Archivum Mathematicum

John Donnelly

The group ring $\mathbb{K} F$ of Richard Thompson's Group F has no minimal non-zero ideals

Archivum Mathematicum, Vol. 55 (2019), No. 1, 23-30
Persistent URL: http://dml.cz/dmlcz/147647

Terms of use:

© Masaryk University, 2019
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

THE GROUP RING $\mathbb{K} F$ OF RICHARD THOMPSON'S GROUP F HAS NO MINIMAL NON-ZERO IDEALS

John Donnelly

Abstract

We use a total order on Thompson's group F to show that the group ring $\mathbb{K} F$ has no minimal non-zero ideals.

1. Introduction

We define Richard Thompson's group F to be the group of right fractions of the monoid P which is given by the presentation

$$
\left.\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n} x_{m}=x_{m} x_{n+1} \text { for } n>m\right\rangle .
$$

Geoghegan has conjectured that the group F is an example of a finitely presented, nonamenable group which has no free subgroup on two generators [2]. In [1], Brin and Squier show that the group F has no free subgroup on two generators. However, the question of whether or not the group F is amenable has been open for over twenty years [2].

Let \mathbb{K} denote a field. It is shown in [1] that the group F is totally ordered. Using this fact we can show that the group ring $\mathbb{K} F$ is cancellative, and consequently does not have any zero-divisors. Thus, the set of all nonzero elements in $\mathbb{K} F$ forms a multiplicative monoid \mathcal{H} whose identity is the identity 1_{F} of the group F. We leave it to the reader to check that if \mathcal{H} is (left/right) amenable, then the group F is amenable.

Thus, one can ask whether or not the multiplicative monoid \mathcal{H} is right amenable. In [3], Frey gives necessary conditions that any minimal ideal of a semigroup S must satisfy for S to be right amenable. In particular, Frey shows that if S is a right amenable semigroup, \mathcal{L} is a minimal left ideal of S, and \mathcal{R} is a minimal right ideal of S, then
(i) \mathcal{L} is a two-sided ideal of S.
(ii) $\mathcal{R} \subseteq \mathcal{L}$.
(iii) \mathcal{R} is a group.
(iv) There exists a semigroup T such that \mathcal{L} is isomorphic to $\mathcal{R} \oplus T$, and such that for all $z_{1}, z_{2} \in T, z_{1} z_{2}=z_{1}$.

[^0]Frey also shows that if S is a semigroup containing a minimal left ideal \mathcal{L} and a minimal right ideal \mathcal{R}, then S is right amenable if and only if \mathcal{R} is an amenable group.

Thus, one can ask what the minimal ideals of \mathcal{H} are, and whether or not they satisfy the conditions stated above. In this paper, we use a total ordering on the group F to show that \mathcal{H} has no minimal left, right, or two-sided ideals.

2. A total ordering on the group F

We denote the set of generators $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ of P (and consequently, of F) by Σ, and we define the set $\Sigma_{n}=\left\{x_{m} \in \Sigma \mid m \geq n\right\}$. Given an element $q \in P$, we let $|q|$ denote the length of a word over Σ representing q. Every element of the group F can be represented uniquely by a normal form

$$
x_{i_{1}}^{b_{1}} x_{i_{2}}^{b_{2}} x_{i_{3}}^{b_{3}} \ldots x_{i_{m}}^{b_{m}} x_{j_{k}}^{-d_{k}} \ldots x_{j_{3}}^{-d_{3}} x_{j_{2}}^{-d_{2}} x_{j_{1}}^{-d_{1}}
$$

where
(i) for each t, and for each r, we have that $b_{t}, d_{r}>0$;
(ii) $i_{1}<i_{2}<\cdots<i_{m}$ and $j_{1}<j_{2}<\cdots<j_{k}$;
(iii) if there exists some i such that both x_{i} and x_{i}^{-1} are generators in the normal form, then x_{i+1} or x_{i+1}^{-1} is a generator in the normal form as well.
Given two generators x_{i} and x_{j} of P, then we define $x_{i}<x_{j}$ if and only if $i<j$. We can now use the shortlex ordering on the set of normal forms for the elements of the monoid P to get a total ordering $<_{P}$ on the monoid P. We use the ordering $<_{P}$ on P to define an ordering $<_{F}$ on all of the group F in the following way: Given $g \in F$ such that g has normal form $x y^{-1}$, with $x, y \in P$, then $g<_{F} 1_{F}$ if and only if $x<_{P} y$. We extend this to compare all elements of the group F by defining for each distinct pair $g, h \in F$ that $g<_{F} h$ if and only if $g h^{-1}<_{F} 1_{F}$. We will prove that $<_{F}$ is a well defined total ordering on the group F.

Let $g, h \in F$. Assume that $g h^{-1}$ has normal form $a b^{-1}$, where $a, b \in P$. Since $a b^{-1}$ is in normal form, then $b a^{-1}$ is in normal form. Moreover, since $h g^{-1}=$ $\left(g h^{-1}\right)^{-1}=\left(a b^{-1}\right)^{-1}=b a^{-1}$, then $h g^{-1}$ has normal form $b a^{-1}$. Note that in case (i) below, since $a=b$ and $a b^{-1}$ is in normal form, then a and b are empty words and consequently $a b^{-1}$ is the identity element of F. Therefore, if $g h^{-1}$ has normal form $a b^{-1}$, where $a, b \in P$, then
(i) $g=h$ if and only if $a=b$;
(ii) $g h^{-1}<_{F} 1_{F}$ if and only if $a<_{P} b$;
(iii) $h g^{-1}<_{F} 1_{F}$ if and only if $b<_{P} a$.

Since for each pair of elements $a, b \in P$, exactly one of $a=b, a<_{P} b$, or $b<_{P} a$ must hold, then given two elements $g, h \in F$, exactly one of $g=h, g h^{-1}<_{F} 1_{F}$, or $h g^{-1}<_{F} 1_{F}$ must hold. Thus, given two distinct elements $g, h \in F$, then either $g h^{-1}<_{F} 1_{F}$, in which case $g<_{F} h$, or else $h g^{-1}<_{F} 1_{F}$, in which case $h<_{F} g$.

Thus, it follows that $<_{F}$ is well defined and linear.
Lemma 1. Let $w_{1}, w_{2} \in P$ be such that $w_{1}<_{P} w_{2}$. If x_{m} is any generator of the monoid P, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Proof. Let $\left|w_{1}\right|=h$ and $\left|w_{2}\right|=k$. If $\left|w_{1}\right|<\left|w_{2}\right|$, then we see that $\left|x_{m} w_{1}\right|=$ $h+1<k+1=\left|x_{m} w_{2}\right|$, which implies that $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Assume that $\left|w_{1}\right|=k=\left|w_{2}\right|$. Let w_{1} have normal form $v x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$, and let w_{2} have normal form $v x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$, where v is a (possibly empty) word over Σ, and $a_{1}<b_{1}$.

Assume that $k=1$. In this case, v is empty, $w_{1}=x_{a_{1}}$, and $w_{2}=x_{b_{1}}$, with $a_{1}<b_{1}$. First assume that $m \leq a_{1}<b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{m} x_{a_{1}}$ and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Next assume that $a_{1}<m \leq b_{1}$. In this case $x_{m} w_{1}$ has normal form $x_{a_{1}} x_{m+1}$, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}}$. Since $a_{1}<m$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Finally, assume that $a_{1}<b_{1}<m$. In this case $x_{m} w_{1}$ has normal form $x_{a_{1}} x_{m+1}$, and $x_{m} w_{2}$ has normal form $x_{b_{1}} x_{m+1}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Now assume that $k \geq 2$, and that for each $j \in\{1, \ldots k-1\}$, if $u_{1}, u_{2} \in P$ are such that $\left|u_{1}\right|=\left|u_{2}\right|=j$ and $u_{1}<_{P} u_{2}$, then for each generator x_{m} of P, $x_{m} u_{1}<_{P} x_{m} u_{2}$.

Assume that $|v| \geq 1$, and that $x_{m} v=v x_{m+|v|}$. Since $a_{1}<b_{1}$, then it follows that $x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}<_{P} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Therefore, by our induction hypothesis we have that $x_{m+|v|} x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}<_{P} x_{m+|v|} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Thus, $x_{m+|v|} x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$ has normal form $\sigma x_{i_{1}} x_{i_{2}} \ldots x_{i_{q}}$. Similarly, we see that $x_{m+|v|} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$ has normal form $\sigma x_{j_{1}} x_{j_{2}} \ldots x_{j_{q}}$, where σ is a (possibly empty) word over Σ, and $i_{1}<j_{1}$. Therefore, $x_{m} w_{1}$ has normal form $v \sigma x_{i_{1}} x_{i_{2}} \ldots x_{i_{q}}$, and $x_{m} w_{2}$ has normal form $v \sigma x_{j_{1}} x_{j_{2}} \ldots x_{j_{q}}$. Since $i_{1}<j_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Now Assume that $|v| \geq 1$, and that $x_{m} v=u x_{m+|u|} z$, where z is some nonempty word over $\Sigma_{m+|u|}$, and where u is some (possibly empty) word over Σ. In this case, $x_{m} w_{1}$ has normal form $u x_{m+|u|} z x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$, and $x_{m} w_{2}$ has normal form $u x_{m+|u|} z x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Since $a_{1}<b_{1}$, then it follows that $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Finally, assume that v is empty. In this case, w_{1} has normal form $x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and w_{2} has normal form $x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$, where $a_{1}<b_{1}$. First assume that $m \leq$ $a_{1}<b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{m} x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Next assume that $a_{1}<m \leq b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{a_{1}} \beta$, where β is a word over $\Sigma_{a_{1}}$ of length k, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. Since $a_{1}<m$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Finally, assume that $a_{1}<b_{1}<m$. In this case, $x_{m} w_{1}$ has normal form $x_{a_{1}} \rho_{1}$, where ρ_{1} is a word over $\Sigma_{a_{1}}$ of length k, and $x_{m} w_{2}$ has normal form $x_{b_{1}} \rho_{2}$, where ρ_{2} is a word over $\Sigma_{b_{1}}$ of length k. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Lemma 2. Let $w_{1}, w_{2} \in P$ be such that $w_{1}<_{P} w_{2}$. If x_{m} is any generator of the monoid P, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Proof. Let $\left|w_{1}\right|=h$ and $\left|w_{2}\right|=k$. If $\left|w_{1}\right|<\left|w_{2}\right|$, then we see that $\left|w_{1} x_{m}\right|=$ $h+1<k+1=\left|w_{2} x_{m}\right|$, which implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $\left|w_{1}\right|=k=\left|w_{2}\right|$. Let w_{1} have normal form $x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and let w_{2} have normal form $x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. First assume that $k=1$. In this case, $w_{1}=x_{a_{1}}$ and $w_{2}=x_{b_{1}}$, with $a_{1}<b_{1}$. If $m<a_{1}<b_{1}$, then $w_{1} x_{m}$ has normal form $x_{m} x_{a_{1}+1}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1}$, which implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$. Assume
that $a_{1} \leq m<b_{1}$. Thus, $w_{1} x_{m}$ has normal form $x_{a_{1}} x_{m}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1}$. If $a_{1}<m$, then $w_{1} x_{m}=x_{a_{1}} x_{m}<_{P} x_{m} x_{b_{1}+1}=w_{2} x_{m}$. If $a_{1}=m$, then $w_{1} x_{m}=x_{m} x_{m}<_{P} x_{m} x_{b_{1}+1}=w_{2} x_{m}$. Assume that $a_{1}<b_{1} \leq m$. In this case, we see that $w_{1} x_{m}$ has normal form $x_{a_{1}} x_{m}$, and $w_{2} x_{m}$ has normal form $x_{b_{1}} x_{m}$, which implies that $w_{1} x_{m}=x_{a_{1}} x_{m}<_{P} x_{b_{1}} x_{m}=w_{2} x_{m}$.

Now assume that $k \geq 2$, and that for each $j \in\{1, \ldots k-1\}$, if $u_{1}, u_{2} \in P$ are such that $\left|u_{1}\right|=\left|u_{2}\right|=j$ and $u_{1}<_{P} u_{2}$, then for each generator x_{m} of P, $u_{1} x_{m}<_{P} u_{2} x_{m}$.

Assume that $a_{1}=b_{1} \leq m$. In this case, w_{1} has normal form $x_{a_{1}} \sigma_{1}$, and w_{2} has normal form $x_{a_{1}} \sigma_{2}$, where σ_{1} and σ_{2} are words over $\Sigma_{a_{1}}$. Since $x_{a_{1}} \sigma_{1}=$ $w_{1}<_{P} w_{2}=x_{a_{1}} \sigma_{2}$, then it must be the case that $\sigma_{1}<_{P} \sigma_{2}$. Therefore, it follows by our induction hypothesis that $\sigma_{1} x_{m}<_{P} \sigma_{2} x_{m}$. Thus, $\sigma_{1} x_{m}$ has normal form $v x_{c_{1}} x_{c_{2}} \ldots x_{c_{t}}$, and $\sigma_{2} x_{m}$ has normal form $v x_{e_{1}} x_{e_{2}} \ldots x_{e_{t}}$, where v is a word over $\Sigma_{a_{1}}$, and $c_{1}<e_{1}$. Therefore, $x_{a_{1}} \sigma_{1} x_{m}$ has normal form $x_{a_{1}} v x_{c_{1}} x_{c_{2}} \ldots x_{c_{t}}$, and $x_{a_{1}} \sigma_{2} x_{m}$ has normal form $x_{a_{1}} v x_{e_{1}} x_{e_{2}} \ldots x_{e_{t}}$, where $c_{1}<e_{1}$. Since $w_{1} x_{m}=$ $x_{a_{1}} \sigma_{1} x_{m}$ and $w_{2} x_{m}=x_{a_{1}} \sigma_{2} x_{m}$, then it follows that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Now assume that $a_{1}<b_{1} \leq m$. In this case $w_{1} x_{m}$ has normal form $x_{a_{1}} \beta_{1}$, where β_{1} is a word over $\Sigma_{a_{1}}$, and $w_{2} x_{m}$ has normal form $x_{b_{1}} \beta_{2}$, where β_{2} is a word over $\Sigma_{b_{1}}$. Thus, $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $a_{1}=m<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{m} x_{m} \rho$, where ρ is a word over Σ_{m}, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. Since $m<b_{1}<b_{1}+1$, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $a_{1}<m<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{a_{1}} \alpha$, where α is a word over $\Sigma_{a_{1}}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. Since $a_{1}<m$, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Finally, assume that $m<a_{1}<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{m} x_{a_{1}+1} x_{a_{2}+1} \ldots x_{a_{k}+1}$, and $w_{1} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. This implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Given $a, b, c \in P$, with $a<_{P} b$, then by using Lemmas 1 and 2 as induction base steps, one can use induction on the length $|c|$ to show that $c a<_{P} c b$ and $a c<_{P} b c$. We now extend this property to the ordering $<_{F}$ by showing that for all $g, h, d \in F$, if $g<_{F} h$, then $d g<_{F} d h$ and $g d<_{F} h d$. Again, we note that in case (i) below, since $a=b$ and $a b^{-1}$ is in normal form, then a and b are empty words and consequently $a b^{-1}$ is the identity element 1_{P} of P.
Lemma 3. Let $a, b, c, d \in P$ be such that $a b^{-1}=c d^{-1}$, and such that $a b^{-1}$ is in normal form. Then
(i) $a=b$ if and only if $c=d$;
(ii) $a<_{P} b$ if and only if $c<_{P} d$;
(iii) $b<_{P} a$ if and only if $d<_{P} c$.

Proof. Let 1_{P} denote the identity element of the monoid P. Since $a=b$ if and only if $c d^{-1}=a b^{-1}=1_{P}$, and since $c d^{-1}=1_{P}$ if and only if $c=d$, then $a=b$ if and only if $c=d$.

Assume that $a \neq b$. When rewriting the normal form $a b^{-1}$ to get the word $c d^{-1}$, we multiply a on the right by a (possibly empty) word u over Σ, and we multiply
b^{-1} on the left by the (possibly empty) word u^{-1} over Σ^{-1}. In particular, the word u consists of all the generators from c that cancel when we multiply c with d^{-1}, and then simplify to rewrite $c d^{-1}$ in the normal form $a b^{-1}$. Thus, $c=a u$ and $d=b u$. If $a<_{P} b$, then it follows by the comments above that $c=a u<_{P} b u=d$. If $b<_{P} a$, then again it follows by the comments above that $d=b u<_{P} a u=c$.

Now assume that $c<_{P} d$. Since $<_{P}$ is a linear ordering on P, then exactly one of the following is true: $a<_{P} b, a=b$, or $b<_{P} a$. If $a=b$, then $c=d$, a contradiction. If $b<_{P} a$, then it follows from the argument given above that $d<_{P} c$, a contradiction. Thus, $a<_{P} b$. A similar argument shows that if $d<_{P} c$, then $b<_{P} a$.

Lemma 4. Let $c, d \in P$. Then $c<_{P} d$ if and only if $c<_{F} d$.
Proof. Let $c d^{-1}$ have normal form $a b^{-1}$, where $a, b \in P$. Assume that $c<_{P} d$. Since $c<_{P} d$ and $c d^{-1}$ has normal form $a b^{-1}$, then it follows by Lemma 3 that $a<_{P} b$. Thus, by definition of $<_{F}$, we have that $a b^{-1}<_{F} 1_{F}$, which implies that $c d^{-1}<_{F} 1_{F}$, which in turn implies that $c<_{F} d$.

Conversely, assume that $c<_{F} d$. By definition of $<_{F}$, we have that $c d^{-1}<_{F} 1_{F}$. Since $a b^{-1}=c d^{-1}$, then $a b^{-1}<_{F} 1_{F}$, which implies that $a<_{P} b$. Therefore, by Lemma 3 we have that $c<_{P} d$.

Lemma 5. Let $g, h \in F$ be such that $g<_{F} h$. Then for any $d \in F, g d<_{F} h d$.
Proof. Since $g<_{F} h$, then it follows by definition of $<_{F}$ that $g h^{-1}<_{F} 1_{F}$. Thus, we see that $(g d)\left(d^{-1} h^{-1}\right)=g h^{-1}<_{F} 1_{F}$, which implies that $g d<_{F} h d$.

Lemma 6. Let $g \in F$ and $c, d \in P$. If $g<_{F} c$ and $c<_{F} d$, then $g<_{F} d$.
Proof. Let g have normal form $a b^{-1}$, where $a, b \in P$. Since $a b^{-1}<_{F} c$, then it follows by Lemma 5 that $a<_{F} c b$. Since $a<_{F} c b$, then it follows that $a<_{P} c b$. Similarly, since $c<_{F} d$, then $c<_{P} d$. Since $a<_{P} c b$ and $c<_{P} d$, then $a<_{P} c b<_{P} d b$. Therefore, by definition of $<_{F}$, we have that $a b^{-1} d^{-1}<_{F} 1_{F}$, which implies that $a b^{-1}<_{F} d$. Hence, $g<_{F} d$.

Lemma 7. Let $g, h \in F$. If $g<_{F} h$ and $h<_{F} 1_{F}$, then $g<_{F} 1_{F}$.
Proof. Let g have normal form $a b^{-1}$, where $a, b \in P$, and let h have normal form $c d^{-1}$, where $c, d \in P$. Since $c d^{-1}<_{F} 1_{F}$, then $c<_{F} d$. Since $a b^{-1}<_{F} c d^{-1}$, then it follows by Lemma 5 that $a b^{-1} d<_{F} c$. Since $a b^{-1} d<_{F} c$ and $c<_{F} d$, then it follows by Lemma 6 that $a b^{-1} d<_{F} d$. Thus, by Lemma 5 we have that $a b^{-1}<_{F} 1_{F}$. Hence, $g<{ }_{F} 1_{F}$.

Lemma 8. Let $g, h, d \in F$. If $g<_{F} h$ and $h<_{F} d$, then $g<_{F} d$.
Proof. Since $g<_{F} h$, then it follows by Lemma 5 that $g d^{-1}<_{F} h d^{-1}$. Since $h<_{F} d$, then it follows that $h d^{-1}<_{F} 1_{F}$. Therefore, it follows by Lemma 7 that $g d^{-1}<_{F} 1_{F}$. Thus, it follows by definition of $<_{F}$ that $g<_{F} d$.

Lemma 9. Let $g, h \in F$, and let $b \in P$. If $g<_{F} h$, then $b g<_{F} b h$.

Proof. Let $g h^{-1}$ have normal form $c d^{-1}$, where $c, d \in P$. Since $g<_{F} h$, then it follows that $g h^{-1}<_{F} 1_{F}$. Since $g h^{-1}$ has normal form $c d^{-1}$, then it follows that $c d^{-1}<_{F} 1_{F}$. Therefore, $c<_{F} d$, which implies that $c<_{P} d$. Thus, it follows that $b c<_{P} b d$, which implies that $b c<_{F} b d$, and therefore that $b c d^{-1} b^{-1}<_{F} 1_{F}$. Again, since $g h^{-1}$ has normal form $c d^{-1}$, then it follows that $b g h^{-1} b^{-1}<_{F} 1_{F}$, and therefore that $b g<_{F} b h$.

Lemma 10. Let $g, h \in F$, and let $b \in P$. If $g<_{F} h$, then $b^{-1} g<_{F} b^{-1} h$.
Proof. If $b^{-1} g=b^{-1} h$, then $g=h$, a contradiction. Thus, $b^{-1} g \neq b^{-1} h$. Suppose that $b^{-1} h<_{F} b^{-1} g$. Thus, it follows by Lemma 9 that $b\left(b^{-1} h\right)<_{F} b\left(b^{-1} g\right)$, which implies that $h<_{F} g$, a contradiction. Hence, $b^{-1} g<_{F} b^{-1} h$.

Lemma 11. Let $g, h, u \in F$. If $g<_{F} h$, then $u g<_{F} u h$.
Proof. Let u have normal form $a b^{-1}$, where $a, b \in P$. Since $g<_{F} h$, then it follows by Lemma 10 that $b^{-1} g<_{F} b^{-1} h$. Therefore, since $b^{-1} g<_{F} b^{-1} h$, then it follows by Lemma 9 that $a b^{-1} g<_{F} a b^{-1} h$. Hence, $u g<_{F} u h$.

Lemma 12. Let $g_{1}, g_{2}, h_{1}, h_{2} \in F$ be such that $g_{1}<_{F} g_{2}$ and $h_{1}<_{F} h_{2}$. Then it follows that $g_{1} h_{1}<_{F} g_{2} h_{2}$.

Proof. Since $g_{1}<_{F} g_{2}$, then it follows by Lemma 5 that $g_{1} h_{1}<_{F} g_{2} h_{1}$. Similarly, since $h_{1}<_{F} h_{2}$, then it follows by Lemma 11 that $g_{2} h_{1}<_{F} g_{2} h_{2}$. Therefore, since $g_{1} h_{1}<_{F} g_{2} h_{1}$ and $g_{2} h_{1}<_{F} g_{2} h_{2}$, then it follows by Lemma 8 that $g_{1} h_{1}<_{F}$ $g_{2} h_{2}$.

3. The main result

Lemma 13. Let $g_{1}, g_{2} \in F$. Assume that g_{1} has normal form $a_{1} b_{1}^{-1}$, and that g_{2} has normal form $a_{2} b_{2}^{-1}$, where $a_{1}, a_{2}, b_{1}, b_{2} \in P$. If $\left|a_{1}\right|+\left|b_{2}\right|<\left|a_{2}\right|+\left|b_{1}\right|$, then $g_{1}<_{F} g_{2}$.

Proof. Let $b_{1}^{-1} b_{2}$ have normal form $c d^{-1}$, where $c, d \in P$. Each generator x_{i} in the normal form of b_{2} which cancels when multiplying b_{1}^{-1} and b_{2} to put $b_{1}^{-1} b_{2}$ in normal form will cancel with exactly one of the generators x_{j}^{-1} in the normal form of b_{1}^{-1}. That is, any generators from b_{2} and b_{1}^{-1} which cancel when transforming $b_{1}^{-1} b_{2}$ into normal form will cancel in pairs. Thus, if k generators cancel from the normal form of b_{2}, then k generators cancel from the normal form of b_{1}^{-1}. Therefore, we see that $|c|=\left|b_{2}\right|-k$, and that $|d|=\left|b_{1}\right|-k$. Since $a_{1}, c \in P$, then there is no cancellation of generators when multiplying a_{1} and c. Thus, we see that $\left|a_{1} c\right|=\left|a_{1}\right|+|c|$. Similarly, we see that $\left|a_{2} d\right|=\left|a_{2}\right|+|d|$. Therefore, we have that $\left|a_{1} c\right|=\left|a_{1}\right|+|c|=\left|a_{1}\right|+\left|b_{2}\right|-k<\left|a_{2}\right|+\left|b_{1}\right|-k=\left|a_{2}\right|+|d|=\left|a_{2} d\right|$. Since $\left|a_{1} c\right|<\left|a_{2} d\right|$, then it follows that $a_{1} c<_{F} a_{2} d$. Thus, $a_{1} b_{1}^{-1} b_{2}=a_{1} c d^{-1}<_{F} a_{2}$, which implies that $a_{1} b_{1}^{-1}<_{F} a_{2} b_{2}^{-1}$. Hence, $g_{1}<_{F} g_{2}$.

Theorem 1. Let \mathcal{H} denote the multiplicative monoid of nonzero elements in the group ring $\mathbb{K} F$. Then \mathcal{H} has no minimal ideals.

Proof. Suppose, to the contrary, that \mathcal{I} is a minimal two-sided ideal of \mathcal{H}. Since \mathcal{H} is a cancellative monoid, then \mathcal{I} is a principal ideal. Let $\hat{g}=\sum_{i=1}^{m} r_{i} g_{i} \in \mathcal{H}$ be such that $\mathcal{I}=\mathcal{H} \hat{g} \mathcal{H}$. By renumbering if necessary, we may assume that $g_{1}<_{F}$ $g_{2}<_{F} \cdots<_{F} g_{m}$. Since $\sum_{i=1}^{m} r_{i} g_{i}=g_{1} \sum_{i=1}^{m} r_{i}\left(g_{1}^{-1} g_{i}\right)$, then $\mathcal{I}=\mathcal{H} \sum_{i=1}^{m} r_{i}\left(g_{1}^{-1} g_{i}\right) \mathcal{H}$. In particular, we may assume that $g_{1}=1_{F}$. Let g_{m} have normal form $c d^{-1}$, where $c, d \in P$. Let $\mathcal{J}=\mathcal{H}(\hat{g})\left(1_{F}+c\right) \mathcal{H}=\mathcal{H}\left(\sum_{i=1}^{m} r_{i} g_{i}+\sum_{i=1}^{m} r_{i}\left(g_{i} c\right)\right) \mathcal{H}$. Since $1_{F}=g_{1}<_{F} g_{m}=c d^{-1}$, then $1_{F} \leq_{F} d<_{F} c$. Thus, 1_{F} and $g_{m} c$ are the smallest and largest elements, respectively, of F used to write $(\hat{g})\left(1_{F}+c\right)$ as a sum in the group ring $\mathbb{K} F$. Since $(\hat{g})\left(1_{F}+c\right) \in \mathcal{I}$, then \mathcal{J} is a subideal of \mathcal{I}. Since \mathcal{I} is minimal, then it must be the case that $\hat{g} \in \mathcal{I}=\mathcal{J}$. Thus, there exist $\sum_{j=1}^{l} s_{j} h_{j}, \sum_{k=1}^{e} t_{k} q_{k} \in \mathcal{H}$ such that $\hat{g}=\left(\sum_{j=1}^{l} s_{j} h_{j}\right)(\hat{g})\left(1_{F}+c\right)\left(\sum_{k=1}^{e} t_{k} q_{k}\right)$. Again, by renumbering if necessary, we may assume that $h_{1} \leq_{F} h_{2} \leq_{F} \cdots \leq_{F} h_{l}$ and $q_{1} \leq_{F} q_{2} \leq_{F} \cdots \leq_{F} q_{e}$. Since F is totally ordered, and since 1_{F} and g_{m} are the smallest and largest elements, respectively, of F used to write \hat{g} as a sum in the group ring $\mathbb{K} F$, then it follows that $h_{1} q_{1}=1_{F}$, and $h_{l} g_{m} c q_{e}=g_{m}$. This implies that $h_{1}=q_{1}^{-1}$.

First assume that $h_{1}=q_{1}=1_{F}$. Since $1_{F}<_{F} c, 1_{F}=q_{1} \leq_{F} q_{e}$, and $1_{F}=$ $h_{1} \leq_{F} h_{l}$, then $g_{m}<_{F} h_{l} g_{m} c q_{e}$, a contradiction. Therefore, $q_{1} \neq 1_{F}$. In this case we have that $1_{F}<_{F} q_{1}$ or $1_{F}<_{F} h_{1}$. We may assume that $1_{F}<_{F} q_{1}$ (the proof for the case that $1_{F}<_{F} h_{1}$ is similar). Since $1_{F}<_{F} q_{1}$, then $h_{1}=q_{1}^{-1}<_{F} 1_{F}$. Let h_{l} have normal form $a b^{-1}$, and let q_{e} have normal form $y x^{-1}$, where a, b, x, $y \in P$. Since $1_{F}<_{F} q_{1} \leq_{F} q_{e}$, then $|x| \leq|y|$. Similarly, since $1_{F}<_{F} c$, then $|c| \geq 1$. Since $h_{l} g_{m} c q_{e}=g_{m}$, then $h_{l}=g_{m} q_{e}^{-1} c^{-1} g_{m}^{-1}=\left(c d^{-1}\right)\left(x y^{-1}\right)\left(c^{-1}\right)\left(d c^{-1}\right)$. As in the proof of Lemma 13 when transforming h_{l} into normal form, any generators which cancel must cancel in pairs. Thus, if k generators cancel in c, x, or d, then k generators must cancel in d^{-1}, y^{-1}, or either of the copies of c^{-1}. Thus, $|a|=|c|+|x|+|d|-k$, and $|b|=|d|+|y|+2|c|-k$. Therefore, we see that $|a|+|y|=(|c|+|x|+|d|-k)+|y|<|d|+|y|+2|c|+|x|-k=|b|+|x|$. It follows by Lemma 13 that $h_{l}=a b^{-1}<_{F} x y^{-1}=q_{e}^{-1}$. Thus, it follows that $h_{l}<_{F} q_{e}^{-1} \leq_{F} q_{1}^{-1}=h_{1}$, which is a contradiction. Hence, \mathcal{H} does not have a minimal two-sided ideal.

A similar argument shows that \mathcal{H} has neither a minimal left ideal nor a minimal right ideal.

References

[1] Brin, M., Squier, C., Groups of piecewise linearhomeomorphisms of the real line, Invent. Math. 79 (3) (1985), 485-498.
[2] Cannon, J.W., Floyd, W.J., Parry, W.R., Introductory notes on Richard Thompson's groups, Enseign. Math. 42 3-4) (1996), 215-256.
[3] Frey, A.H., Studies on Amenable Semigroups, Ph.D. thesis, University of Washington, 1960.

Department of Mathematics,
University of Southern Indiana,
8600 University Boulevard,
Evansville, Indiana 47712
E-mail: jrdonnelly@usi.edu

[^0]: 2010 Mathematics Subject Classification: primary 20N99.
 Key words and phrases: Thompson's Group F, amenability, minimal ideal.
 Received December 4, 2016, revised November 2018. Editor J. Trlifaj.
 DOI: 10.5817/AM2019-1-23

