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Abstract. A pharmacodynamic model introduced earlier in the literature for in silico pre-
diction of rifampicin-induced CYP3A4 enzyme production is described and some aspects
of the involved curve-fitting based parameter estimation are discussed. Validation with our
own laboratory data shows that the quality of the fit is particularly sensitive with respect to
an unknown parameter representing the concentration of the nuclear receptor PXR (preg-
nane X receptor). A detailed analysis of the influence of that parameter on the solution
of the model’s system of ordinary differential equations is given and it is pointed out that
some ingredients of the analysis might be useful for more general pharmacodynamic mod-
els. Numerical experiments are presented to illustrate the performance of related parameter
estimation procedures based on least-squares minimization.
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1. Introduction

Efficient modelling and simulation of drug distribution profiles in organs is be-

coming increasingly important. This is true not only for theoretical pharmacology,

where the main goal is often to describe the action of administered ligands (drugs)

on the cellular level, like its influence on receptors and metabolizing enzymes, but for

clinical pharmacy as well [19]. Drug concentration models help in designing patient-

tailored dosing regimens and represent an important tool for the assessment of drugs

safety before their approval by a state drug control institute. For instance, the US

Food and Drug Administration is frequently processing computer simulation based

analyses in regulatory submissions [20].

The advantages of in silico (numerical) experiments have for some time been

routinely exploited in pharmacology, just like in other fields of health and natural

sciences. Clearly, in vitro experiments are time consuming and demanding with

respect to financial and human resources. Acquisition and preparation of chemicals,

including cell cultivation, followed by drug administration and laboratory analysis

to produce measurement data, is a process that can easily take several months.

For in vivo trials the time, labor, and financial costs are even higher. In silico

computer simulations, on the other hand, gain attractiveness as they become more

reliable, affordable and user friendly [17]. Nowadays, dedicated software is available

(e.g. ADAPT [1], CellDesigner [4], Simcyp [18], NONMEM [15]).

In some situations, reliable in silico simulations can be indispensable. There is

a significant gap between the knowledge on rodent and on human drug distribution

behavior because human in vivo experiments are often infeasible (for safety reasons,

because of ethical objections, in clinical pediatrics, etc.). Often the only viable op-

tion to bridge this gap is through extrapolation of experimental data from rodents to

humans using an appropriate model. Another important issue in modern pharma-

cology are drug-drug interactions (DDI’s). DDI’s are in general poorly understood

and decisions are sometimes made based on a trial-and-error approach which, in

the worst case, can have fatal consequences. Mathematical models that quantify

drug-drug-interactions might offer useful guidance for practitioners when facing the

challenges of drug administration decisions in multi-drug therapy.

The primary goal of the so-called physiologically-based pharmacokinetic (PBPK)

and pharmacodynamic models is to provide time-profiles of the concentrations of the

involved substances (drugs, receptors, metabolizing enzymes) in several parts of the

body. This is done using compartmental models, where it is assumed that substance

concentrations are distributed homogeneously over the entire compartment [2]. Ex-

amples of compartments include plasma, intracellular and extracellular fluid, adipose

tissue, organs, cells, but they can represent abstract units as well [8]. The defined
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compartments depend for instance on the route of administration (intravenous, oral,

etc.), the target organs and the modelled ligand-induced processes. These processes

are described based on the assumed bio-physical laws and take the form of ordinary

differential equations (ODEs). As the involved substances usually react with several

of the other substances, the result is a system of in general nonlinear differential

equations whose size is at least equal to the total number of substances; substances

appearing in more than one compartment have to be split accordingly and increase

the size of the system. Nevertheless, the size is usually moderate (at most, say, 25)

and the system can be solved numerically in reasonable time (as long as the system

of ODEs is not too stiff).

A serious problem however is that not all the constants (parameters) in the system

of differential equations are readily available. The model’s parameters include diffu-

sion coefficients, elimination and production rates, organ volumes, systemic clearance

or blood flow rates. Some of these physiologic parameters are known from the litera-

ture or easily obtained from experimental measuring, but typically at least a small

number needs to be estimated. Parameter estimation is an integral part of the PBPK

and pharmacodynamic modelling process. Sometimes this is done through Monte-

Carlo Markov-Chain simulations, requiring a high number of solutions of the system

of ODEs [11]. Traditionally, parameter estimation is performed using the collected

experimental data from donors and the subsequent curve fitting, i.e. minimization of

a sum of squares based on comparing observed and model predicted concentrations.

The numerical minimization procedure is in general iterative. As a consequence, in

every iteration, the entire system of differential equations needs to be solved with

updated values for the parameters to be estimated. Efficient numerical optimization

has therefore a crucial influence on the overall computational time of the PBPK or

the pharmacodynamic modelling process.

The goal of this paper is to highlight some aspects of the numerical curve fitting

based parameter estimation involved in pharmacodynamic models. We will demon-

strate these with a model introduced by Luke et al. [9] for xenobiotics binding to the

pregnane X nuclear receptor (PXR) and inducing CYP3A4 enzymes. In the next

section, this model is described in detail and its ability to predict the concentrations

measured in our own laboratory experiments is discussed. In fact, the predictions

are not very accurate but we discovered through trial-and-error that they can be

considerably improved by doubling the value of one of the parameters as estimated

in Luke et al. [9]. In Section 3 we present an analysis to explain this fact theoretically.

Section 4 discusses relevance and possible consequences of the analysis for more gen-

eral cases and presents related numerical experiments. The last section points out

some future work and concludes the paper.
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2. A compartmental model for PXR-induced CYP3A4 production

We will consider a pharmacodynamic model introduced by Luke et al. [9] for

prediction of in vitro measurements of intracellular substance concentrations. The

model for the action of a xenobiotic (here the drug rifampicin) is schematically given

in Figure 1 (which also appeared in our publication [3]). We will briefly describe

below the individual processes it displays.

1

2

3

45

6

7

8

Xext

CYP3A4
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mRNA

PR dimerPXR

DNA

Figure 1. Schematic representation of the modelled PXR-mediated processes. Numbered
squares represent the following reactions: (1) the xenobiotic enters the cell; (2)
PXR binds to the xenobiotic, leading to formation of PXR/RXRα heterodimer;
(3) PXR/RXRα dimer binds to DNA, increasing transcription; (4) mRNA back-
ground production; (5) degradation of mRNA; (6) the translation of mRNA forms
the protein; (7) degradation of the CYP3A4 protein; (8) the CYP3A4 protein me-
tabolizes the xenobiotic.

When the xenobiotic enters the cell,1 it initiates several processes. A PXR/RXR

(PR) heterodimer is created through binding to the nuclear receptor PXR. The het-

erodimer translocates to the nucleus where it stimulates, through processes described

later, the production of the CYP3A4 enzyme. The enzyme, however, metabolizes

not only the subtances that cause the disease, but the rifampicin as well. Besides

this feedback-loop of the xenobiotic, rifampicin is also returned after dissociation of

the heterodimer.

Similarly to [9], the changes of the xenobiotic concentration outside the cell

Xext(t)[µM] and inside the cell Xint(t)[µM] are represented by the following equa-

tions based on the assumption that the transport rate across the membrane is directly

proportional to the coefficient kup, to the difference in solution concentrations, and

1 It is assumed that rifampicin enters the cell across the membrane by a simple diffusion
process [21], i.e., the diffusion flux J is modelled in the compartmental framework as
follows: J = −kup(Xext(t)−Xint(t)). The variables and parameters are described in the
main text.
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to the area of the membrane:

(2.1)
dXext(t)

dt
= d(t) − kupXext(t) + kupXint(t),

where the function d(t)[mg/min] represents the dosing added into the system, and

(2.2)
dXint(t)

dt
= kupXext(t)− kupXint(t)− kassocXint(t)(sPXR − PR(t))

− kmetCYP3A4(t)Xint(t) + kdisPR(t).

Here, kup[1/min] is the first order diffusion coefficient encompassing the permeabil-

ity coefficient and the area of the membrane, kassoc[1/min], kmet[1/(µMmin)], and

kdis[1/min] are the corresponding association, metabolization, and dissociation con-

stants, respectively. An important parameter (as will be seen later) is the total

system PXR concentration (binded and free) sPXR[µM].

The change in time of the PR(t)[µM] heterodimer is described as

(2.3)
dPR(t)

dt
= kassocXint(t)(sPXR − PR(t)) − kdisPR(t),

where it is assumed that PR dissociates as well.

As the amount of rifampicin is increased, the increased concentration of the het-

erodimer causes it to enter the nucleus where it induces increased CYP3A4 mRNA

levels. The change in time of mRNA(t)[µM] is described as

(2.4)
dmRNA(t)

dt
= kmRNAPR(t)− kmRNA,degmRNA(t) + pmRNA,back,

where kmRNA[1/min] is the transcription constant for mRNA. Moreover, back-

ground production and degradation of mRNA with the corresponding constants

pmRNA,back[µM/min] and kmRNA,deg[1/min] are assumed.

The result of mRNA translocation into the cytoplasm is the production of the

CYP3A4 enzyme. The change in time of CYP3A4(t)[µM] is described as

(2.5)
dCYP3A4(t)

dt
= kcypmRNA(t)− kcyp,degCYP3A4(t),

where kcyp[1/min] is a translation constant for CYP3A4. Also, degradation of

CYP3A4 with the corresponding constant kcyp,deg[1/min] is assumed.

Equations (2.1) through (2.5) define a system of ODEs of size five. The values of

mRNA and CYP3A4 are usually given as fold induction. It means that these values
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are divided by their initial (steady-state) values mRNAss and CYP3A4ss:

mRNAss =
pmRNA,back

kmRNA,deg
,(2.6)

CYP3A4ss =
kcyp

kcyp,deg
mRNAss.(2.7)

The initial concentrations of the remaining substances are assumed to be zero. How-

ever, in the simulations presented in [9] the dosing function d(t) is not used. Instead,

the administered dose is incorporated by putting the initial value of Xext equal to

this dose.

Parameter Value

kup 6.55·10−3

kassoc kdis/5.6

kmRNA 39.3

kmRNA,deg 0.04

kcyp 2.5

kcyp,deg 2.7·10−4

Table 1. The values of known parameters.

Most of the parameters in the ODEs can be taken from previously published

papers; their values are reported in Table 1. Note that the parameter kassoc is

computed based on the value of the unknown parameter kdis. The other unknown

parameters are sPXR, kmet and pmRNA,back. They have been estimated in [9] through

curve-fitting to experimental data. Their estimated values can be found for instance

in the first columns of Tables 5 and 6.

Experimental data needed for curve fitting computations often contain the concen-

trations of only some of the substances, like the xenobiotic concentration outside the

cell Xext(t) and the CYP3A4 mRNA concentration mRNA(t). In particular, PXR

concentrations appear to be difficult to measure.

We validated the model of Luke et al. with our own experimental data. In our

experiment, primary human hepatocytes were treated with 10µM of rifampicin. The

expression level profiles of mRNA for the CYP3A4 enzyme were analyzed using the

qRT-PCR method at 0, 6, 12, 24, 48, and 96 h from the beginning of the treatment.

The measured average fold levels are displayed as circles in Figures 2 and 3 with the

vertical lines displaying the corresponding standard deviation (every measurement

was repeated twice) and the solid lines giving the levels predicted by the model of

Luke et al., using our own Matlab [12] implementation. In Figure 2, we used the

literature parameter values in Table 1 and for the unknown parameters we used the

values as estimated by Luke et al. Clearly, our experimental data do not fit well with
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the predicted concentrations. However, one of the estimated parameters, sPXR, is

the total amount of PXR in the cell. To our surprise, we observed by simple manual

modification of this parameter, that doubling its value resulted in rather satisfactory

fitting as can be seen in Figure 3 (except for the time-point 48 hours, which seems to

be an outlier caused by inappropriate physical circumstances that might be ignored).

This observation has also been described in [3].
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Figure 2. Time profiles of CYP3A4 mRNA induction simulated employing the model by
Luke et al. [9] with an estimated total (free and bound) intracellular PXR con-
centration of 9.47·10−7 µM.
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Figure 3. Time profiles of CYP3A4 mRNA induction simulated employing the model by
Luke et al. [9] with an estimated total (free and bound) intracellular PXR con-
centration of 2 · 9.47·10−7 µM.
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3. Analysis

In this section we try to give an explanation for the fact that our laboratory data

can be fitted rather satisfactorily by simply doubling the value for the parameter

sPXR as estimated in [9]. We give a straightforward analysis, which for this special

situation appears to give some insight.

First we introduce new notation. The unknown substance concentrations will be

collected in a size five vector x according to

x(t) =















x1(t)

x2(t)

x3(t)

x4(t)

x5(t)















≡















Xext(t)

Xint(t)

PR(t)

mRNA(t)

CYP3A4(t)















.

We will also change the notation of all constants except sPXR (which is the parameter

of main interest) and define:

k1 ≡ kup, k2 ≡ kassoc, k3 ≡ kmet, k4 ≡ kdis, k5 ≡ kmRNA,

k6 ≡ kmRNA,deg, k7 ≡ pmRNA,back, k8 ≡ kcyp, k9 ≡ kcyp,deg.

I5 will denote the identity matrix of size five, ei its ith column. Then the system of

differential equations of the previous section can be written as

(3.1)
dx(t)

dt
= Bx(t) + z(t),

with the constant matrix

(3.2) B =















−k1 k1 0 0 0

k1 −(k1 + k2sPXR) k4 0 0

0 k2sPXR −k4 0 0

0 0 k5 −k6 0

0 0 0 k8 −k9















representing the linear part of the system and the vector

z(t) =















0

k2 · x2(t) · x3(t)− k3 · x2(t) · x5(t)

−k2 · x2(t) · x3(t)

k7
0














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representing the nonlinear (quadratic) and constant parts. The initial conditions

given in [9] are

(3.3) x(0) =















x1(0)

0

0

x4(0)

x5(0)















in our situation, x1(0) is the initially applied dose, i.e. x1(0) = 10µM, and x4(0) =

7.075·10−6 µM and x5(0) = 0.0655µM are the steady (initial) state concentrations

for mRNA and CYP3A4, respectively.

In our analysis we will use the linearized version of the system of differential

equations (3.1). If we define f(x(t)) ≡ Bx(t) + z(t), the linearized system can be

written as

(3.4)
dx(t)

dt
= ∇f(x(0)) · x(t) + b, b ≡ ( 0 0 0 k7 0 )

T
,

where due to the given initial conditions x2(0) = x3(0) = 0 we have

(3.5)

∇f(x(0)) = C, C ≡















−k1 k1 0 0 0

k1 −(k1 + k2sPXR)− k3x5(0) k4 0 0

0 k2sPXR −k4 0 0

0 0 k5 −k6 0

0 0 0 k8 −k9















.

Solutions of this linearized problem are given explicitly as

(3.6) xl(t) = eCt(x(0) + y)− y, where Cy = b.

For y in (3.6) we have















−k1 k1 0 0 0

k1 −(k1 + k2sPXR)− k3x5(0) k4 0 0

0 k2sPXR −k4 0 0

0 0 k5 −k6 0

0 0 0 k8 −k9





























y1

y2
y3

y4
y5















=















0

0

0

k7
0















,
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thus

(3.7) y =





















0

0

0

−
k7
k6

−k7k8
k6k9





















.

In Figures 4 and 5 we see that this solution gives satisfactory approximations of

the numerical solution of the true differential equations system (3.1) for the range

of interest for sPXR and for the times corresponding to the first few experimental

data, i.e. after 6, 12 and 24 hours. We will next concentrate on the analysis of the

linearized system of differential equations (3.4) with (3.5) to explain the influence of

the parameter sPXR on its solution in the hope of explaining, at least for the times

t = 6 · 60, t = 12 · 60 and t = 24 · 60 minutes, why doubling the value estimated

in [9] for sPXR gives a remarkably good fit when using the true differential equations

system (3.1).
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Figure 4. Time profiles of CYP3A4 mRNA induction modelled by numerical solution of
(3.1) and by the solution of the linearized system (3.4) with an estimated total
(free and bound) intracellular PXR concentration of 9.47·10−7 µM.

We will use the fact that any matrix function can be expressed as a polynomial

in that matrix, where the degree of the polynomial is at most the size of the matrix

minus one. Hence, for the matrix exponential eCt in (3.6) we have

(3.8) eCt = p0I5 + p1Ct+ p2C
2t2 + p3C

3t3 + p4C
4t4,
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Figure 5. Time profiles of CYP3A4 mRNA induction modelled by numerical solution of
(3.1) and by the solution of the linearized system (3.4) with an estimated total
(free and bound) intracellular PXR concentration of 2 · 9.47·10−7 µM.

see e.g. [13]. The coefficients p0, . . . , p4 of the polynomial can be computed using

for instance Sylvester’s formula. They depend on t as well as on the matrix entries,

including the parameter sPXR we are interested in. However, the influence of sPXR

on these coefficients is very limited. In Table 2 we display these coefficients for eC1 ,

where in C1 the parameter sPXR has the value sPXR = 9.47·10−7 µM estimated in

Luke [9], and for eC10 , where in C10 the parameter sPXR has the value sPXR =

9.47·10−6 µM ten times the estimate in Luke [9]. We also display the coefficients for

eC1·6000 and eC10·6000, which corresponds to the time t = 6000 several hours after the

last laboratory observation. We see that only the last digits of the coefficients are

affected if we increase the estimate for sPXR with a factor 10 (when increasing with

a factor two, no differences are visible in most coefficients).

eC1 eC10 eC1·6000 eC10·6000

p0 1.000000000000000 1.000000000000000 1.001057025103826 1.001057024996506

p1 1.000000000000121 1.000000000000121 1.219084306280218 1.219084449821729

p2 0.500000000731660 0.500000000731659 0.770726157661988 0.770726071609689

p3 0.166662411269497 0.166662411269437 0.012736370268294 0.012736368725253

p4 0.041228702593904 0.041228702592610 0.000039775431340 0.000039775426415

Table 2. Coefficients pi in (3.8) for the original estimate of sPXR (first and third column)
and tenfold of the original estimate (second and fourth column), for times t = 1
(first two columns) and t = 6000 (last two columns).
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In the following we will therefore neglect the influence of sPXR on the pi and

restrict ourselves to the analysis of the influence of sPXR on the powers of C in (3.8).

For the influence of any paramater appearing in the matrix C in (3.5) we have the

following result.

Theorem 3.1. Neglecting the influence of parameters on the coefficients pi
in (3.8), for any time t, the solution (3.6) of the linearized system (3.4) with (3.5)

depends on any parameter ki appearing in (3.5), including sPXR, according to a ra-

tional function n(k)/d(k), where the numerator n(k) is a polynomial of degree at

most 5 and the denominator d(k) is a polynomial of degree at most 1.

P r o o f. Using (3.8), the term eCtx(0) in (3.6) equals

eCtx(0) = (p0I5 + p1Ct+ p2C
2t2 + p3C

3t3 + p4C
4t4)x(0)

Clearly, every component of eCtx(0) is a polynomial in ki of degree at most four. As

for the second term y in (3.6), a look at the solution (3.7) shows that the constants

k6 and k9 appear in the denominator. Hence, for these parameters we have a rational

function in that parameter where the denominator is a linear function. Combination

with the term eCtx(0) gives the claim. �

For some parameters, the influence addressed in the above theorem is described

by a function simpler than a rational function. For instance, for the parameter sPXR

that we wish to investigate, we can decompose C in (3.5) as

(3.9) C =















−k1 k1 0 0 0

k1 −k1 − k3x5(0) k4 0 0

0 0 −k4 0 0

0 0 k5 −k6 0

0 0 0 k8 k9















− β















0

1

−1

0

0















eT2 ,

where β ≡ k2sPXR (and where we tacitly assume that k2 is fixed). If we introduce

the notation

C2 ≡















−k1 k1 0 0 0

k1 −k1 − k3x5(0) k4 0 0

0 0 −k4 0 0

0 0 k5 −k6 0

0 0 0 k8 k9















, e23 ≡















0

1

−1

0

0















,

then the term eCtx(0) in (3.6) can be written as

eCtx(0) = (p0I5 + p1Ct+ p2C
2t2 + p3C

3t3 + p4C
4t4)x(0)(3.10)

= p0x(0) + p1t(C2 − βe23e
T
2 )x(0) + p2t

2(C2 − βe23e
T
2 )

2x(0)

+ p3t
3(C2 − βe23e

T
2 )

3x(0) + p4t
4(C2 − βe23e

T
2 )

4x(0),
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where we used (3.8). However, because of the special form of the initial condi-

tions (3.3), the inner product eT2 x(0) appearing often in (3.10) is zero. Therefore, in

expressions of the form pit
i(C2 − βe23e

T
2 )

ix(0) in (3.10) some terms annihilate. For

example,

p2t
2(C2 − βe23e

T
2 )

2x(0) = p2t
2(C2

2 − βC2e23e
T
2 − βe23e

T
2 C2 + β2e23e

T
2 )x(0)

= p2t
2(C2

2 − βe23e
T
2 C2)x(0).

The same can be done for all other powers of C2 − βe23e
T
2 . It is easy to see that in

every case about half of the terms vanish.

In addition, for our analysis we are only interested in fitting to the experimental

data measured for CYP3A4 mRNA induction, i.e. in the fourth component of the

solution xl(t). This reduces the number of terms with β in (3.10) further. For

example,

eT4 p2t
2(C2 − βe23e

T
2 )

2x(0) = p2t
2eT4 (C

2
2 − βe23e

T
2 C2)x(0) = p2t

2(eT4 C
2
2x(0)).

Doing this for all other powers of C2 − βe23e
T
2 as well, we obtain the following

simplification.

Proposition 3.1. Neglecting the influence of β on the coefficients pi in (3.8),

the fourth component of the vector eCtx(0) in (3.6) depends on β quadratically as

follows:

eT4 e
Ctx(0) = eT4 (p0I5 + p1Ct+ p2C

2t2 + p3C
3t3 + p4C

4t4)x(0)

= p0e
T
4 x(0) + p1t(e

T
4 C2x(0)) + p2t

2(eT4 C
2
2x(0)) + p3t

3(eT4 C
3
2x(0))

− p3t
3β(eT4 C2e23)(e

T
2 C2x(0)) + p4t

4(eT4 C
4
2x(0))

− βp4t
4(eT4 C

2
2e23)(e

T
2 C2x(0))− βp4t

4(eT4 C2e23)(e
T
2 C

2
2x(0))

+ β2p4t
4(eT4 C2e23)(e

T
2 C2x(0)).

P r o o f. The result follows by writing out all expressions of the form pit
i(C2 −

βe23e
T
2 )

ix(0) for i = 0, . . . , 4 and exploiting the fact that eT2 x(0) = 0 and eT4 e23 = 0.

�

Analogous simplifications can be carried out for the influence of some other pa-

rameters, like, for example, k4.

The second term y in (3.6) does not depend on β at all, see (3.7). Summarizing,

for the fourth component of the solution of the linearized model, which approximates
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the true model simulation for CYP3A4 mRNA induction, we obtain the following

corollary.

Corollary 3.1. Neglecting the influence of β on the coefficients pi in (3.8), the

fourth component of the solution eT4 xl(t) of the linearized system (3.4) with (3.5)

depends quadratically on β as follows:

eT4 xl(t) = β2p4t
4(eT4 C2e23)(e

T
2 C2x(0)) − βp3t

3(eT4 C2e23)(e
T
2 C2x(0))

− βp4t
4(eT4 C

2
2e23)(e

T
2 C2x(0)) − βp4t

4(eT4 C2e23)(e
T
2 C

2
2x(0))

− y4 + p0e
T
4 x(0) + p1t(e

T
4 C2x(0)) + p2t

2(eT4 C
2
2x(0))

+ p3t
3(eT4 C

3
2x(0)) + p4t

4(eT4 C
4
2x(0)).

P r o o f. The claim follows from eT4 xl(t) = eT4 e
Ctx(0) − eT4 y and from Proposi-

tion 3.1. �

In the first two rows of Table 3 the observed, laboratory CYP3A4 mRNA average

fold induction values for the times t1 = 6·60, t2 = 12·60, t3 = 24·60, t4 = 48·60

and t5 = 96·60 minutes are displayed with their standard deviations. Let us denote

them by O(ti) for the given time points. As mentioned, fold induction values are

relative values with respect to steady state. In the model of Luke et al. they are

predicted by the values mRNA(ti)/mRNASS , with the steady-state concentration

mRNASS = 7.075·10−6 µM. For particular estimates of the parameter sPXR and

for the given time points, these predictions are displayed in the remaining rows of

Table 3.

time (min) t1 = 360 t2 = 720 t3 = 1440 t4 = 2880 t5 = 5760

O(t) 7.36 19.23 30.01 75.57 83.88

stand. dev. for O(t) ±1.51 ±2.84 ±7.72 ±19.86 ±2.09

sPXR = 9.47·10−7 4.06 8.04 15.24 26.87 41.87

sPXR = 2·9.47·10−7 7.12 15.08 29.46 52.63 81.79

sPXR: solution of (3.11) 7.285 18.724 28.322 66.895 66.027

sPXR: solution of (3.12) 7.069 14.974 29.239 52.231 81.172

Table 3. CYP3A4 mRNA induction: Observed values (first row), their standard devia-
tions (second row) and values predicted (remaining rows) with the model (3.1) for
several choices of the parameter sPXR.

Using our linearized model, the observed fold induction values can be predicted

as
eT4 xl(ti)

mRNASS

,
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where xl(t) is given in (3.6). If we wish to find the parameter β for which our

linearized model fits the observed data best at a given time point, we can solve the

quadratric equation

(3.11) q2(ti)β
2 + q1(ti)β + q0(ti) = mRNASSO(ti),

with coefficients

q0(t) = y4 + p0e
T
4 x(0) + p1t(e

T
4 C2x(0)) + p2t

2(eT4 C
2
2x(0))

+ p3t
3(eT4 C

3
2x(0)) + p4t

4(eT4 C
4
2x(0))

q1(t) = − p3t
3(eT4 C2e23)(e

T
2 C2x(0))− p4t

4(eT4 C
2
2e23)(e

T
2 C2x(0))

− p4t
4(eT4 C2e23)(e

T
2 C

2
2x(0))

q2(t) = p4t
4(eT4 C2e23)(e

T
2 C2x(0)),

see Corollary 3.1. We note that the coefficients pi depend on t; we have omitted this

dependence for simplicity of presentation.

Table 4 shows the solutions of the quadratic equation in (3.11) for the time points

used in the in vitro experiment. It displays the corresponding values for sPXR as well.

We see that these values are close (in particular for the time points 6 and 24 hours)

to the double value sPXR = 2·9.47·10−7 = 1.894·10−6 of the estimate obtained in [9],

which gave a surprisingly good fit, see Figure 3. The predictions that the individual

solutions of (3.11) give with the original, nonlinearized model (3.1) are displayed in

the last but one row of Table 3. They yield lower predictions than the linearized

model, which is what one would expect seeing the curves in Figures 2 and 3. For most

time points they fall inside the corresponding observation plus or minus the standard

deviation. But as only a single value for sPXR can be used for all time-points, the

quality of these predictions is of limited importance.

time (min) t1 = 360 t2 = 720 t3 = 1440 t4 = 2880 t5 = 5760

β 3.58·10−11 4.38·10−11 3.34·10−11 4.45·10−11 2.79·10−11

sPXR 1.95·10−6 2.38·10−6 1.82·10−6 2.42·10−6 1.52·10−6

Table 4. Optimal values of β and sPXR from the solution of (3.11) for individual time
points.

If we wish to find an appropriate value of β (and hence sPXR) over all observed

times, we can solve the minimization problem

(3.12) min
β

F (β), F (β) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















q2(t1)β
2 + q1(t1)β + q0(t1)−mRNASSO(t1)

q2(t2)β
2 + q1(t2)β + q0(t2)−mRNASSO(t2)

q2(t3)β
2 + q1(t3)β + q0(t3)−mRNASSO(t3)

q2(t4)β
2 + q1(t4)β + q0(t4)−mRNASSO(t4)

q2(t5)β
2 + q1(t5)β + q0(t5)−mRNASSO(t5)















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.
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We can solve this equation in a least-squares manner. The solution then is β =

3.456·10−11, hence sPXR = β/k2 = 1.879·10−6. This is even closer to the double

value sPXR = 2·9.47·10−7 = 1.894·10−6 of the estimate obtained in [9] than any of

the individual solutions of (3.11) and thus offers an explanation for the fact that

the double value sPXR = 2·9.47·10−7 gives rather accurate predictions. The last row

of Table 3 displays the predictions obtained with the original, nonlinearized model

(3.1), where sPXR = 1.879·10−6. They are of course very close to the predictions

with the double value sPXR = 2·9.47·10−7 = 1.894·10−6. In fact they are slightly

smaller, which can be explained by the fact that we found an appropriate value for

the linearized model, which tends to give higher predictions than the original model.

4. Discussion and complementing numerical experiments

The analysis of the previous section is clearly tailored to a specific situation for an-

swering a particular question, which concerns merely one parameter to be estimated.

Nevertheless, some more general observations for curve-fitting based parameter es-

timation in pharmacodynamic models can be derived from it. Below we list some of

them.

⊲ Assuming a linearized version of the given pharmacodynamic model (i.e. an ODE

of the form (3.4)) yields good approximations of the predictions of the model itself,

we can analyze a system of linear ODEs where the system matrix C = ∇f(x(0))

is usually small, because only a limited number of substances is typically involved

(at most, say, 20–25).

⊲ The entries of C often depend linearly on the parameters of the model. This is true,

because many pharmacologic processes are described as zero or first-order reac-

tions, such as simple diffusion, membrane transport or degradation. An exception

is given by processes modelled using Michaelis-Menten kinetics (or a generaliza-

tion, the Hill-Langmuir equation), where a parameter appears in the denominator.

⊲ With a small matrix size and linear dependence on parameters, the entries of the

term eCtx(0) in the solutions (3.6) of the linearized model will approximately be

polynomials of low degree in the parameters. This follows from the fact that any

size n matrix function is a polynomial in that matrix of degree at most n − 1

(a consequence of the Cayley-Hamilton theorem). However, here we assume that

the dependence of the coefficients of the polynomial on the parameters is negligible.

The entries of the term y of (3.6), however, can be rational functions of some

parameters.

⊲ In typical situations, only a few of the parameters need to be estimated. Moreover,

these will be very sparsely spread over the matrix as they are involved in one of
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the modelled pharmacologic (or biophysical) processes only. They can appear

on several rows if several substances are involved, but in general, the unknown

parameters can be isolated in a small rank-modification of the matrix, as was

done in (3.9).

⊲ Several of the initial substance concentrations will be zero, i.e. several components

of x(0) are zero. In combination with the isolation from C of unknown parameters

in a small-rank matrix, the vector eCtx(0) may depend on unknown parameters

according to a polynomial of degree significantly lower than n− 1 (neglecting the

influence of that parameter on the polynomial representing eCt).

⊲ Data fitting is done with respect to the observed concentrations for some sub-

stances only (other substances may be very difficult to measure in vitro). A further

reduction of the degree of polynomial dependence holds for unknown parameters

appearing in the rows of C not corresponding to the row of the substance used

for data fitting. In favorable cases, a near-optimal estimate for some parameters

with respect to the linearized model can thus be found analytically. This may give

useful initial guesses for the original pharmacodynamic model.

⊲ The assumption that a linearized version of the pharmacodynamic model yields

good approximations of the predictions of the model itself can be too strong or

may hold only for the initial say 24 hours of the experiment. We remark, however,

that the numerical solution of the model, yielding its predictions, is sometimes

constructed through subsequent linearization after each time point.

⊲ The parameter estimation problem considered here is an idealized problem in the

sense that additional physical restrictions should be incorporated. Most parame-

ters are not allowed to be negative and are physically meaningful in a particular

interval only. The corresponding optimization problem represents therefore in

fact constraint optimization. Also, fitting to average observed concentrations (the

circles in Figures 2 and 3) does not take into account the natural deviation in

repeated laboratory experiments (measurement error); fitting requirements could

be relaxed. Finally, we modelled here with the actual physical parameter val-

ues; scaling them to avoid differences of many orders of magnitude between some

parameters might be appropriate.

In the remainder of this section we perform some complementary experiments

to further assess the dependence of the predicted CYP3A4 mRNA fold induction

x4(t) on the parameters sPXR, k1, . . . , k9. In contrast with the previous section we

focus on iterative numerical optimization of all unknown parameters simultaneously.

Instead of computations in Matlab [12], in this section most computations were

done in Fortran [5], but some, for comparison, were done in ADAPT [1], which is

an example of pharmakokinetic/dynamic systems software popular among clinical
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pharmacists. We recall that the experimental data are reported in the first row of

Table 3. The value at the time t4 = 48·60 = 2880 is somewhat outlying and might be

ignored. This is another typical aspect of parameter estimation in pharmacodynamic

modelling. In some cases the use of robust statistics for outlier detection may be

very beneficial.

First, we describe our Fortran experiments. An overview of the known parameters

involved in our model was given in Table 1. The parameters to be estimated are sPXR,

k3, k4, k7. For this purpose we introduce the vector k = (sPXR, k3, k4, k7)
T ∈ R

4 and

define the ordinary least squares (OLS) function

(4.1) J(k) =

5
∑

i=0

(x4(ti, k)−O(ti))
2,

where x(t) is the solution of (3.1); note that due to the dependence of x4(t) on the

parameters k we use the notation x4(t, k). For solving the involved system of ODEs

we used the ODEPACK solver [7], written in Fortran, with the option MF = 21.

In this case, an implicit backward differentiation formula method and a modified

Newton iteration with user-supplied analytical Jacobian are used, see [7] for more

details. We remark that the choice of parameters influences the stiffness of the ODE

as they are the ratio of smallest to largest eigenvalue real part of the matrix of the

linearized problem.

We will compare the quality of several parameter estimate choices using the

achieved value of the OLS function J . One choice are the values obtained in [9]

(based on minimization of an OLS function with different observed data), this is

approx # 1 in Table 5. Another choice, discussed in detail in the previous section,

differs in that we double the value of the parameter sPXR (approx # 2 in Table 5).

Next, we minimize the function J over all parameters in k with an optimization

algorithm (approx # 3 in Table 5), hence we numerically solve the problem

min
k∈R4

J(k).

Finally, as the value O4(t4) looks as an outlier, we performed minimization of J

without this point, i.e., the fourth summand in (4.1) is considered zero (approx # 4

in Table 5).

For minimization of the function J , the UFO optimization software library [10],

written in Fortran, was used. Starting from an initial guess k(0), a sequence of

iterations k(l+1) = k(l) + α(l)d(l) is constructed. Here, d(l) is a direction vector

determined on the basis of the values d(λ), J(k(λ)), ∇J(k(λ)) for λ = 1, . . . , l − 1,

and α(l) is a steplength (automatically) determined on the basis of the behavior of J

in a neighborhood of the point k(l). Note that the gradients ∇J(k(λ)) are computed
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numerically using finite differences. In all cases, we used Luke’s parameter values as

the starting point k(0) (displayed in the first column of Table 5).

In addition to numerical experiments where, as in [9], no dosing function is used,

i.e. d(t) = 0 with the initial value x1(0) = 10µM, we also performed numerical ex-

periments, where the dosing of 10µM during the first hour is translated by putting

d(t) = 1/6µM/min if t < 60 and initial value x1(0) = 0. The results of this second

type of computations are displayed in Table 6 (with approx # 5, 6, 7 and 8 corre-

sponding, respectively, to approx # 1, 2, 3 and 4 in Table 5). We note that having

x1(0) = 0 can further simplify the analysis like the one given in the previous section.

Tables 5–6 summarize the final parameters used to generate the approximation of

the CYP3A4 mRNA fold induction, i.e. the function x4(t, k) together with the value

of the OLS function J .

approx # 1 2 3 4
parameters Luke [9] double sPXR [3] (4.1) minimal without outlier

sPXR 9.47·10−7 18.94·10−7 9.22·10−7 9.31·10−7

k3 2.47·10−5 2.47·10−5 2.47·10−5 2.47·10−5

k4 1.03·10−4 1.03·10−4 1.03·10−4 1.03·10−4

k7 2.83·10−7 2.83·10−7 1.22·10−7 1.36·10−7

J(k) 4491.11 547.96 366.78 15.29

Table 5. Parameter values for d(t) = 0 and x1(0) = 10µM.

approx # 5 6 7 8
parameters Luke [9] double sPXR [3] (4.1) minimal without outlier

sPXR 9.47·10−7 18.94·10−7 9.36·10−7 9.31·10−7

k3 2.47·10−5 2.47·10−5 2.47·10−5 2.47·10−5

k4 1.03·10−4 1.03·10−4 1.03·10−4 1.03·10−4

k7 2.83·10−7 2.83·10−7 1.25·10−7 1.36·10−7

J(k) 4539.04 575.59 378.80 21.20

Table 6. Parameter values for d(t) = 1/6 and x1(0) = 0µM.

From the last row of both tables we can see that doubling the parameter sPXR

significantly improves the results. Not surprisingly, however, the best results (the

smallest value of the function J) are obtained using minimization of J and optimizing

all parameters sPXR, k3, k4, k7 at the same time. The very low values of J(k) in

the last columns are explained by the fact that the contribution of the time point

t4 = 48·60, which as an apparent outlier is the largest, is missing in the sum of

squares (4.1). Figures 6–7 show the corresponding curves of x4(t, k). Whereas the

curves for approx # 3 and 7 show the best global fit, the best fit with the apparent
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outlier omitted is for the curves for approx # 4 and 8. Nevertheless, the curves

for approx # 2 and 6 come remarkably close. Hence doubling the parameter sPXR

seems to give an estimate that is robust with respect to outliers. One might even be

tempted to think this suggests that the doubled parameter value sPXR = 18.94·10−7

is close to the actual physically valid value. But such a claim is hard to make: The

interdonor variability of total PXR concentration (i.e. of sPXR) may be large; after

all, the originally estimated value sPXR = 9.47·10−7 yielded a satisfactory fit for

other observed data, namely those that were used for curve-fitting in [9].
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Figure 6. CYP3A4 mRNA fold induction x4(t, k) for d(t) = 0 and x1(0) = 10µM.
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Figure 7. CYP3A4 mRNA fold induction x4(t, k) for d(t) = 1/6 and x1(0) = 0µM.
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From the results in Tables 5–6 we can deduce several other conclusions. First, it

seems that only the parameters sPXR and k7 influence the results qualitatively (the

parameters k3 and k4 are nearly identical over all columns). Concerning the situation

when there is no dosing, d(t) = 0, and initial x1(0) = 10µM and the situation when

there is administration of 10µM during the first hour (i.e. d(t) = 1/6µM/min) and

initial x1(0) = 0, one can see no significant difference in the optimal parameters and

curves. However, we report that the number of function evaluations (i.e. of ODE

runs) performed during the numerical iterative optimization processes were 168 and

148 for approximations # 3 and 4, respectively, whereas these were 2174 and 2202 for

approximations # 7 and 8, respectively. This can be explained by the discontinuity

of d(t) for approximations # 7 and 8: At the moment when t equals 60 minutes it

jumps from 1/6 to 0.

It may seem contradictory that the curves for approximations #2 and #4 (and

for # 6 and # 8) are very close while the corresponding parameters sPXR and k7

are rather different. To understand this phenomenon, we performed two additional

numerical tests consisting in producing curves with the value for sPXR fixed while

changing the value of k7 and vice versa. The results are depicted in Figures 8–9.

One can deduce that for fixed sPXR, the CYP3A4 mRNA fold induction curve is

higher with increasing k7, while for fixed k7, this curve is higher with decreasing

sPXR. Therefore, a curve with twice a greater value of sPXR can be close to one with

twice a smaller value of k7.
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Figure 9. CYP3A4 mRNA fold induction for k7 = 2.83·10
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Finally, we also present the parameters obtained when estimating with the stan-

dard pharmacokinetic/dynamic system software ADAPT frequently used by clinical

pharmacists. In ADAPT, ODE’s are solved by LSODA [16], [6], which uses variable

order and variable step size formulations of Adam’s method and Gear’s method for

respectively nonstiff and stiff equations. Function optimization for parameter estima-

tion is done using the Nelder-Mead simplex method [14] in order to take into account

the positivity constraint of the estimated pharmacokinetic/dynamic parameters. In

Tables 7–8 we display some results for the simulation without or with the dosing func-

tion d(t), respectively. The first two parameter columns give the estimated values

obtained from minimization of the OLS function J , with the second column ignoring

the apparent outlier at t4 = 48·60 = 2880 minutes. The achieved sums of squares

are smaller than in the corresponding last two columns in Tables 5–6 for three out

of four cases. We assume this is mainly caused by the fact that the simplex method

handles better the positivity constraints for the parameters than when UFO [10] was

used; in Fortran we imposed them in a naive, rather brute force way. The estimated

parameter values are rather different from those generated in Tables 5–6, indicating

that a different local minimum seems to have been found (though the initial guesses

were always the same, except that ADAPT rounds them to the sixth digit after the

comma). We remark that without the dosing function and when ignoring the outlier,

ADAPT estimates the parameter sPXR at roughly twice the original estimate from

Luke [9] as well.
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parameters (4.1) minimal without outlier ML ML without outlier

sPXR 1.26·10−5 1.81·10−6 1.61·10−6 1.8·10−6

k3 1.95·10−5 1.08·10−4 1.82·10−4 1.09·10−4

k4 2.51·10−10 7.65·10−7 5.34·10−8 7.54·10−7

k7 6.69·10−4 5.14·10−7 2.9·10−5 1.58·10−7

J(k) 116.98 9.28 216.68 9.28

Table 7. Parameter values for d(t) = 0 and x1(0) = 10µM computed by ADAPT (ML:
Maximum likelihood estimator).

parameters (4.1) minimal without outlier ML ML without outlier

sPXR 5.78·10−7 5.36·10−7 5.58·10−7 5.36·10−7

k3 5.74·10−7 4.23·10−7 5.27·10−7 4.23·10−7

k4 1.27·10−6 2.73·10−6 2.22·10−6 2.73·10−6

k7 1.2·10−6 2.46·10−6 3.1·10−5 1.63·10−6

J(k) 73.86 30.65 56.05 30.66

Table 8. Parameter values for d(t) = 1/6 and x1(0) = 0µM computed by ADAPT (ML:
Maximum likelihood estimator).

The last two columns in Tables 7–8 display the results when instead of a standard

sum of squares minimization, a maximum likelihood (ML) approach is used. As

expected, this does not in general give lower values for the OLS function; nevertheless,

in the infusion with outlier case, ML does lead to a lower sum of squares. When

ignoring the outlier, ML seems to find the same local minimum as the classical least-

squares minimization. In the ML case, ADAPT estimates in addition the dependence

of the measurement error on time through a linear function for this dependence.

More precisely, it estimates, from user-defined initial guesses, the variances for the

probability distribution of the intercept and the slope.

5. Conclusion

Most pharmacodynamic models require estimation of at least a small number of

parameters. For the model of Luke et al. [9] that we investigated, we focussed on one

of the four unknown parameters, the overall concentration of the nuclear receptor,

because a modification of its estimate leads to a rather good fit of our own laboratory

observations. While the standard sensitivity analysis presented in [9] did not predict

a particularly outspoken influence of overall receptor concentration on the predicted

values used for curve-fitting, we presented a different analysis showing that this

influence can be approximately described by a quadratic polynomial. The proposed

type of analysis might be useful for other pharmacodynamic models as well. Though
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the final goal for future work, to give direct links between (1) the particular types and

parameters of modelled pharmacokinetic processes and (2) properties of the Hessian

matrices involved in the corresponding least-squares minimization, is out of reach for

the moment, we made a first step that might contribute to its realization.
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