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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 55 (2019), 23–30

THE GROUP RING KF OF RICHARD THOMPSON’S
GROUP F HAS NO MINIMAL NON-ZERO IDEALS

John Donnelly

Abstract. We use a total order on Thompson’s group F to show that the
group ring KF has no minimal non-zero ideals.

1. Introduction

We define Richard Thompson’s group F to be the group of right fractions of
the monoid P which is given by the presentation

〈x0, x1, x2, . . . | xnxm = xmxn+1 for n > m〉 .
Geoghegan has conjectured that the group F is an example of a finitely presented,

nonamenable group which has no free subgroup on two generators [2]. In [1], Brin
and Squier show that the group F has no free subgroup on two generators. However,
the question of whether or not the group F is amenable has been open for over
twenty years [2].

Let K denote a field. It is shown in [1] that the group F is totally ordered. Using
this fact we can show that the group ring KF is cancellative, and consequently
does not have any zero-divisors. Thus, the set of all nonzero elements in KF forms
a multiplicative monoid H whose identity is the identity 1F of the group F . We
leave it to the reader to check that if H is (left/right) amenable, then the group F
is amenable.

Thus, one can ask whether or not the multiplicative monoid H is right amenable.
In [3], Frey gives necessary conditions that any minimal ideal of a semigroup S
must satisfy for S to be right amenable. In particular, Frey shows that if S is a
right amenable semigroup, L is a minimal left ideal of S, and R is a minimal right
ideal of S, then

(i) L is a two-sided ideal of S.
(ii) R ⊆ L.
(iii) R is a group.
(iv) There exists a semigroup T such that L is isomorphic to R⊕ T , and such

that for all z1, z2 ∈ T , z1z2 = z1.
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Frey also shows that if S is a semigroup containing a minimal left ideal L and a
minimal right ideal R, then S is right amenable if and only if R is an amenable
group.

Thus, one can ask what the minimal ideals of H are, and whether or not they
satisfy the conditions stated above. In this paper, we use a total ordering on the
group F to show that H has no minimal left, right, or two-sided ideals.

2. A total ordering on the group F

We denote the set of generators {x0, x1, x2, . . . , xn, . . .} of P (and consequently,
of F ) by Σ, and we define the set Σn = {xm ∈ Σ | m ≥ n}. Given an element
q ∈ P , we let |q| denote the length of a word over Σ representing q. Every element
of the group F can be represented uniquely by a normal form

xb1i1x
b2
i2
xb3i3 . . . x

bm
im
x−dkjk . . . x−d3

j3
x−d2
j2

x−d1
j1

where
(i) for each t, and for each r, we have that bt, dr > 0;
(ii) i1 < i2 < · · · < im and j1 < j2 < · · · < jk;
(iii) if there exists some i such that both xi and x−1

i are generators in the normal
form, then xi+1 or x−1

i+1 is a generator in the normal form as well.
Given two generators xi and xj of P , then we define xi < xj if and only if i < j.
We can now use the shortlex ordering on the set of normal forms for the elements
of the monoid P to get a total ordering <P on the monoid P . We use the ordering
<P on P to define an ordering <F on all of the group F in the following way:
Given g ∈ F such that g has normal form xy−1, with x, y ∈ P , then g <F 1F if
and only if x <P y. We extend this to compare all elements of the group F by
defining for each distinct pair g, h ∈ F that g <F h if and only if gh−1 <F 1F . We
will prove that <F is a well defined total ordering on the group F .

Let g, h ∈ F . Assume that gh−1 has normal form ab−1, where a, b ∈ P . Since
ab−1 is in normal form, then ba−1 is in normal form. Moreover, since hg−1 =
(gh−1)−1 = (ab−1)−1 = ba−1, then hg−1 has normal form ba−1. Note that in case
(i) below, since a = b and ab−1 is in normal form, then a and b are empty words
and consequently ab−1 is the identity element of F . Therefore, if gh−1 has normal
form ab−1, where a, b ∈ P , then

(i) g = h if and only if a = b;
(ii) gh−1 <F 1F if and only if a <P b;
(iii) hg−1 <F 1F if and only if b <P a.
Since for each pair of elements a, b ∈ P , exactly one of a = b, a <P b, or b <P a
must hold, then given two elements g, h ∈ F , exactly one of g = h, gh−1 <F 1F ,
or hg−1 <F 1F must hold. Thus, given two distinct elements g, h ∈ F , then either
gh−1 <F 1F , in which case g <F h, or else hg−1 <F 1F , in which case h <F g.

Thus, it follows that <F is well defined and linear.
Lemma 1. Let w1, w2 ∈ P be such that w1 <P w2. If xm is any generator of the
monoid P , then xmw1 <P xmw2.
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Proof. Let |w1| = h and |w2| = k. If |w1| < |w2|, then we see that |xmw1| =
h+ 1 < k + 1 = |xmw2|, which implies that xmw1 <P xmw2.

Assume that |w1| = k = |w2|. Let w1 have normal form vxa1xa2 . . . xat , and let
w2 have normal form vxb1xb2 . . . xbt , where v is a (possibly empty) word over Σ,
and a1 < b1.

Assume that k = 1. In this case, v is empty, w1 = xa1 , and w2 = xb1 , with
a1 < b1. First assume that m ≤ a1 < b1. In this case, xmw1 has normal form xmxa1

and xmw2 has normal form xmxb1 . Since a1 < b1, then xmw1 <P xmw2. Next
assume that a1 < m ≤ b1. In this case xmw1 has normal form xa1xm+1, and xmw2
has normal form xmxb1 . Since a1 < m, then xmw1 <P xmw2. Finally, assume that
a1 < b1 < m. In this case xmw1 has normal form xa1xm+1, and xmw2 has normal
form xb1xm+1. Since a1 < b1, then xmw1 <P xmw2.

Now assume that k ≥ 2, and that for each j ∈ {1, . . . k − 1}, if u1, u2 ∈ P
are such that |u1| = |u2| = j and u1 <P u2, then for each generator xm of P ,
xmu1 <P xmu2.

Assume that |v| ≥ 1, and that xmv = vxm+|v|. Since a1 < b1, then it follows that
xa1xa2 . . . xat <P xb1xb2 . . . xbt . Therefore, by our induction hypothesis we have
that xm+|v|xa1xa2 . . . xat <P xm+|v|xb1xb2 . . . xbt . Thus, xm+|v|xa1xa2 . . . xat has
normal form σxi1xi2 . . . xiq . Similarly, we see that xm+|v|xb1xb2 . . . xbt has normal
form σxj1xj2 . . . xjq , where σ is a (possibly empty) word over Σ, and i1 < j1.
Therefore, xmw1 has normal form vσxi1xi2 . . . xiq , and xmw2 has normal form
vσxj1xj2 . . . xjq . Since i1 < j1, then xmw1 <P xmw2.

Now Assume that |v| ≥ 1, and that xmv = uxm+|u|z, where z is some nonempty
word over Σm+|u|, and where u is some (possibly empty) word over Σ. In this
case, xmw1 has normal form uxm+|u|zxa1xa2 . . . xat , and xmw2 has normal form
uxm+|u|zxb1xb2 . . . xbt . Since a1 < b1, then it follows that xmw1 <P xmw2.

Finally, assume that v is empty. In this case, w1 has normal form xa1xa2 . . . xak ,
and w2 has normal form xb1xb2 . . . xbk , where a1 < b1. First assume that m ≤
a1 < b1. In this case, xmw1 has normal form xmxa1xa2 . . . xak , and xmw2 has
normal form xmxb1xb2 . . . xbk . Since a1 < b1, then xmw1 <P xmw2. Next assume
that a1 < m ≤ b1. In this case, xmw1 has normal form xa1β, where β is a word
over Σa1 of length k, and xmw2 has normal form xmxb1xb2 . . . xbk . Since a1 < m,
then xmw1 <P xmw2. Finally, assume that a1 < b1 < m. In this case, xmw1
has normal form xa1ρ1, where ρ1 is a word over Σa1 of length k, and xmw2 has
normal form xb1ρ2, where ρ2 is a word over Σb1 of length k. Since a1 < b1, then
xmw1 <P xmw2. �

Lemma 2. Let w1, w2 ∈ P be such that w1 <P w2. If xm is any generator of the
monoid P , then w1xm <P w2xm.

Proof. Let |w1| = h and |w2| = k. If |w1| < |w2|, then we see that |w1xm| =
h+ 1 < k + 1 = |w2xm|, which implies that w1xm <P w2xm.

Assume that |w1| = k = |w2|. Let w1 have normal form xa1xa2 . . . xak , and let
w2 have normal form xb1xb2 . . . xbk . First assume that k = 1. In this case, w1 = xa1

and w2 = xb1 , with a1 < b1. If m < a1 < b1, then w1xm has normal form xmxa1+1,
and w2xm has normal form xmxb1+1, which implies that w1xm <P w2xm. Assume
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that a1 ≤ m < b1. Thus, w1xm has normal form xa1xm, and w2xm has normal
form xmxb1+1. If a1 < m, then w1xm = xa1xm <P xmxb1+1 = w2xm. If a1 = m,
then w1xm = xmxm <P xmxb1+1 = w2xm. Assume that a1 < b1 ≤ m. In this
case, we see that w1xm has normal form xa1xm, and w2xm has normal form xb1xm,
which implies that w1xm = xa1xm <P xb1xm = w2xm.

Now assume that k ≥ 2, and that for each j ∈ {1, . . . k − 1}, if u1, u2 ∈ P
are such that |u1| = |u2| = j and u1 <P u2, then for each generator xm of P ,
u1xm <P u2xm.

Assume that a1 = b1 ≤ m. In this case, w1 has normal form xa1σ1, and w2
has normal form xa1σ2, where σ1 and σ2 are words over Σa1 . Since xa1σ1 =
w1 <P w2 = xa1σ2, then it must be the case that σ1 <P σ2. Therefore, it
follows by our induction hypothesis that σ1xm <P σ2xm. Thus, σ1xm has normal
form vxc1xc2 . . . xct , and σ2xm has normal form vxe1xe2 . . . xet , where v is a word
over Σa1 , and c1 < e1. Therefore, xa1σ1xm has normal form xa1vxc1xc2 . . . xct ,
and xa1σ2xm has normal form xa1vxe1xe2 . . . xet , where c1 < e1. Since w1xm =
xa1σ1xm and w2xm = xa1σ2xm, then it follows that w1xm <P w2xm.

Now assume that a1 < b1 ≤ m. In this case w1xm has normal form xa1β1, where
β1 is a word over Σa1 , and w2xm has normal form xb1β2, where β2 is a word over
Σb1 . Thus, w1xm <P w2xm.

Assume that a1 = m < b1. In this case, w1xm has normal form xmxmρ, where
ρ is a word over Σm, and w2xm has normal form xmxb1+1xb2+1 . . . xbk+1. Since
m < b1 < b1 + 1, then w1xm <P w2xm.

Assume that a1 < m < b1. In this case, w1xm has normal form xa1α, where
α is a word over Σa1 , and w2xm has normal form xmxb1+1xb2+1 . . . xbk+1. Since
a1 < m, then w1xm <P w2xm.

Finally, assume that m < a1 < b1. In this case, w1xm has normal form
xmxa1+1xa2+1 . . . xak+1, and w1xm has normal form xmxb1+1xb2+1 . . . xbk+1. This
implies that w1xm <P w2xm. �

Given a, b, c ∈ P , with a <P b, then by using Lemmas 1 and 2 as induction
base steps, one can use induction on the length |c| to show that ca <P cb and
ac <P bc. We now extend this property to the ordering <F by showing that for all
g, h, d ∈ F , if g <F h, then dg <F dh and gd <F hd. Again, we note that in case
(i) below, since a = b and ab−1 is in normal form, then a and b are empty words
and consequently ab−1 is the identity element 1P of P .
Lemma 3. Let a, b, c, d ∈ P be such that ab−1 = cd−1, and such that ab−1 is in
normal form. Then

(i) a = b if and only if c = d;
(ii) a <P b if and only if c <P d;
(iii) b <P a if and only if d <P c.
Proof. Let 1P denote the identity element of the monoid P . Since a = b if and
only if cd−1 = ab−1 = 1P , and since cd−1 = 1P if and only if c = d, then a = b if
and only if c = d.

Assume that a 6= b. When rewriting the normal form ab−1 to get the word cd−1,
we multiply a on the right by a (possibly empty) word u over Σ, and we multiply
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b−1 on the left by the (possibly empty) word u−1 over Σ−1. In particular, the
word u consists of all the generators from c that cancel when we multiply c with
d−1, and then simplify to rewrite cd−1 in the normal form ab−1. Thus, c = au and
d = bu. If a <P b, then it follows by the comments above that c = au <P bu = d.
If b <P a, then again it follows by the comments above that d = bu <P au = c.

Now assume that c <P d. Since <P is a linear ordering on P , then exactly
one of the following is true: a <P b, a = b, or b <P a. If a = b, then c = d, a
contradiction. If b <P a, then it follows from the argument given above that d <P c,
a contradiction. Thus, a <P b. A similar argument shows that if d <P c, then
b <P a. �

Lemma 4. Let c, d ∈ P . Then c <P d if and only if c <F d.

Proof. Let cd−1 have normal form ab−1, where a, b ∈ P . Assume that c <P d.
Since c <P d and cd−1 has normal form ab−1, then it follows by Lemma 3 that
a <P b. Thus, by definition of <F , we have that ab−1 <F 1F , which implies that
cd−1 <F 1F , which in turn implies that c <F d.

Conversely, assume that c <F d. By definition of <F , we have that cd−1 <F 1F .
Since ab−1 = cd−1, then ab−1 <F 1F , which implies that a <P b. Therefore, by
Lemma 3, we have that c <P d. �

Lemma 5. Let g, h ∈ F be such that g <F h. Then for any d ∈ F , gd <F hd.

Proof. Since g <F h, then it follows by definition of <F that gh−1 <F 1F . Thus,
we see that (gd)(d−1h−1) = gh−1 <F 1F , which implies that gd <F hd. �

Lemma 6. Let g ∈ F and c, d ∈ P . If g <F c and c <F d, then g <F d.

Proof. Let g have normal form ab−1, where a, b ∈ P . Since ab−1 <F c, then it
follows by Lemma 5 that a <F cb. Since a <F cb, then it follows that a <P cb.
Similarly, since c <F d, then c <P d. Since a <P cb and c <P d, then a <P cb <P db.
Therefore, by definition of <F , we have that ab−1d−1 <F 1F , which implies that
ab−1 <F d. Hence, g <F d. �

Lemma 7. Let g, h ∈ F . If g <F h and h <F 1F , then g <F 1F .

Proof. Let g have normal form ab−1, where a, b ∈ P , and let h have normal form
cd−1, where c, d ∈ P . Since cd−1 <F 1F , then c <F d. Since ab−1 <F cd

−1, then it
follows by Lemma 5 that ab−1d <F c. Since ab−1d <F c and c <F d, then it follows
by Lemma 6 that ab−1d <F d. Thus, by Lemma 5, we have that ab−1 <F 1F .
Hence, g <F 1F . �

Lemma 8. Let g, h, d ∈ F . If g <F h and h <F d, then g <F d.

Proof. Since g <F h, then it follows by Lemma 5 that gd−1 <F hd−1. Since
h <F d, then it follows that hd−1 <F 1F . Therefore, it follows by Lemma 7 that
gd−1 <F 1F . Thus, it follows by definition of <F that g <F d. �

Lemma 9. Let g, h ∈ F , and let b ∈ P . If g <F h, then bg <F bh.
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Proof. Let gh−1 have normal form cd−1, where c, d ∈ P . Since g <F h, then
it follows that gh−1 <F 1F . Since gh−1 has normal form cd−1, then it follows
that cd−1 <F 1F . Therefore, c <F d, which implies that c <P d. Thus, it follows
that bc <P bd, which implies that bc <F bd, and therefore that bcd−1b−1 <F 1F .
Again, since gh−1 has normal form cd−1, then it follows that bgh−1b−1 <F 1F ,
and therefore that bg <F bh. �

Lemma 10. Let g, h ∈ F , and let b ∈ P . If g <F h, then b−1g <F b
−1h.

Proof. If b−1g = b−1h, then g = h, a contradiction. Thus, b−1g 6= b−1h. Suppose
that b−1h <F b

−1g. Thus, it follows by Lemma 9 that b(b−1h) <F b(b−1g), which
implies that h <F g, a contradiction. Hence, b−1g <F b

−1h. �

Lemma 11. Let g, h, u ∈ F . If g <F h, then ug <F uh.

Proof. Let u have normal form ab−1, where a, b ∈ P . Since g <F h, then it follows
by Lemma 10 that b−1g <F b

−1h. Therefore, since b−1g <F b
−1h, then it follows

by Lemma 9 that ab−1g <F ab
−1h. Hence, ug <F uh. �

Lemma 12. Let g1, g2, h1, h2 ∈ F be such that g1 <F g2 and h1 <F h2. Then it
follows that g1h1 <F g2h2.

Proof. Since g1 <F g2, then it follows by Lemma 5 that g1h1 <F g2h1. Similarly,
since h1 <F h2, then it follows by Lemma 11 that g2h1 <F g2h2. Therefore,
since g1h1 <F g2h1 and g2h1 <F g2h2, then it follows by Lemma 8 that g1h1 <F
g2h2. �

3. The main result

Lemma 13. Let g1, g2 ∈ F . Assume that g1 has normal form a1b
−1
1 , and that g2

has normal form a2b
−1
2 , where a1, a2, b1, b2 ∈ P . If |a1|+ |b2| < |a2|+ |b1|, then

g1 <F g2.

Proof. Let b−1
1 b2 have normal form cd−1, where c, d ∈ P . Each generator xi in

the normal form of b2 which cancels when multiplying b−1
1 and b2 to put b−1

1 b2 in
normal form will cancel with exactly one of the generators x−1

j in the normal form
of b−1

1 . That is, any generators from b2 and b−1
1 which cancel when transforming

b−1
1 b2 into normal form will cancel in pairs. Thus, if k generators cancel from the

normal form of b2, then k generators cancel from the normal form of b−1
1 . Therefore,

we see that |c| = |b2| − k, and that |d| = |b1| − k. Since a1, c ∈ P , then there
is no cancellation of generators when multiplying a1 and c. Thus, we see that
|a1c| = |a1|+ |c|. Similarly, we see that |a2d| = |a2|+ |d|. Therefore, we have that
|a1c| = |a1| + |c| = |a1| + |b2| − k < |a2| + |b1| − k = |a2| + |d| = |a2d|. Since
|a1c| < |a2d|, then it follows that a1c <F a2d. Thus, a1b

−1
1 b2 = a1cd

−1 <F a2,
which implies that a1b

−1
1 <F a2b

−1
2 . Hence, g1 <F g2. �

Theorem 1. Let H denote the multiplicative monoid of nonzero elements in the
group ring KF . Then H has no minimal ideals.
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Proof. Suppose, to the contrary, that I is a minimal two-sided ideal of H. Since

H is a cancellative monoid, then I is a principal ideal. Let ĝ =
m∑
i=1

rigi ∈ H be

such that I = HĝH. By renumbering if necessary, we may assume that g1 <F

g2 <F · · · <F gm. Since
m∑
i=1

rigi = g1

m∑
i=1

ri(g−1
1 gi), then I = H

m∑
i=1

ri(g−1
1 gi)H.

In particular, we may assume that g1 = 1F . Let gm have normal form cd−1,

where c, d ∈ P . Let J = H(ĝ)(1F + c)H = H(
m∑
i=1

rigi +
m∑
i=1

ri(gic))H. Since

1F = g1 <F gm = cd−1, then 1F ≤F d <F c. Thus, 1F and gmc are the smallest
and largest elements, respectively, of F used to write (ĝ)(1F + c) as a sum in the
group ring KF . Since (ĝ)(1F + c) ∈ I, then J is a subideal of I. Since I is minimal,

then it must be the case that ĝ ∈ I = J . Thus, there exist
l∑
j=1

sjhj ,
e∑
k=1

tkqk ∈ H

such that ĝ =
( l∑
j=1

sjhj

)
(ĝ)(1F+c)

( e∑
k=1

tkqk

)
. Again, by renumbering if necessary,

we may assume that h1 ≤F h2 ≤F · · · ≤F hl and q1 ≤F q2 ≤F · · · ≤F qe. Since
F is totally ordered, and since 1F and gm are the smallest and largest elements,
respectively, of F used to write ĝ as a sum in the group ring KF , then it follows
that h1q1 = 1F , and hlgmcqe = gm. This implies that h1 = q−1

1 .
First assume that h1 = q1 = 1F . Since 1F <F c, 1F = q1 ≤F qe, and 1F =

h1 ≤F hl, then gm <F hlgmcqe, a contradiction. Therefore, q1 6= 1F . In this case
we have that 1F <F q1 or 1F <F h1. We may assume that 1F <F q1 (the proof
for the case that 1F <F h1 is similar). Since 1F <F q1, then h1 = q−1

1 <F 1F .
Let hl have normal form ab−1, and let qe have normal form yx−1, where a, b, x,
y ∈ P . Since 1F <F q1 ≤F qe, then |x| ≤ |y|. Similarly, since 1F <F c, then |c| ≥ 1.
Since hlgmcqe = gm, then hl = gmq

−1
e c−1g−1

m = (cd−1)(xy−1)(c−1)(dc−1). As in
the proof of Lemma 13, when transforming hl into normal form, any generators
which cancel must cancel in pairs. Thus, if k generators cancel in c, x, or d,
then k generators must cancel in d−1, y−1, or either of the copies of c−1. Thus,
|a| = |c| + |x| + |d| − k, and |b| = |d| + |y| + 2|c| − k. Therefore, we see that
|a| + |y| = (|c| + |x| + |d| − k) + |y| < |d| + |y| + 2|c| + |x| − k = |b| + |x|. It
follows by Lemma 13 that hl = ab−1 <F xy−1 = q−1

e . Thus, it follows that
hl <F q−1

e ≤F q−1
1 = h1, which is a contradiction. Hence, H does not have a

minimal two-sided ideal.
A similar argument shows that H has neither a minimal left ideal nor a minimal

right ideal. �
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