 0, a10 > 0 for t > τ . The

equality τ = 0 takes place only for w = 4.
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P r o o f. The statements about τ are to be checked directly. The signs of H∗

follow easily from H∗|t=0 = 2w(4− w) 6 0 with equality only for w = 4. �

Lemma 27. Consider a6 as a function in (t, w). Then with τ as defined in

Lemma 26 one has a6(τ, w) > 0 for w ∈ [4, 5] with equality only for w = 4.

R em a r k 5. The lemma implies that at least one of the inequalities a6 < 0 and

a10 < 0 fails in Ω−
3 . Indeed, for t > τ this is a10 < 0 (see Lemma 26), for t < τ this

is a6 < 0 (see Lemmas 25 and 27).

P r o o f of Lemma 27. Set Y :=
√
(4w2 + 19w + 4)(4w2 − 13w + 4). One checks

numerically that

256a6(τ, w) =
wC0 + (4w2 + 19w + 4)C1Y

(4w − 1)6
,

where

C0 := 6144w10 − 6144w9 − 224512w8 + 2284416w7 − 6369192w6

+ 6270368w5 − 3922014w4 + 1993629w3 − 860272w2

+ 234384w− 25728,

C1 := 384w7 − 2496w6 + 632w5 − 4064w4 + 4730w3 − 1355w2 − 136w + 64.

(With t = τ(w), a6 becomes a degree 6 polynomial in Y with coefficients in R(t).

Using the fact that Y 2 is a polynomial in t, one obtains the above form of 256a6.)

All real roots of C0 are smaller than 4, so C0 > 0 for w ∈ [4, 5]. The real roots

of C1 equal −0.192 . . ., 0.269 . . . and 6.455 . . ., so C1 is negative for w ∈ [4, 5]. Hence,

wC0 − (4w2 + 19w+ 4)C1Y > 0 and the inequality wC0 + (4w2 + 19w+ 4)C1Y > 0

is equivalent to w2C2
0 − (4w2 + 19w + 4)2C2

1Y
2 > 0. The left-hand side of the last

inequality equals 128(w − 4)C2(4w − 1)6 with

C2 := 55296w12 + 82944w11 − 1638912w10 + 6310368w9 − 13847224w8

+ 10530920w7 − 8336710w6 + 5520431w5 − 2256796w4

+ 758480w3 − 378304w2 + 63488w+ 2048.

The largest real root of C2 equals 3.045 . . . < 4, so C2 > 0 for w ∈ [4, 5] and the

lemma is proved. This finishes the proof of Lemma 13. �
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7. Proofs of Lemmas 14–16

P r o o f of Lemma 14.

N o t a t i o n 3. If ζ1, ζ2, . . . , ζk are distinct roots of the polynomial P (not

necessarily simple), then by Pζ1 , Pζ1,ζ2 , . . . , Pζ1,ζ2,...,ζk we denote the polynomials

P/(x− ζ1), P/(x− ζ1)(x − ζ2), . . . , P/(x− ζ1)(x − ζ2) . . . (x− ζk).

Denote by u, v, w and t the four distinct roots of P (all nonzero). Hence P =

(x − u)m(x − v)n(x − w)p(x − t)q, m + n + p + q = 11. For j = 1, 5 or 6 we show

that the Jacobian (3 × 4)-matrix J := (∂(a10, a9, aj)/∂(u, v, w, t))
t (where a10, a9,

aj are the corresponding coefficients of P expressed as functions of (u, v, w, t)) is of

rank 3. (The entry in position (2, 3) of J is ∂a9/∂w.) Hence, one can vary the values

of (u, v, w, t) in such a way that a10 and aj remain fixed (the value of a10 being −1)

and a9 takes all possible nearby values. Hence, the polynomial is not a9-maximal.

The entries of the four columns of J are the coefficients of x10, x9 and xj of the

polynomials −mPu = ∂P/∂u, −nPv, −pPw and −qPt. By abuse of language we say

that the linear space F spanned by the columns of J is generated by the polynomials

Pu, Pv, Pw and Pt. As Pu,v = (Pu − Pv)/(v − u), Pu,w = (Pu − Pw)/(w − u)

and Pu,t = (Pu − Pt)/(t − u), one can choose as generators of F the quadruple

(Pu, Pu,v, Pu,w, Pu,t); in the same way one can choose (Pu, Pu,v, Pu,v,w, Pu,v,t) or

(Pu, Pu,v, Pu,v,w, Pu,v,w,t) (the latter polynomials are of respective degrees 10, 9,

8 and 7). As (x − t)Pu,v,w,t = Pu,v,w, (x − w)Pu,v = Pu,v,w etc., one can choose

as generators the quadruple ψ :=(x3Pu,v,w,t, x
2Pu,v,w,t, xPu,v,w,t, Pu,v,w,t). Set

Pu,v,w,t := x7 +Ax6 + . . .+G. The coefficients of x10, x9 and x6 of the quadruple ψ

define the matrix J∗ :=

(
1 0 0 0

A 1 0 0

D C B A

)
. Its columns span the space F , hence rankJ∗ =

rankJ . As at least one of the coefficients B and A is nonzero (see Lemma 7), one

has rankJ∗ = 3 and the lemma follows (for the case j = 6). In the cases j = 5 and

j = 1, the last row of J∗ equals (EDCB) and (00GF ), respectively, and in the same

way rankJ∗ = 3. �

P r o o f of Lemma 15. We are using Notation 3 and the method of proof of

Lemma 14. Denote by u, v, w, t, h the five distinct real roots of P (not necessarily

simple). Thus, using Lemma 10 one can assume that

(7.1) P = (x+u)l(x+v)m(x+w)n(x− t)2(x−h), u, v, w, t, h > 0, l+m+n = 8.

Set J := (∂(a10, a9, aj , a1)/∂(u, v, w, t, h))
t, j = 5 or j = 6. The columns of J span

a linear space L defined by analogy with the space F from the proof of Lemma 14,

but spanned by 4-vector-columns.
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Set Pu,v,w,t,h := x6 + ax5 + bx4 + cx3 + dx2 + fx+ g. Consider the vector-column

(0, 0, 0, 0, 1, a, b, c, d, f, g)t.

The similar vector-columns defined when using the polynomials xsPu,v,w,t,h,

1 6 s 6 4, instead of Pu,v,w,t,h are obtained from this one by successive shifts

by one position upward. To obtain generators of L one has to restrict these vector-

columns to the rows corresponding to x10 (first), x9 (second), xj ((11− j)th) and x

(tenth row).

Further we assume that a1 = 0. If this is not the case, then at most one of the

conditions a5 = 0 and a6 = 0 is fulfilled and the proof of the lemma can be finished

by analogy with the proof of Lemma 14.

First consider the case j = 6. Hence, the rank of J is the same as the rank of the

matrix

M :=




1 0 0 0 0

a 1 0 0 0

d c b a 1

0 0 0 g f




x10

x9

x6

x

.

One has rankM = 2+ rankN , where N =
(

b a 1

0 g f

)
. Given that g 6= 0, one can have

rankN < 2 only if b = 0 and af = g. We show that the condition b = 0 leads to the

contradiction that one must have a10 > 0. We set u = 1 to reduce the number of

parameters, so we require only the inequality a10 < 0 to hold but not the equality

a10 = −1. We have to consider the following cases for the values of the triple (l,m, n)

(see (7.1)):

(6, 1, 1), (5, 2, 1), (4, 3, 1), (4, 2, 2), (3, 3, 2).

Notice that

P1,v,w,t,h = (x + 1)l−1(x+ v)m−1(x+ w)n−1(x− t).

Case 1. Triple (6, 1, 1). One has b = 10−5t, so t = 2. For t = 2 one has a1 = 4vw−

20vwh−4hv−4hw and the condition a1 = 0 yields h = h1 := vw/(5vw+v+w) < 1
5 .

Notice that a10 = 2 + v + w − h, which for h = h1 is positive—a contradiction.

Case 2. Triple (5, 2, 1). We obtain b = 6u2 + 4uv − 4ut − tv, hence t = t2 :=

2(3 + 2v)/(4 + v). One has a1 = −tv(−vwt − 2vwh+ thv + 5thvw + 2thw) and for

t = t2 the condition a1 = 0 gives

h = h2 :=
vw(3 + 2v)

9v2w + 3v + 2v2 + 15vw + 6w
< w.

Observe that a10 = 5+ 2v − 2t+ (w − h) > 5 + 2v− 2t. However, for t = t2 one has

5 + 2v − 2t2 = (8 + 5v + 2v2)/(4 + v) > 0.
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Case 3. Triple (4, 3, 1). One gets b = 3 + 6v + v2 − 3t − 2tv = 0, so t = t3 :=

(3 + 6v + v2)/(3 + 2v). As a1 = −tv2(−vwt− 2vwh+ thv + 4thwv + 3thw) = 0, for

t = t3 one obtains

h = h3 :=
vw(3 + 6v + v2)

24vw + 23v2w + 3v + 6v2 + v3 + 4wv3 + 9w
< w.

One has a10 = 4 + 3v − 2t + (w − h) > 4 + 3v − 2t. For t = t3 one checks directly

that

4 + 3v − 2t3 =
6 + 5v + 4v2

3 + 2v
> 0, i.e. a1 > 0.

Case 4. Triple (4, 2, 2). One has b = 3 + 3v + 3w + vw − 3t− tv − tw, therefore

t = t4 := (3 + 3v + 3w + vw)/(3 + v + w). As a1 = −tvw(−vwt − 2vwh+ 4thwv +

2thv + 2thw), for t = t4 it follows from a1 = 0 that

h = h4 :=
vw(3 + 3v + 3w + vw)

2(9vw + 6v2w + 6vw2 + 2v2w2 + 3v + 3v2 + 3w + 3w2)
,

which is less than 1
2w. One has a10 = 4 + 2v + 2w − 2t − h, which for h = h4 and

t = t4 is

> 4 + 2v +
3

2
w − 2t4 =

1

2

12 + 8v + 5w + 4v2 + 3vw + 3w2

3 + v + w
> 0.

Case 5. Triple (3, 3, 2). One has b = 1 + 4v + v2 + 2w + 2vw − 2t − 2tv − tw,

therefore

t = t5 :=
1 + 4v + v2 + 2w + 2vw

2 + 2v + w
.

As a1 = −tv2w(−vwt− 2vwh+ 3thwv + 2thv + 3thw), the condition a1 = 0 yields

h = h5 :=
vw(1 + 4v + v2 + 2w + 2vw)

15vw + 15v2w + 10vw2 + 3wv3 + 6v2w2 + 2v + 8v2 + 2v3 + 3w + 6w2
,

which is less than 1
2w. One has a10 = 3+3v+2w−2t−h, which for t = t5, h = h5 is

> 3 + 3v +
3

2
w − 2t5 =

1

2

8 + 8v + 4w + 8v2 + 4vw + 3w2

2 + 2v + w
> 0.

Now consider the case j = 5. The matrices M and N equal

M :=




1 0 0 0 0

a 1 0 0 0

f d c b a

0 0 0 g f


 , N =

(
c b a

0 g f

)
,
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respectively. One has rankN < 2 only for c = 0 and bf = ag. Similarly to the case

j = 6 we show that the equality c = 0 leads to the contradiction a10 > 0. We define

the cases 1–5 in the same way as above.

Case 1. One has c = 10−10t, so t = 1. As a1 = vw−4vwh−hv−hw, the equality

a1 = 0 implies h = h1 := vw/(4vw+ v+w) < 1
4 . One has a10 = 4+ v+w−h, which

for h = h1 is positive—a contradiction.

Case 2. One gets c = −2u(−2u2 − 3uv + 3ut + 2tv), so c = 0 implies t = t2 :=

(2 + 3v)/(3 + 2v). From a1 = −kv(−vwk − 2vwh + thv + 5thwv + 2thw) = 0 one

gets for t = t2

h = h2 :=
vw(2 + 3v)

11v2w + 2v + 3v2 + 10vw + 4w
< w.

From a10 = 5 + 2v + w − 2t− h one sees that for h = h2, t = t2 it is true that

a10 > 5 + 2v − 2t2 =
11 + 10v + 4v2

3 + 2v
> 0.

Case 3. One obtains c = 1+6v+3v2 − 3t− 6tv− v2t, so t = t3 := (1+ 6v+3v2)/

(3 + 6v + v2). The condition a1 = −tv2(−vwt − 2vwh + thv + 4thwv + 3thw) = 0

with t = t3 implies

h = h3 :=
vw(1 + 6v + 3v2)

16vw + 21v2w + 10wv3 + v + 6v2 + 3v3 + 3w
< w.

But then from a10 = 4 + 3v + w − 2t− h with t = t3, h = h3 it follows

a10 > 4 + 3v − 2t3 =
10 + 21v + 16v2 + 3v3

3 + 6v + v2
> 0.

Case 4. One has c = 1 + 3v + 3w + 3vw − 3t− 3tv − 3tw − vwt, so c = 0 implies

t = t4 := (1 + 3v + 3w + 3vw)/(3 + 3v + 3w + vw). For t = t4 the condition

a1 = −tvw(−vwt− 2vwh+ 4thwv + 2thv + 2thw) = 0 implies

h = h4 :=
1

2

vw(1 + 3v + 3w + 3vw)

5vw + 6v2w + 6vw2 + 5v2w2 + v + 3v2 + w + 3w2
,

which is less than 1
2w. Thus, a10 = 4+ 2v + 2w − 2t− h with t = t4, h = h4 implies

a10 > 4 + 2v +
3

2
w − 2t4

=
20 + 24v + 21w + 17vw + 12v2 + 4v2w + 9w2 + 3vw2

2(3 + 3v + 3w + vw)
> 0.
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Case 5. We get c = 2v + 2v2 + w + 4vw + v2w − t− 4tv − v2t− 2tw − 2vwt and

c = 0 implies

t = t5 :=
2v + 2v2 + w + 4vw + v2w

1 + 4v + v2 + 2w + 2vw
.

For t = t5 the equalities a1 = −tv2w(−vwt− 2vwh+3thwv+2thv+3thw) = 0 yield

h = h5 :=
vw(2v + 2v2 + w + 4vw + v2w)

6vw + 12v2w + 6wv3 + 11vw2 + 11v2w2 + 3w2v3 + 4v2 + 4v3 + 3w2

which is less than 1
2w. Hence, a10 = 3+3v+2w− 2t− h with t = t5, h = h5 implies

a10 > 3 + 3v +
3

2
w − 2t5

=
6 + 22v + 22v2 + 11w + 20vw + 6v3 + 11v2w + 6w2 + 6vw2

2(1 + 4v + v2 + 2w + 2vw)
> 0.

�

P r o o f of Lemma 16. We use the same ideas and notation as in the proof of

Lemma 15. Six of the six or more real roots of P are denoted by (u, v, w, t, h, q). The

space L is defined by analogy with the one of the proof of Lemma 15. The Jacobian

matrix J is of the form

J :=
(∂(a10, a9, aj , a1)
∂(u, v, w, t, h, q)

)t

.

Set Pu,v,w,t,h,q := x5 + ax4 + bx3 + cx2 + dx + f and consider the vector-column

(0, 0, 0, 0, 0, 1, a, b, c, d, f)t.

Its successive shifts by one position upward correspond to the polynomials

xsPu,v,w,t,h,q, s 6 5. In the case j = 6, the matrices M and N look like this:

M =




1 0 0 0 0 0

a 1 0 0 0 0

d c b a 1 0

0 0 0 0 f d


 and N =

(
b a 1 0

0 0 f d

)
.

One has rankM = 2+ rankN and rankN = 2 because f 6= 0 and at least one of the

two coefficients b and a is nonzero (Lemma 7). Hence, rankM = 4 and the lemma

is proved by analogy with Lemmas 14 and 15. In the case j = 5 the third row of M

equals (fdcba1), the first row of N equals (cba1), at least one of the two coefficients c

and b is nonzero and again rankM = 4. �
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