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Abstract. This paper is concerned with the analysis of the finite element method for the
numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary
condition in a two-dimensional polygonal domain. The weak solution loses regularity in a
neighbourhood of boundary singularities, which may be at corners or at roots of the weak
solution on edges. The main attention is paid to the study of error estimates. It turns out
that the order of convergence is not dampened by the nonlinearity if the weak solution is
nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary,
the nonlinearity only slows down the convergence of the function values but not the conver-
gence of the gradient. The same analysis is carried out for approximate solutions obtained
by numerical integration. The theoretical results are verified by numerical experiments.

Keywords: elliptic equation; nonlinear Newton boundary condition; weak solution; finite
element discretization; numerical integration; error estimation; effect of numerical integra-
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Introduction

There are many numerical techniques for solving partial differential equations.

The effectivity of the respective methods is often closely related to the properties

of the equations in question. We are concerned with the study of the finite ele-

ment method (FEM) for the solution of an elliptic equation with a nonlinear Newton

boundary condition in a bounded two-dimensional polygonal domain with numerical

integration. Such boundary value problems have applications in science and engi-

neering, see [13], [2]. We suppose that the nonlinear term has a general “polynomial”
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growth. This can be found in the modelling of electrolysis of aluminium with the aid

of the stream function. The nonlinear boundary condition describes turbulent flow

in a boundary layer ([21]). Similar nonlinearity appears in a radiation heat transfer

problem ([20], [19]) or in nonlinear elasticity ([15], [14]). A parabolic equation with

a nonlinear Newton boundary condition is solved with the use of finite elements in [5]

and [24], but the growth of the nonlinearity is only linear.

Paper [7] deals with the problem arising in the investigation of the electrolytical

production of aluminium. The problem is discretized by piecewise linear conforming

triangular elements and the effect of the numerical integration applied to this problem

is investigated in [8]. Using monotone operator theory in [12] and assuming regularity

of the weak solution, paper [9] gives error estimates. Paper [10] investigates this

problem using discontinuous Galerkin method and piecewise polynomial functions,

but does not consider the effect of numerical integration.

In this paper we study an elliptic boundary value problem with nonlinear Newton

boundary condition in a polygonal domain. The goal is to analyse both FEM used

on conforming shape regular meshes with piecewise polynomial functions and the

effect of numerical integration while considering the actual regularity of the weak

solution. In Section 1 the boundary value problem is introduced, the weak solution

is defined and some auxiliary results are introduced. In Section 2 the finite element

approximation of the weak solution is introduced and some properties of the discrete

problem are proved. It turns out that the order of convergence depends on whether

the exact weak solution is zero on the boundary or not. Section 3 is devoted to the

discretization with numerical integration and some important estimates are proved.

Section 4 is concerned with abstract error estimates under the aplication of numerical

integration. Section 5 is devoted to the analysis of the boundedness of interpolated

functions. These results are used in Section 6 which is devoted to error estimation in

terms of the size of the triangulation. Finally, Section 7 supports theoretical results

by numerical experiments.

1. Formulation of the continuous problem

We denote the set of real numbers by R, the set of positive integers by N, and

the set of non-negative integers by N0. Let Ω ⊂ R2 be a bounded polygonal domain

with Lipschitz continuous boundary ∂Ω. We consider a boundary value problem

with nonlinear Newton boundary condition: find u : Ω → R such that

−∆u = f in Ω,(1.1)

∂u

∂n
+ κ|u|αu = ϕ on ∂Ω(1.2)
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with given functions f : Ω → R, ϕ : ∂Ω → R and constants κ > 0, α > 0. By

a classical solution of (1.1) with boundary conditions (1.2) we understand a function

u ∈ C2(Ω) satisfying (1.1) pointwise at every point in Ω and satisfying (1.2) at every

point on ∂Ω such that the outer normal unit vector n is defined.

In what follows we use standard notation of function spaces: Ck(Ω), Ck,λ(Ω),

C∞(Ω), Lp(Ω), Lp(∂Ω), W k,p(Ω), W k,p(∂Ω). We denote the following norms in the

spaces Lp(Ω), Lp(∂Ω) with p > 1 by

‖f‖0,p,Ω =

(∫

Ω

|f |p dx

)1/p

, ‖f‖0,p,∂Ω =

(∫

∂Ω

|f |p dS

)1/p

.

For p ∈ [1,∞) and k ∈ N we consider Sobolev spaces W k,p(Ω), W k,p(∂Ω) with

seminorms

|f |k,p,Ω =

( ∑

|β|=k

∫

Ω

|Dβf |p dx

)1/p

, |f |k,p,∂Ω =

( ∑

|β|=k

∫

∂Ω

|Dβf |p dS

)1/p

,

where β = (β1, β2) is a multi-index with |β| = β1 + β2, and the norms

‖f‖k,p,Ω =

( ∑

|β|6k

∫

Ω

|Dβf |p dx

)1/p

, ‖f‖k,p,∂Ω =

( ∑

|β|6k

∫

∂Ω

|Dβf |p dS

)1/p

.

For k ∈ N and p > 1 we denote by W k−1/p,p(∂Ω) the space of traces from W k,p(Ω)

with the norm

‖f |∂Ω‖k−1/p,p,∂Ω = inf{‖g‖k,p,Ω; g ∈ W k,p(Ω), g|∂Ω = f |∂Ω}.

We also denote W k,2(Ω) = Hk(Ω) and W 0,p(Ω) = Lp(Ω). The following continuous

embeddings known as Sobolev embeddings hold for domains Ω ⊂ Rn (in our case

n = 2) with Lipschitz continuous boundaries (see Section 5.6 in [6]):

W 1,p(Ω) →֒ Lnp/(n−p)(Ω), p ∈ [1, n),(1.3)

W 1,n(Ω) →֒ Lq(Ω), q ∈ [1,∞),

W 1,p(Ω) →֒ C0,1−n/p(Ω), p ∈ (n,∞),

Wn,1(Ω) →֒ C(Ω).

The following continuous trace embeddings also hold for domains with Lipschitz

continuous boundaries (see Section 5.5 in [6] or Theorems 1.4.4.1 and 1.5.1.1 in [16]):

W 1,p(Ω) →֒ L(n−1)p/(n−p)(∂Ω), p ∈ [1, n),(1.4)

W 1,n(Ω) →֒ Lq(∂Ω), q ∈ [1,∞),

W 1,p(Ω) →֒ C0,1−n/p(∂Ω), p ∈ (n,∞),

Wn,1(Ω) →֒ C(∂Ω).
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If G ⊂ ∂Ω, then by |G| we denote the one-dimensional measure defined on ∂Ω of the

set G. By 5.8.1 in [6] the following result holds.

Theorem 1.1 (Poincaré inequality). Let Ω be a domain with a Lipschitz contin-

uous boundary. Let u ∈ W 1,p(Ω). Let G ⊂ ∂Ω with |G| > 0. Then there exists

a constant cP > 0 dependent on Ω, G and p such that

(1.5) ‖u‖1,p,Ω 6 cP (|u|1,p,Ω + ‖u‖0,p,G).

Now we introduce the concept of a weak solution. Let

(1.6) f ∈ L2(Ω), ϕ ∈ L2(∂Ω).

We introduce the following forms for u, v ∈ H1(Ω):

b(u, v) =

∫

Ω

∇u · ∇v dx, d(u, v) = κ

∫

∂Ω

|u|αuv dS,(1.7)

LΩ(v) =

∫

Ω

fv dx, L∂Ω(v) =

∫

∂Ω

ϕv dS,

L(v) = LΩ(v) + L∂Ω(v), a(u, v) = b(u, v) + d(u, v).

Definition 1.1. We say that a function u : Ω → R is the weak solution of

problem (1.1)–(1.2) if

u ∈ H1(Ω),(1.8)

a(u, v) = L(v) ∀ v ∈ H1(Ω).

The existence and uniqueness of the weak solution is a consequence of properties

of the form a. Let us note that

(1.9) a(u, u− v)− a(v, u− v) =

∫

Ω

|∇u−∇v|2 dx+ κ

∫

∂Ω

(|u|αu− |v|αv)(u− v) dS.

In [9] it was proved that

(1.10) (|η|αη − |ξ|αξ)(η − ξ) > 2−α|η − ξ|α+2, η, ξ ∈ R, α > 0,

from which the following lemma follows.

Lemma 1.1. Let u, v ∈ H1(Ω). Then

(1.11) a(u, u− v)− a(v, u− v) > |u− v|21,2,Ω + κ2−α‖u− v‖α+2
0,α+2,∂Ω.
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In [9] and [8], most of the following theorem was also proved.

Lemma 1.2. The following assertions hold.

(a) L is a continuous linear functional on H1(Ω).

(b) The functional a(u, ·) from H1(Ω) into R is continuous and linear for every u ∈

H1(Ω).

(c) a is uniformly monotone:

(1.12) a(u, u− v)− a(v, u − v) > ̺(‖u− v‖1,2,Ω) ∀u, v ∈ H1(Ω),

where

(1.13) ̺(t) =

{
C0κ2

−αtα+2 for 0 6 t 6 2κ−1/α,

C0t
2 for t > 2κ−1/α.

For α = 0 we set κ−1/α = 0.

(d) The functional a(·, v) from H1(Ω) into R is continuous for every v ∈ H1(Ω) in

the following sense: There exists a positive constant C1 > 0 independent of v

such that

(1.14) |a(u, v)− a(w, v)| 6 C1(1 + ‖u‖α1,2,Ω + ‖w‖α1,2,Ω)‖u− w‖1,2,Ω‖v‖1,2,Ω

for all u,w ∈ H1(Ω).

(e) The form a(u, u) is coercive in the following sense: There exists a positive con-

stant C2 > 0 such that

(1.15) a(u, u) > C2‖u‖
2
1,2,Ω

holds for all u ∈ H1(Ω) such that ‖u‖1,2,Ω > 1.

P r o o f. Assertions (a), (b), (c), (e) were proved in [8] and [9]. It remains to

prove the part (d). We have

|a(u, v)− a(w, v)| 6

∣∣∣∣
∫

Ω

∇(u− w) · ∇v dS

∣∣∣∣+
∣∣∣∣κ

∫

∂Ω

(|u|αu− |w|αw)v dx

∣∣∣∣.

The Cauchy inequality applied to the first term yields

∣∣∣∣
∫

Ω

∇(u − w) · ∇v dS

∣∣∣∣ 6 |u− w|1,2,Ω|v|1,2,Ω.
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The second term can be estimated using the relation

|u|αu− |w|αw =

∫ u

w

d

dt
(|t|αt) dt = (α + 1)

∫ u

w

|t|α dt.

The function |t|α of t ∈ R is monotone in (−∞, 0) and in (0,∞) and its global

minimum is reached for t = 0. Hence,

|t|α 6 (|u|α + |w|α), t ∈ [u,w].

Take any p1, p2, p3 > 1 such that 1/p1 + 1/p2 + 1/p3 = 1. Then these relations and

the Hölder inequality imply that

∣∣∣∣κ
∫

∂Ω

(|u|αu− |w|αw)v dS

∣∣∣∣ 6 κ(α+ 1)

∫

∂Ω

(|u|α + |w|α)|u− w||v| dS

6 κ(α+ 1)(‖u‖α0,αp1,∂Ω + ‖w‖α0,αp1,∂Ω)‖u− w‖0,p2,∂Ω‖v‖0,p3,∂Ω.

The trace embedding (1.4) completes the proof of (1.14). �

It follows from the monotone operator theory [12] and properties in Lemma 1.2

that problem (1.8) has exactly one solution.

In the error estimates, the regularity of the weak solution will play an important

role. In [10] the following results are proved.

Theorem 1.2. Let u ∈ H1(Ω) be a weak solution of (1.8) in a polygonal do-

main Ω. By ω0 we denote the largest inner angle in Ω. Let f ∈ Lq(Ω), ϕ ∈

W 1−1/q,q(∂Ω), where

q = 1 +
π

2ω0 − π

− ε < 2 for ω0 > π,(1.16)

q = 1 +
π

2ω0 − π

− ε > 2 for
π

2
< ω0 < π,

q > 1 is arbitrary for ω0 6
π

2
,

and ε > 0 is arbitrarily small. Then u ∈W 2,q(Ω).

Since all inner angles ω in Ω are less than 2π, we shall consider

(1.17) q >
4

3
.

Now we introduce some auxiliar results.
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Lemma 1.3. Let us assume that u ∈ W k,q(Ω), k ∈ N, q > 1, and β = (β1, β2) is

a multi-index with β1, β2 ∈ N0 such that |β| = β1 + β2 6 k. Then

Dβ(|u|αu) =
∂|β|(|u|αu)

∂xβ1

1 ∂x
β2

2

can be expressed as a finite sum of terms of a form

(1.18) c|u|α+1−J sgnuJ+1
J∏

j=1

Dγju,

where J ∈ N0 and γj , j = 1, . . . , J are multi-indices such that
J∑

j=1

γj = β. Here, the

constant c is dependent on α, β and multi-indices γj . If α ∈ N0, then D
β(|u|αu) only

contains terms with non-negative exponent of |u|, i.e. c = 0 if α+1− J is a negative

integer.

P r o o f. Let k, q be given. We will proceed using induction on |β|. If |β| = 0,

then the only possible term has J = 0, c = 1 and
0∏

j=1

Dγju = 1. If |β| = 1, then

c = α+ 1, J = 1, and either γ1 = (1, 0) or γ1 = (0, 1).

Suppose that the lemma holds for all multi-indices with length smaller than |β|.

In particular, we have

Dβ(|u|αu) =
∂(Dβ′

(|u|αu))

∂xi

for some i ∈ {1, 2} and β′ such that |β| = |β′| + 1. Then we only need to apply

∂/∂xi to the terms c|u|
α+1−J′

sgnuJ
′+1

J′∏
j=1

Dγ′

ju which have
J′∑
j=1

γ′j = β′. If the

partial derivative ∂/∂xi is applied to any factor in
J′∏
j=1

Dγ′

ju, then the resulting term

does have the desired form with J = J ′, one of the multi-indices γ′j increased,

and
J∑

j=1

γj = β. If ∂/∂xi is applied to |u|α+1−J′

, then the resulting term has J =

J ′ +1,
J′∑
j=1

γ′j + γJ′+1 = β, where γJ′+1 is either (1, 0) or (0, 1) depending on xi, and

therefore also has the desired form.

Suppose that α ∈ N0. Then the exponent α+1−J in |u|α+1−J is integer for any J .

The only possibility to obtain a negative exponent in the induction step would be to

apply ∂/∂xi to |u|α+1−J′

for J ′ such that α+1− J ′ ∈ [0, 1), i.e. α+1− J ′ = 0. But

then ∂|u|0/∂xi = 0 and the constant c would in fact be zero. �
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Lemma 1.4. Let u ∈ W k,q(Ω), where k > 2 is an integer, q > 1 and let α+1 > k

or α ∈ N0. Then |u|αu|∂Ω ∈W k−1/q,q(∂Ω) and the estimate

(1.19) ‖|u|αu‖k−1/q,q,∂Ω 6 c‖u‖α+1
k,q,Ω

with a constant c > 0 dependent on Ω, k, q, α, holds.

P r o o f. We will prove that |u|αu ∈ W k,q(Ω). Consider any multi-index β =

(β1, β2) such that |β| = β1 + β2 6 k. Our goal is to show that

Dβ(|u|αu) =
∂|β|(|u|αu)

∂xβ1

1 ∂xβ2

2

∈ Lq(Ω).

The expression Dβ(|u|αu) is a sum of several terms of the form (1.18) given in

Lemma 1.3. Due to the triangle inequality in Lebesgue spaces, we only need to show

that all of these terms belong to the space Lq(Ω) and are estimated by the right-hand

side of (1.19). The assumption α + 1 > k or α ∈ N0 guarantees that the exponents

α + 1 − J in (1.18) are non-negative for all terms. Since u ∈ W k,q(Ω) →֒ Ck−2(Ω),

we can trivially estimate the terms which only have derivatives of orders up to k− 2:

∥∥∥∥|u|
α+1−J

J∏

j=1

Dγju

∥∥∥∥
0,q,Ω

6 c‖u‖α+1
k,q,Ω.

Consider the term c|u|αDβu. Since u ∈ W k,q(Ω) →֒ C(Ω) and Dβu ∈ Lq(Ω), we

have

‖|u|αDβu‖q0,q,Ω =

∫

Ω

|u|αq|Dβu|q dx 6 ‖u‖αq
C(Ω)

∫

Ω

|Dβu|q dx 6 c‖u‖αq+q
k,q,Ω.

The only remaining terms are c|u|α−1
2∏

j=1

Dγju, where γ1 has length 1 and γ2 has

length k − 1. If k > 3, then we again estimate

∥∥∥∥|u|
α−1

2∏

j=1

Dγju

∥∥∥∥
q

0,q,Ω

6 ‖u‖
(α−1)q

C(Ω)
‖|∇u|‖q

C(Ω)

∫

Ω

|Dγ2u|q dx 6 c‖u‖αq+q
k,q,Ω.

If k = 2, then γ2 has length 1, and we use embedding (1.3) to get

∥∥∥∥|u|
α−1

2∏

j=1

Dγju

∥∥∥∥
q

0,q,Ω

6 ‖u‖
(α−1)q

C(Ω)
‖|∇u|‖2q0,2q,Ω 6 c‖u‖αq+q

k,q,Ω,

where the last inequality was obtained because
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⊲ W 1,q(Ω) →֒ C(Ω) for q > 2,

⊲ H1(Ω) →֒ L4(Ω) for q = 2,

⊲ W 1,q(Ω) →֒ L2q(Ω) for q ∈ [1, 2) as 2q/(2− q) > 2q.

Combining these inequalities, we conclude that |u|αu ∈W k,q(Ω) and ‖|u|αu‖k,q,Ω 6

c‖u‖α+1
k,q,Ω. The trace |u|

αu|∂Ω therefore satisfies (1.19). �

Functions in W 2,q(Ω) are continuous. Therefore, it is possible to distinguish on

which parts of the boundary ∂Ω is the weak solution u nonzero.

Lemma 1.5. Let u ∈ W k,q(Ω), where k ∈ N, k > 2, q > 1 and Ω is a polygonal

domain. Let α+ 1 < k. Let G be a closed subset of ∂Ω. If |G| > 0 and |u| > ε > 0

on G, then |u|αu|G ∈W k−1/q,q(G).

P r o o f. Function u is continuous in Ω. Therefore, we can find an open neigh-

bourhood of G in Ω denoted by ΩG such that |u| > ε > 0 in ΩG. We can proceed

similarly to the proof of Lemma 1.4. This time we cannot guarantee that the ex-

ponents α + 1 − J are non-negative. If α + 1 − J < 0, then we cannot use the

estimate |u|ΩG
|α+1−J 6 ‖u‖α+1−J

C(Ω)
. However, it can be replaced by the inequality

|u|ΩG
|α+1−J 6 εα+1−J . The lowest possible negative exponent is α+ 1 − k and the

same arguments as in the proof of Lemma 1.4 lead to the estimate

‖|u|αu‖k,q,ΩG
6 c(‖u‖α+1

k,q,ΩG
+ εα+1−k‖u‖kk,q,ΩG

),

where c depends also on ΩG and possibly on both G and u. �

2. Discretization

We assume that the domainΩ ⊂ R2 is polygonal. We construct its triangulation Th
consisting of a finite number of closed triangles T . We will consider only conforming

triangulations satisfying the following conditions:

(2.1) Ω =
⋃

T∈Th

T, if T1, T2 ∈ Th, T1 6= T2, then T1 ∩ T2 = ∅, or T1 ∩ T2

is either a common vertex or a common side of T1 and T2.

We say that T ∈ Th is a boundary triangle if T has a side S ⊂ ∂Ω and we denote

the set of all sides S ⊂ ∂Ω by sh. Then
⋃

S∈sh

S = ∂Ω. For simplicity, we assume that

each boundary triangle has only one boundary edge S and thus can be referred to

as TS . If a triangle is not a boundary triangle, we call it an inner triangle.
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By hT and ̺T we denote the length of the maximal side of T and the radius of

the maximal circle inscribed into T , respectively. We further set

(2.2) h = max
T∈Th

hT .

Let us consider a shape-regular system of triangulations {Th}h∈(0,h0), 0 < h0, of the

domain Ω: there exists σ > 0 such that

(2.3)
hT
̺T

6 σ ∀T ∈ Th ∀h ∈ (0, h0).

Let r ∈ N and T ∈ Th. We denote the space of all polynomials in x1, x2 on T of

degree 6 r by

(2.4) Pr(T ) =

{
pT : T → R; pT (x1, x2) =

∑

i,j∈N0

i+j6r

ai,jx
i
1x

j
2, ai,j ∈ R

}
.

An approximate solution will be sought in the space

(2.5) Hr
h = {vh ∈ C(Ω); vh|T ∈ Pr(T ), T ∈ Th}.

Now, we can define the Galerkin approximation Uh of the solution u.

Definition 2.1. We say that Uh ∈ Hh
r is the Galerkin approximation of the

weak solution u ∈ H1(Ω) given by (1.8) if

(2.6) a(Uh, vh) = L(vh) ∀ vh ∈ Hr
h.

Since Hh
r ⊂ H1(Ω), it follows that the form a has all the properties in Lemma 1.2

and the existence and uniqueness of an approximate solution follows from the mono-

tone operator theory in [12].

We can further improve the monotonicity of the form a by assuming that one of

the functions in question is not close to zero on a part of ∂Ω. More precisely, we

suppose that

G ⊂ ∂Ω, |G| > 0,(2.7)

|u| > ε > 0 on G.

Theorem 2.1. Let u ∈ H1(Ω) and let conditions (2.7) hold. Then there exists

a constant C3 = C3(Ω, G, ε) > 0 such that

(2.8) a(u, u− v)− a(v, u− v) > C3‖u− v‖21,2,Ω ∀ v ∈ H1(Ω).
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P r o o f. Since |u|α − |v|α and u2 − v2 have the same sign, we see that (|u|α −

|v|α)(u2 − v2) > 0 or equivalently |u|αu2 + |v|αv2 > |u|αv2 + |v|αu2. Thus, we can

write

(2.9) 2(|u|αu− |v|αv)(u − v) = |u|α(2u2 − 2uv) + |v|α(2v2 − 2uv)

> |u|α(u2 − 2uv + v2) + |v|α(v2 − 2uv + u2)

= (|u|α + |v|α)(u− v)2.

From this and equation (1.9) it directly follows that

(2.10) a(u, u− v)− a(v, u− v) > |u− v|21,2,Ω +
1

2
κεα‖u− v‖20,2,G.

The existence of the constant C3 from the statement of this theorem follows from

the Poincaré inequality (1.5). �

Under conditions (2.7), we can redefine the function ̺ from (1.12), (1.13) as

(2.11) ̺(t) = C3t
2, t ∈ [0,∞)

with a constant C3 > 0.

Theorem 2.2. Let u ∈ H1(Ω) be a weak solution of (1.8) and let Uh ∈ Hr
h

be a Galerkin approximation defined by (2.6). Then there exists a constant c > 0

independent of h such that

(2.12) ̺1(‖u− Uh‖1,2,Ω) 6 c inf
vh∈Hr

h

‖u− vh‖1,2,Ω,

where

(2.13) ̺1(t) = ̺(t)/t.

(We can remind that, in general, ̺(t) is defined by (1.13) or by (2.11) under (2.7).)

P r o o f. By Lemma 1.2 it is possible to show that the approximate solution

satisfies

(2.14) ̺(‖Uh‖1,2,Ω) 6 a(Uh, Uh) = L(Uh) 6 c(‖f‖0,2,Ω + ‖ϕ‖0,2,∂Ω)‖Uh‖1,2,Ω,

where we have used the trace embedding in the last inequality. This shows that

̺1(‖Uh‖1,2,Ω) is bounded independently of h and Uh is uniformly bounded. Another

consequence of formulas (2.6) and (1.8) is the relation

(2.15) a(u, u− Uh)− a(Uh, u− Uh) = a(u, u− vh)− a(Uh, u− vh) ∀ vh ∈ Hr
h.
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Then, by (1.12), (2.15) and (1.14) for arbitrary vh ∈ Hr
h, we have

(2.16) ̺(‖u− Uh‖1,2,Ω) 6 a(u, u− Uh)− a(Uh, u− Uh)

= |a(u, u− Uh)− a(Uh, u− Uh)|

= |a(u, u− vh)− a(Uh, u− vh)|

6 C1(1 + ‖u‖α1,2,Ω + ‖Uh‖
α
1,2,Ω)‖u− Uh‖1,2,Ω‖u− vh‖1,2,Ω,

which yields (2.12) with a constant c > 0 dependent on ‖u‖α1,2,Ω, but independent

of h. �

In what follows, we use Theorem 3.1.5 from [3]:

Theorem 2.3. Let r,m ∈ N0, p, q > 1. Let the piecewise Lagrange interpo-

lation πh preserve polynomials of degree at most r. Let the triangulation Th be

shape-regular according to (2.3). Let the following embeddings hold:

(2.17) W r+1,q(T ) →֒ C(T ), W r+1,q(T ) →֒ Wm,p(T ).

Then there exists a constant C4 > 0 such that for all T ∈ Th and h ∈ (0, h0) we have

(2.18) |u− πhu|m,p,T 6 C4|u|r+1,q,Th
r+1−m+2/p−2/q
T ∀u ∈W r+1,q(T ).

Let k, r ∈ N, q > 1. In what follows we assume that u ∈ W k+1,q(Ω) is the weak

solution of (1.8) and Uh ∈ Hh
r is the Galerkin approximation defined in (2.6). Let

us set ν = min(r, k). We get the following result.

Theorem 2.4. Let the piecewise Lagrange interpolation πh preserve polynomials

of degree 6 r. Let the triangulations Th, h ∈ (0, h0), be shape-regular according to

(2.3). Then there exists a constant C4 > 0 such that

(2.19) ‖u− πhu‖1,2,T 6 C4h
ν+1−2/q
T |u|ν+1,q,T

∀u ∈W k+1,q(T ) ∀T ∈ Th ∀h ∈ (0, h0).

Lemma 2.1. Let β > 1, n ∈ N, xi > 0, wi > 0, i = 1, . . . , n. Then the following

inequalities hold:

n∑

i=1

xβi 6

( n∑

i=1

xi

)β

,(2.20)

(∑

i

wixi

/ ∑

i

wi

)β

6
∑

i

wix
β
i

/ ∑

i

wi.(2.21)
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P r o o f. Both inequalities are a consequence of Jensen’s inequality, cf. [25]. �

Theorem 2.5. We have

(2.22) ‖u− Uh‖1,2,Ω 6

{
̺−1
1 (c|u|ν+1,q,Ωh

ν+1−2/q), q ∈ [1, 2),

̺−1
1 (c|u|ν+1,q,Ωh

ν), q ∈ [2,∞).

Here ̺−1
1 denotes the inverse to ̺1 from inequality (2.12).

P r o o f. Using Theorem 2.2 for vh = πhu and Theorem 2.3, we obtain

(2.23) ̺1(‖u− Uh‖1,2,Ω) 6 c‖u− πhu‖1,2,Ω = c

( ∑

T∈Th

‖u− πhu‖
2
1,2,T

)1/2

6 c

( ∑

T∈Th

|u|2ν+1,q,Th
2ν+2−4/q
T

)1/2

.

For q < 2 we use (2.20) with β = 2
q , xi = |u|qν+1,q,Th

qν+q−2
T and get

(2.24)

( ∑

T∈Th

|u|2ν+1,q,Th
2ν+2−4/q
T

)1/2

6

( ∑

T∈Th

|u|qν+1,q,Th
qν+q−2
T

)1/q

6 |u|ν+1,q,Ωh
ν+1−2/q.

Inequality (2.21) can be rewritten as

(2.25)

(∑

i

wixi

)β

6

(∑

i

wix
β
i

)(∑

i

wi

)β−1

.

For q > 2 we use this inequality with β = q/2, wi = h2T , xi = |u|2ν+1,q,Th
2ν−4/q
T and

get

(2.26)( ∑

T∈Th

|u|2ν+1,q,Th
2ν+2−4/q
T

)1/2

6

( ∑

T∈Th

h2T |u|
q
ν+1,q,Th

qν−2
T

)1/q( ∑

T∈Th

h2T

)1/2−1/q

.

Due to the shape regularity of the triangulations Th, there exists a constant C̃R

independent of h such that
∑

T∈Th

h2T 6 C̃R|Ω|. Then we get (2.22). �

Further, we show that if the exact solution is zero on the whole boundary, we can

improve the estimate for the H1(Ω) seminorm.
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Theorem 2.6. Let the weak solution u ∈W k+1,q(Ω) given by (1.8) be zero on ∂Ω.

Then

(2.27) |u− Uh|1,2,Ω 6

{
c|u|ν+1,q,Ωh

ν+1−2/q, q ∈ [1, 2),

c|u|ν+1,q,Ωh
ν , q ∈ [2,∞).

P r o o f. Neglecting the second term on the right-hand side of (1.11) gives us

(2.28) |u− Uh|
2
1,2,Ω 6 a(u, u− Uh)− a(Uh, u− Uh).

The Galerkin orthogonality (2.15) for a piecewise Lagrange interpolation yields

(2.29) a(u, u− Uh)− a(Uh, u− Uh) = a(u, u− πhu)− a(Uh, u− πhu).

The fact that πhu is also zero on ∂Ω and the Hölder inequality gives us

(2.30) a(u, u− πhu)− a(Uh, u− πhu) =

∫

Ω

∇(u− Uh) · ∇(u− πhu) dx

6 |u− Uh|1,2,Ω |u− πhu|1,2,Ω.

Dividing this by |u− Uh|1,2,Ω leads to an estimate

(2.31) |u− Uh|1,2,Ω 6 |u− πhu|1,2,Ω.

Using Theorem 2.3 for H1(T ) seminorm instead of a norm and the same arguments

as in the proof of Theorem 2.5 gives us the sought estimate. �

3. Discrete problem with numerical integration

In practical computation, integrals in the definition of the forms are evaluated

by numerical integration. In this section, we are concerned with the analysis of the

effect of numerical integration.

Let us consider the reference triangle T̂ with vertices (0, 0), (1, 0), (0, 1). We

approximate an integral of a continuous function ψ̂ over T̂ using values atM different

points xµ and M weights ωµ, µ = 1, . . . ,M . Considering that the area of T̂ is 1/2,

we then have

(3.1)

∫

T̂

ψ̂ dx ≈
1

2

M∑

µ=1

ωµψ̂(xµ).
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Any triangle T can be obtained using an affine function FT such that FT (T̂ ) = T .

Then the nodes become xT,µ = F (xµ), µ = 1, . . . ,M and we obtain a quadrature

formula for a function ψ defined on T

(3.2)

∫

T

ψ dx ≈ |T |
M∑

µ=1

ωµψ(xT,µ), T ∈ Th.

Analogically, we introduce numerical integration over edges S on ∂Ω. As a refer-

ence element, we use the interval [0, 1] withm nodes xµ and weights βµ, µ = 1, . . . ,m.

The quadrature formula on reference interval is

(3.3)

∫ 1

0

ϑ̂ dS ≈
m∑

µ=1

βµϑ̂(xµ),

and the quadrature formula on edges is

(3.4)

∫

S

ϑ dS ≈ |S|
m∑

µ=1

βµϑ(xS,µ), S ∈ sh.

The errors of integration are

(3.5) ET (ψ) =

∫

T

ψ dx− |T |
M∑

µ=1

ωµψ(xT,µ),

ES(ϑ) =

∫

S

ϑ dS − |S|
m∑

µ=1

βµϑ(xS,µ),

EΩ(ψ) =

∫

Ω

ψ dx−
∑

T∈Th

|T |
M∑

µ=1

ωµψ(xT,µ) =
∑

T∈Th

ET (ψ),

E∂Ω(ϑ) =

∫

∂Ω

ϑ dS −
∑

S∈sh

|S|
m∑

µ=1

βµϑ(xS,µ) =
∑

S∈sh

ES(ϑ).

The approximations of forms are defined as

(3.6) dd(u, v) = κ
∑

S∈sh

|S|
m∑

µ=1

βµ(|u|
αuv)(xS,µ),

L∂Ω
d (v) =

∑

S∈sh

|S|
m∑

µ=1

βµ(ϕv)(xS,µ),

LΩ
d (v) =

∑

T∈Th

|T |
M∑

µ=1

ωµ(fv)(xT,µ).
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We assume that the form b will be evaluated exactly as its arguments will be poly-

nomials of degree 6 2r − 2. Furthermore, we again define forms

(3.7) ad(u, v) = b(u, v) + dd(u, v), Ld(v) = LΩ
d (v) + L∂Ω

d (v).

Definition 3.1. Let ET be the error of the numerical quadrature on a triangle

T ∈ Th. We say that a quadrature on triangles is exact for polynomials of degree

6 R if ET (vh) = 0 for any vh ∈ PR(T ), T ∈ Th.

Let ES be the error of numerical quadrature on an edge S ∈ sh. We say that

a quadrature on edges is exact for polynomials of degree 6 R if ES(vh) = 0 for any

vh ∈ PR(S), S ∈ sh.

We will use error estimates from Theorems 7.36 and 7.37 in [4].

Theorem 3.1. Let S ∈ sh. Let the quadrature formula on edges be exact for

polynomials of degree 6 r+ s1− 1. Let q, q′ ∈ [1,∞] be such that 1/q+1/q′ = 1 (we

set 1/∞ = 0). Then there exists a constant c > 0 such that for any ϕ ∈ W s1,q(S),

vh ∈ Pr(S), we have:

(3.8) |ES(ϕvh)| 6 c|S|s1 |ϕ|s1,q,S‖vh‖0,q′,S .

Let T ∈ Th, where Th are shape regular triangulations, let the quadrature formula

on triangles be exact for polynomials of degree 6 r + s2 − 1 and let q, q′ ∈ [1,∞]

be such that 1/q + 1/q′ = 1. Then there exists a constant c > 0 such that for any

f ∈W s2,q(T ), vh ∈ Pr(T ), we have:

(3.9) |ET (fvh)| 6 chs2T |f |s2,q,T ‖vh‖0,q′,T .

On the basis of these estimates we prove the following theorem.

Theorem 3.2. Let the quadrature formula on edges be exact for polynomials of

degree 6 r + s1 − 1 on each S ∈ sh and let q ∈ (1,∞). Then there exists a constant

c > 0 such that for any ϕ ∈ W s1,q(∂Ω), vh ∈ Hr
h, we have

(3.10) |E∂Ω(ϕvh)| 6 chs1 |ϕ|s1,q,∂Ω‖vh‖1,2,Ω.

Let the quadrature formula on triangles be exact for polynomials of degree6 r+s2−1

on each T ∈ Th, where Th are shape regular and let q ∈ (1,∞). Then there exists

a constant c > 0 such that for any f ∈W s2,q(Ω), vh ∈ Hr
h, we have:

(3.11) |EΩ(fvh)| 6 chs2 |f |s2,q,Ω‖vh‖1,2,Ω.
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P r o o f. By (3.8), we have

|E∂Ω(ϕvh)| =
∑

S∈sh

|ES(ϕvh)| 6 chs1
∑

S∈sh

|ϕ|s1,q,S‖vh‖0,q′,S .

Applying the discrete Hölder inequality with parameters q and q′ such that 1/q +

1/q′ = 1, we find that
∑

S∈sh

|ϕ|s1,q,S‖vh‖0,q′,S 6 |ϕ|s1,q,∂Ω‖vh‖0,q′,∂Ω.

Finally, applying trace embedding H1(Ω) →֒ Lq′(∂Ω) on vh, we obtain the first error

estimate (3.10). Analogically, we also obtain

|EΩ(fvh)| 6 chs2
∑

T∈Th

|f |s2,q,T ‖vh‖0,q′,T 6 chs2 |f |s2,q,Ω‖vh‖0,q′,Ω,

and we complete the proof of (3.11) by the embedding H1(Ω) →֒ Lq′(Ω). �

4. Approximate solution

Definition 4.1. We call uh ∈ Hr
h an approximate solution of problem (1.1)–(1.2)

if

(4.1) ad(uh, vh) = Ld(vh) ∀ vh ∈ Hr
h.

In order to obtain error estimates of the approximate solution we need an analogy

to monotonicity results for the new form ad.

Theorem 4.1. Let the quadrature (3.4) have at least r+1 nodes and only positive

weights, i.e.

(4.2) m > r + 1, βµ > 0, µ = 1, . . . ,m.

Then there exists a constant c > 0 independent of h such that the following inequality

holds for every uh, vh ∈ Hr
h:

(4.3) ad(uh, uh − vh)− ad(vh, uh − vh) > |uh − vh|
2
1,2,Ω + c‖uh − vh‖

α+2
0,α+2,∂Ω.

Let sh1 ⊂ sh be a set of some boundary segments and Gh =
⋃

S∈sh1

S. If

(4.4) |vh| > ε > 0 on Gh

for some ε > 0, then the following inequality holds for c > 0 independent of h:

(4.5) ad(uh, uh − vh)− ad(vh, uh − vh) > |uh − vh|
2
1,2,Ω + c‖uh − vh‖

2
0,2,Gh

.
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P r o o f. The proof can be carried out in a similar way as in [9], Lemma 4.31. �

Lemma 4.1. Let the assumptions of Theorem 4.1 hold. Then

(4.6) ad(uh, uh − vh)− ad(vh, uh − vh) > ˜̺(‖uh − vh‖1,2,Ω),

where

(4.7) ˜̺(t) =
{
C0dt

α+2 for 0 6 t 6 1,

C0dt
2 for t > 1.

If condition (4.4) holds, then we can redefine ˜̺ as

(4.8) ˜̺(t) = C1dt
2.

P r o o f. The Hölder inequality for

1

2
=

1

α+ 2
+
(1
2
−

1

α+ 2

)

applied to the right-hand side of (4.3) gives us

‖uh − vh‖0,2,∂Ω 6 ‖uh − vh‖0,α+2,∂Ω‖1‖0,(1/2−1/(α+2))−1,∂Ω

= ‖uh − vh‖0,α+2,∂Ω|∂Ω|
1/2−1/(α+2).

Poincaré inequality (1.5) then yields (4.6) with ˜̺ defined in (4.7). Analogously (4.6)
with ˜̺ defined in (4.8) follows from (4.5). �

Uniform monotonicity of the form ad on the finite dimensional spaceH
r
h guarantees

the existence and the uniqueness of the approximate solution uh given by (4.1).

Let us set

(4.9) R(t) = ˜̺(t)/t,

and let R−1 be the inverse of R. Hence,

(4.10) R−1(t) =





( t

C0d

)1/(α+1)

for 0 6 t 6 C0d,

t

C0d
for t > C0d,

which can be replaced under condition (4.4) by

(4.11) R−1(t) =
t

C1d
.
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Then we have the following abstract error estimate.

Theorem 4.2. Let uh be the approximate solution of problem (4.1) and let u ∈

H1(Ω) be the weak solution defined by (1.8). If vh ∈ Hr
h, then

(4.12) ‖u− uh‖1,2,Ω 6 ‖u− vh‖1,2,Ω

+R−1
(
C1‖u− vh‖1,2,Ω(1 + ‖u‖α1,2,Ω + ‖vh‖

α
1,2,Ω)

+ sup
06=wh∈Hr

h

|a(vh, wh)− ad(vh, wh)|

‖wh‖1,2,Ω
+ sup

06=wh∈Hr
h

|L(wh)− Ld(wh)|

‖wh‖1,2,Ω

)
.

P r o o f. By (4.6),

˜̺(‖uh − vh‖1,2,Ω) 6 ad(uh, uh − vh)− ad(vh, uh − vh).

Using the relations

ad(uh, uh − vh) = Ld(uh − vh), L(uh − vh) = a(u, uh − vh),

and adding and subtracting the same terms, we get

ad(uh, uh − vh)− ad(vh, uh − vh) = [Ld(uh − vh)− L(uh − vh)]

+ [a(u, uh − vh)− a(vh, uh − vh)] + [a(vh, uh − vh)− ad(vh, uh − vh)].

The first bracket on the right-hand side can be estimated directly using the inequality

from the definition of a norm of a linear operator:

|Ld(uh − vh)− L(uh − vh)| 6 sup
06=wh∈Hr

h

|L(wh)− Ld(wh)|

‖wh‖1,2,Ω
‖uh − vh‖1,2,Ω.

The second bracket can be estimated using the continuity (1.14) of the form a:

|a(u, uh − vh)− a(vh, uh − vh)| 6 C1(1 + ‖u‖α1,2,Ω + ‖vh‖
α
1,2,Ω)

× ‖u− vh‖1,2,Ω‖uh − vh‖1,2,Ω.

The third bracket can be estimated similarly to the first bracket:

|a(vh, uh − vh)− ad(vh, uh − vh)| 6 sup
06=wh∈Hr

h

|a(vh, wh)− ad(vh, wh)|

‖wh‖1,2,Ω
‖uh − vh‖1,2,Ω.
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Combining these estimates with the definition of R in (4.9) gives us

(4.13) R(‖uh − vh‖1,2,Ω) 6 sup
06=wh∈Hr

h

|L(wh)− Ld(wh)|

‖wh‖1,2,Ω

+ C1‖u− vh‖1,2,Ω(1 + ‖u‖α1,2,Ω + ‖vh‖
α
1,2,Ω)

+ sup
06=wh∈Hr

h

|a(vh, wh)− ad(vh, wh)|

‖wh‖1,2,Ω
.

Using the triangle inequality ‖u−uh‖1,2,Ω 6 ‖u−vh‖1,2,Ω+‖uh−vh‖1,2,Ω, we arrive

at (4.12). �

Recall that

L(wh)− Ld(wh) = EΩ(fwh) + E∂Ω(ϕwh)

represents the error of integration of terms derived from the right-hand sides of (1.1)

and (1.2). This error can be estimated using (3.11) and (3.10) from Theorem 3.2:

(4.14) |L(wh)− Ld(wh)| 6 c(hs2 |f |s2,q,Ω + hs1 |ϕ|s1,q,∂Ω)‖wh‖1,2,Ω.

The term

a(vh, wh)− ad(vh, wh) = E∂Ω(|vh|
αvhwh)

is the error of integration of the nonlinear term on the boundary ∂Ω. It cannot be

estimated directly using (3.10), because the continuous piecewise polynomial function

vh may have jumps in its derivatives at vertices of boundary triangles and some

derivatives of |vh|αvh may become nonintegrable near the roots of vh in the case

of noninteger parameter α. Using (3.8) and repeating arguments from the proof of

Theorem 3.2 on separate parts of the boundary will lead to an estimate similar to

(3.10). But first, we shall need to prove boundedness of |vh|αvh on the boundary ∂Ω

in a norm of some Sobolev space.

For the purpose of error estimation we need to choose vh ∈ Hr
h in such a way that

‖u− vh‖1,2,Ω(1 + ‖u‖α1,2,Ω + ‖vh‖
α
1,2,Ω) → 0 for h→ 0.

Therefore, we will set vh = πhu, where πh is the continuous piecewise Lagrange

interpolation operator.
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5. Boundedness of interpolated functions

In this section, we are concerned with estimating derivatives of functions on the

boundary of Ω. As we are aiming to use (3.8), it is sufficient to consider one segment

at a time. Let S ∈ sh be a side of a boundary triangle TS of a triangulation Th,

let F be an affine mapping of [0, |S|] onto S (this guarantees that ‖F ′‖ = 1). Set

ṽh = vh ◦ F for a continuous piecewise polynomial function vh ∈ Hr
h. Function ṽh is

therefore a polynomial of degree r defined on an interval [0, |S|].

Let us begin by expressing the actual terms which appear after using chain rule

on derivatives of |ṽh|αṽh. We can proceed similarly as in the proof of Lemma 1.3

and get the following result.

Lemma 5.1. Let ṽh be a polynomial of degree 6 r on the interval [0, |S|]. Let

α > 0 and β ∈ N. Then

(|ṽh|
αṽh)

(β)

can be expressed as a finite sum of terms of the form

(5.1) c|ṽh|
α+1−J sgnuJ+1

J∏

j=1

ṽh
(γj),

where J ∈ N0 and γj ∈ N, j = 1, . . . , J are such that
J∑

j=1

γj = β. Here, the constant c

is dependent on α, β and γj . If α+ 1− J is a negative integer, then c = 0.

To estimate integrals of terms of expression (5.1), the most straightforward way

is to estimate most of its factors in L∞-norm and take them out of the integral. If

we assume that u ∈W r+1,q(Ω) with r ∈ N, q > 1, then the embeddings

W r+1,q(Ω) →֒ Cr(Ω), q > 2,(5.2)

Hr+1(Ω) →֒ Cr−1,λ(Ω), λ ∈ [0, 1),

W r+1,q(Ω) →֒ Cr−1,2−2/q(Ω), q ∈ [1, 2),

follow from (1.3). Then we can approach estimating of lower derivatives by consid-

erations applying to continuous functions rather than using properties of Sobolev

spaces.

Lemma 5.2. Let u ∈ Cr(TS), let πhu be its Lagrange interpolation of degree r

using r + 1 nodes on the sides of TS . Let F be an affine mapping of I = [0, |S|]
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onto S. Let ũ = u ◦F and π̃hu = (πhu) ◦F . Then for any i ∈ {0, . . . , r} we have the

estimate

(5.3) |π̃hu|i,∞,I 6

r∑

j=i

|S|j−i|ũ|j,∞,I .

P r o o f. We use the induction on i from r downward to 0.

Let i = r. Our goal is to show that |π̃hu|r,∞,I 6 |ũ|r,∞,I . Function π̃hu is a poly-

nomial of degree r and its rth derivative is a constant. Therefore, it is sufficient to

prove that π̃hu
(r) = ũ(r)(t) for some t ∈ I or that a continuous function (π̃hu− ũ)(r)

has a root. The Lagrange interpolation is exact at all nodes and thus π̃hu − ũ has

at least r + 1 roots in I. It follows from Rolle’s theorem that (π̃hu− ũ)′ has r roots

in I and repeating this argument r times gives us a root of (π̃hu− ũ)(r) in I.

Let inequality (5.3) hold for i + 1. Take arbitrary t, t0 ∈ I. Considering that

|t0 − t| 6 |I| = |S|, we have

|π̃hu
(i)(t)| = |π̃hu

(i)(t0) +

∫ t

t0

π̃hu
(i+1)(τ) dτ | 6 |π̃hu

(i)(t0)|+ |S||π̃hu|i+1,∞,I .

Using (5.3) for i+ 1 and the definition of L∞(I)-norm, we have

|π̃hu|i,∞,I 6 |π̃hu
(i)
(t0)|+ |S|

r∑

j=i+1

|S|j−(i+1)|ũ|j,∞,I

= |π̃hu
(i)
(t0)|+

r∑

j=i+1

|S|j−i|ũ|j,∞,I .

To complete the induction step, it suffices to find some t0, t1 ∈ I such that

π̃hu
(i)
(t0) = ũ(i)(t1). Take i + 1 of the r + 1 nodes of interpolation. Construct

a polynomial v of degree at most i such that ũ, π̃hu and v are equal at these nodes.

Functions ũ−v and π̃hu−v have i+1 roots in I and they both belong to a space Ci(I).

By Rolle’s theorem, there are t0 and t1 such that (π̃hu− v)(i)(t0) = (ũ− v)(i)(t1) = 0.

This together with the fact that v(i) is a constant completes the proof. �

The case when u ∈ Cr−1,2−2/q(TS) for q ∈ (1, 2) is almost identical.

Lemma 5.3. Let u ∈ Cr−1,λ(TS), where λ ∈ (0, 1), let πhu be its Lagrange

interpolation of order r using r + 1 nodes at the sides of TS . Let F be an affine

mapping of I = [0, |S|] onto S. Let ũ = u ◦ F and π̃hu = (πhu) ◦ F . Then there

exists a constant c > 0 such that for any i ∈ {0, . . . , r} we have the estimate

(5.4) |π̃hu|i,∞,I 6 c|S|r−1+λ−i|ũ(r−1)|C0,λ(I) +

r−1∑

j=i

|S|j−1+λ−i|ũ|j,∞,I .
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P r o o f. Again, we use induction on i from r downward to 0. Let i = r. Our

goal is to show that

|π̃hu|r,∞,I 6 c|S|−1+λ|ũ(r−1)|C0,λ(I).

Let v be a Taylor polynomial of the function ũ of degree r − 1 at point 0, i.e., v is

a polynomial of degree 6 r− 1 and it has the same derivatives of orders up to r− 1

at the point 0 as ũ. Function ũ − v has the same (r − 1)th derivative as ũ up to

a constant and also has the same seminorm (Hölder constant) |ũ(r−1)|C0,λ(I). Its

interpolation π̃hu− v has the rth derivative unchanged. We only need to show that

|π̃hu− v|r,∞,I 6 c|S|−1+λ|(ũ− v)(r−1)|C0,λ(I),

where (ũ− v) satisfies (ũ − v)(j)(0) = 0 for all j = 0, . . . , r − 1.

It follows from (ũ− v)(r−1)(0) = 0 and the definition of the Hölder continuity that

|ũ− v|r−1,∞,I 6 |S|λ|ũ(r−1)|C0,λ(I).

Since (ũ−v)(r−2)(0)=0 (if r>2), it follows that |ũ− v|r−2,∞,I6 |S|1+λ|ũ(r−1)|C0,λ(I).

Repeating this argument yields |ũ− v|0,∞,I 6 |S|r−1+λ|ũ(r−1)|C0,λ(I). Consider an

affine transformation of ũ − v and π̃hu − v from I = [0, |S|] onto [0, 1]. Denote

the resulting functions by û− v and ̂πhu− v. The function û− v is also bounded

in L∞(I)-norm by |S|r−1+λ|ũ(r−1)|C0,λ(I). The interpolation ̂πhu− v of û− v is

therefore bounded by

| ̂πhu− v|0,∞,[0,1] 6 c|S|r−1+λ|ũ(r−1)|C0,λ(I),

where c > 0 is a constant dependent only on the choice of nodes of interpolation on

the reference interval [0, 1]. The space of polynomials of degree6 r on [0, 1] is a finite-

dimensional space. Every seminorm on a finite-dimensional space can be estimated

from above by any norm. Taking a seminorm |·|r,∞,[0,1] and a norm ‖·‖0,∞,[0,1] thus

yields

| ̂πhu− v|r,∞,[0,1] 6 c|S|r−1+λ|ũ(r−1)|C0,λ(I),

where c > 0 is again some constant dependent only on π. Since affine transformation

from I onto [0, 1] multiplies the rth derivative by |S|r, we have

|S|r|π̃hu− v|r,∞,I = | ̂πhu− v|r,∞,[0,1] 6 c|S|r−1+λ|ũ(r−1)|C0,λ(I).

This is (5.4) for i = r.
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Since functions in the space Cr−1,λ(I) are also in Cj(I) for j = 0, . . . , r − 1, the

whole induction step in the proof of the previous lemma works here too and we again

have

(5.5) |π̃hu|i,∞,I 6 |ũ|i,∞,I + |S||π̃hu|i+1,∞,I .

Combining (5.5) and inequality (5.4) for i+ 1 gives (5.4) for i. �

To estimate the interpolation in a norm of Sobolev spaces we use a special case of

Theorem 3.1.5 in [3] (one-dimensional variant of Theorem 2.3).

Corollary 5.1. Let the piecewise Lagrange interpolation πh preserve polynomials

of degree 6 r. Let the restriction of the interpolated function πhu on any side of a

triangle be given only by the values of u on that side (that is, let it have r+1 nodes

on every side of a triangle). Let k ∈ N, k > r, q > 1. Then there exists a constant

C(π) > 0 such that

|ũ− π̃hu|k+1,q,I 6 C|ũ|k+1,q,I ∀ ũ ∈W k+1,q(I),

and it follows from the triangle inequality that we also have

(5.6) |π̃hu|k+1,q,I 6 (C + 1)|ũ|k+1,q,I ∀ ũ ∈ W k+1,q(I).

When we use polynomials of degree r and consider only numerical quadrature

for boundary nonlinear terms satisfying (4.2), we expect the order of convergence

in H1-norm to be r. But we need in addition to the regularity of the exact weak

solution u an upper bound for the rth derivative of (|π̃hu|απ̃hu). It is necessary to

have some upper estimate for the terms of the form

(5.7) c|π̃hu|
α+1−J sgn π̃hu

J+1
J∏

j=1

π̃hu
(γj),

J∑

j=1

γj = i 6 r.

If α is an integer, then all exponents α+ 1 − J in powers of |π̃hu| are non-negative

(those that are negative are in terms multiplied by c = 0) and we only need an upper

estimate of |π̃hu|. The lowest possible exponent is α+1− r and therefore in the case

of α > r − 1, we also only need an upper estimate.

Lemma 5.4. Let u ∈ W r+1,q(Ω), where r ∈ N0, q > 1. Let TS be a boundary

triangle of the triangulation Th, and I = [0, |S|]. Let πh be a continuous piecewise

Lagrange interpolation of order r that uses r+1 nodes on the sides of triangles. Let
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F be the affine transformation of I onto S and let π̃hu = (πhu|S) ◦ F . Let i ∈ N0,

i 6 r, and let α > 0 be the constant from (1.2). Let either α ∈ N0 or α > i − 1.

Then |π̃hu|απ̃hu ∈W i,q(I) and there exists a constant c = c (α, r, i, q) > 0 such that

(5.8) ||π̃hu|
απ̃hu|i,q,I 6 c‖u‖αr+1,q,Ω‖ũ‖i,q,I .

P r o o f. Due to the triangle inequality in Lebesgue spaces, we only need to

estimate the terms of the form given in (5.7) (with
J∑

j=1

γj = i) by the right-hand

side of (5.8). The assumption α > i − 1 or α ∈ N0 guarantees that the exponents

α+1− J in (5.7) are non-negative for all terms that need to be estimated. Since we

have an embedding (5.2), all derivatives of orders up to r − 1 can be estimated in

L∞-norm by ‖ũ‖k+1,q,Ω due to (5.4) for q ∈ (1, 2] and all derivatives of orders up to

r due to (5.3) for q ∈ (2,∞).

Let us take a term of the form (5.7):

c|π̃hu|
α+1−J sgn π̃hu

J+1
J∏

j=1

π̃hu
(γj),

J∑

j=1

γj = i.

Write the seminorm as an integral

∣∣∣∣|π̃hu|
α+1−J

J∏

j=1

π̃hu
(γj)

∣∣∣∣
0,q,I

=

(∫

I

|π̃hu|
(α+1−J)q

J∏

j=1

|π̃hu
(γj)|q dS

)1/q

.

All terms that are continuous can be simply taken out of the integral and give us

some upper bound for the seminorm. Without loss of generality assume that γJ is

the largest order of derivative. Suppose for the moment that all other factors are

continuous and can be estimated in the following way:

(5.9) ‖π̃hu
(γj)‖0,∞,I 6 c‖ũ‖Cr(I) 6 c‖u‖Cr(∂Ω) 6 c‖u‖r+1,q,Ω

replacing the Cr-norm by the Cr−1,λ-norm if q ∈ (1, 2]. Then we have an estimate

(∫

I

|π̃hu|
(α+1−J)q

J∏

j=1

|π̃hu
(γj)|q dS

)1/q

6 c‖u‖
(α+1−J)+(J−1)
r+1,q,Ω

(∫

I

|π̃hu
(γJ )|q dS

)1/q

.

Using (5.6) gives an estimate of the last remaining part

(∫

I

|π̃hu
(γJ )|q dS

)1/q

= |π̃hu|γJ ,q,I 6 c|ũ|γJ ,q,I 6 c‖ũ‖i,q,I .
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Combining these estimates yields

∣∣∣∣|π̃hu|
α+1−J

J∏

j=1

π̃hu
(γj)

∣∣∣∣
0,q,I

6 c‖u‖αr+1,q,Ω‖ũ‖i,q,I .

The assumption that all factors in |π̃hu|
α+1−J

J∏
j=1

π̃hu
(γj) besides π̃hu

(γJ ) can be

estimated by (5.9) follows from (5.3) and (5.4) if

⊲ γJ 6 r − 1,

⊲ γJ = r and q > 2,

⊲ γJ = i (in this case J = 1 and there are no other factors with derivatives).

Since we have γJ 6 i 6 r, one of these cases always holds and we have in fact

completed the proof. �

If neither α ∈ N0 nor α > r − 1 and we are still trying to use estimate (3.8) of

order r, we need to obtain some positive lower bounds on π̃hu. These estimates can

be derived with some aid from the Lebesgue constants if we include an assumption

that max
I

|ũ| and min
I

|ũ| are relatively close, see Chapter 3 in [22].

Let us consider a fixed Lagrange interpolation πh of order r preserving polynomials

of degree 6 r on the boundary. More precisely, the nodes of interpolation on the

reference triangle T̂ are in one fixed position for all triangles T ∈ Th and there

are r + 1 nodes of interpolation on every side of this triangle. Take an arbitrary

function ũ ∈ C(I) such that ‖ũ‖0,∞,I 6 1. Then there exists a constant Λπ such

that ‖π̃hu‖C(I) 6 Λπ for all such ũ. It can be defined as

Λπ = max
ũ∈C(I)

‖ũ‖0,∞,I61

‖π̃hu‖0,∞,I .

Taking into account that π̃hu is given by a finite (r + 1)-amount of values of ũ and

the interpolation operator πh is linear, the maximum in the definition of Λπ can

be found by taking functions which have either 1 or −1 at each node (that is 2r+1

combinations). If we further consider that rescaling a function from one interval onto

another with a linear substitution will not change the function’s extremes, we see that

this constant Λπ is shared for all segments in sh for all triangulations {Th}, h > 0.

If we now take a function ũ ∈ C(I) which is bounded by a+ b from above and by

a− b from below for some a ∈ R and b > 0, it follows that the interpolated function

π̃hu ∈ Pr(I) is bounded by a+Λπb from above and by a−Λπb from below. Suppose

that the values of ũ are in [CL, 1] for some constant CL ∈ (0, 1). Then we have

a = 1
2 (1 + CL) and b =

1
2 (1− CL), and π̃hu is estimated from below by

1

2
(CL + 1)−

Λπ

2
(1 − CL) =

1

2
(CL(Λπ + 1)− (Λπ − 1)),
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which is zero for the choice CL = (Λπ − 1)/(Λπ + 1). Then, from the conditions

(5.10) CL =
Λπ − 1

Λπ + 1
, Cl ∈ (CL, 1),

minI |ũ|

maxI |ũ|
> Cl

follows the lower bound estimate

min
I

|π̃hu| >
1

2
(Cl(Λπ + 1)− (Λπ − 1))max

I
|ũ|.

Therefore, we have an estimate in L∞(I)-norm for a negative power of the interpo-

lated function

(5.11) ‖|π̃hu|
−γ‖0,∞,I 6

( 2

Cl(Λπ + 1)− (Λπ − 1)

)γ
‖ũ‖−γ

0,∞,I , γ > 0.

If the triangulation is refined by dividing some triangles into smaller ones, the

maximum of |u| on any new segment is bounded from above by the old maximum

and the new minimum is bounded from below by the old minimum. Thus, the new

segment also satisfies conditions (5.10) and the constant Cl might even be increased.

Choosing linearly transformed Chebyshev nodes for the interpolation πh gives an

estimate for the Lebesgue constant

(5.12) Λπ =
2

π

(
log(r + 1) + γ + log

8

π

)
+O(r−2),

where r is the degree of interpolation and γ = 0.577215 is the Euler-Mascheroni

constant, see [11], [18]. Using the optimal Lebesgue constants for r 6 4 (formulas

(3.3) and (7.4) in [23]) gives us some possible values for the constant CL in (5.10).

Constants Λπ and CL are contained in Table 1 for r = 1, 2, 3, 4.

r 1 2 3 4

Λπ 1.000000 1.250000 1.422919 1.559490

CL 0.000000 0.111111 0.174549 0.218594

Table 1. Values of Lebesgue constant for polynomials of degrees up to 4 and corresponding
constants CL for an optimal choice of nodes.

Lemma 5.5. Let u ∈W r+1,q(Ω), let S ∈ sh be a boundary segment such that u|S
is non-zero and does not change sign, and furthermore, let minS |u|/maxS |u| > Cl.

Suppose that Cl > CL, where CL is defined above. Let ũ be the affine transfor-

mation of u|S onto I = [0, |S|] as defined above. Then there exists a constant

c = c(α, r, q) > 0 such that

(5.13) ||π̃hu|
απ̃hu|r,q,I 6 c‖u‖αr+1,q,Ω‖ũ‖r,q,I .
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P r o o f. We can proceed similarly as we did in the proof of Lemma 5.4. The only

new concern is that now the exponents α+ 1− J in the terms of the form

c|π̃hu|
α+1−J sgn π̃hu

J+1
J∏

j=1

π̃hu
(γj),

J∑

j=1

γj = r

can be negative. Whereas we previously used an estimate (5.9) for non-negative

α+ 1− J , we now use

(5.14)

‖|π̃hu|
α+1−J‖0,∞,I 6

( 2

Cl(Λπh
+ 1)− (Λπh

− 1)

)J−α−1

‖ũ‖α+1−J
0,∞,I 6 c‖u‖α+1−J

r+1,q,Ω

for negative α+ 1− J < 0. This estimate leads to the inequality

∣∣∣∣|π̃hu|
α+1−J

J∏

j=1

π̃hu
(γj)

∣∣∣∣
0,q,I

6 c‖u‖
(α+1−J)+(J−1)
r+1,q,Ω ‖ũ‖r,q,I .

It follows that inequality (5.13) holds. �

6. Error estimation

The purpose of this section is to estimate the error of quadrature on the boundary

∂Ω denoted by E∂Ω(|πhu|α(πhu)wh). We can divide the boundary segments S ∈ sh
into three disjoint sets sh = sh0 ∪ sh1 ∪ sh2.

⊲ sh0 contains segments S with u|S = 0. Then also πhu|S = 0 and the quadrature

is exact there, i.e. ES(|πhu|
α(πhu)wh) = 0.

⊲ If α + 1 > r or α ∈ N0, then sh1 contains all segments not in sh0. If α /∈ N0 and

α+1 < r, then sh1 contains all segments not in sh0 satisfying minS |u|/maxS |u| >

Cl, where Cl is given by (5.10). Then combining (5.13) (or (5.8)) and (3.8) gives

us an error estimate of order r.

⊲ sh2 contains the remaining segments, i.e. for α /∈ N0 and α + 1 < r, sh2 contains

segments satisfying min
S

|u|/max
S

|u| < Cl and u is not identically zero on S. Let us

set h2 = max{|S|; S ∈ sh2} (or h2 = 0 if there are no segments in sh2). Combining

(5.8) and (3.8) gives us an error estimate of order

(6.1) r2 = ⌊α⌋+ 1.

Theorem 6.1. Let the weak solution u given in (1.8) belong to W r+1,q(Ω) and

let the right-hand side functions belong to spaces f ∈ W r,q(Ω) and ϕ ∈ W r,q(∂Ω).
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Let {Th}h∈(0,h0) be a shape regular system of triangulations of Ω according to (2.3).

Let its boundary segments sh be divided according to the cases above for a piecewise

continuous Lagrange interpolation πh of order r with r+1 nodes on the sides of trian-

gles. Let the approximate solution be given by (4.1). Let the quadrature formulas on

edges and on triangles be exact for polynomials of degree 6 2r−1 and let the quadra-

ture formula on edges satisfy (4.2). Then there exist constants c1 = c1(u, r, q,Ω) > 0,

c2 = c2(u, r, q,Ω, α) > 0, c3 = c3(u, r, q,Ω, α) > 0, c4 = c4(f, ϕ, r,Ω, π) > 0 such that

(6.2) ‖u− uh‖1,2,Ω 6 c1h
r+1−2/q +R−1(c2h

r+1−2/q + c3(h
r + hr22 ) + c4h

r))

if q ∈ (1, 2) and

(6.3) ‖u− uh‖1,2,Ω 6 c1h
r +R−1(c2h

r + c3(h
r + hr22 ) + c4h

r)

if q > 2, where R−1 is defined in (4.10)–(4.11).

P r o o f. It follows from Theorem 4.2 that the error ‖u− uh‖1,2,Ω is bounded

from above by

‖u− πhu‖1,2,Ω +R−1
(
c‖u− πhu‖1,2,Ω(1 + ‖u‖α1,2,Ω + ‖πhu‖

α
1,2,Ω)

+ sup
06=wh∈Hr

h

|a(πhu,wh)− ad(πhu,wh)|

‖wh‖1,2,Ω
+ sup

06=wh∈Hr
h

|L(wh)− Ld(wh)|

‖wh‖1,2,Ω

)
.

Estimation of ‖u− πhu‖1,2,Ω by

‖u− πhu‖1,2,Ω 6 c|u|r+1,q,Ωh
r+1−2/q

for q ∈ (1, 2) and by

‖u− πhu‖1,2,Ω 6 c|u|r+1,q,Ωh
r

for q > 2 was done in the proof of Theorem 2.5. Inequality

‖πhu‖1,2,Ω 6 c‖u‖1,2,Ω

follows from (5.6) if we take into account that ‖·‖Wk,q(I) = ‖·‖Wk,q(S).

Since the quadrature formulas are exact for polynomials of degree 6 2r − 1 and

L(wh)− Ld(wh) = EΩ(fwh) + E∂Ω(ϕwh),

it follows from Theorem 3.2 that

sup
06=wh∈Hr

h

|L(wh)− Ld(wh)|

‖wh‖1,2,Ω
6 chr(|f |r,q,Ω + |ϕ|r,q,∂Ω).
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Finally, we have

|a(πhu,wh)− ad(πhu,wh)| =
∑

S∈sh

ES(|πhu|
α(πhu)wh).

Errors on the segments sh = sh0 ∪ sh1 ∪ sh2 are estimated separately using Theo-

rem 3.1. Since u = πhu = 0 on segments S ∈ sh0, we have

∑

S∈sh0

ES(|πhu|
α(πhu)wh) = 0.

On segments S ∈ sh1, we can use the estimate

|ES(|πhu|
α(πhu)wh)| 6 c|S|r||πhu|

απhu|r,q,S‖wh‖0,q′,S

for 1/q + 1/q′ = 1, and then either (5.13) or (5.8), implying

||πhu|
απhu|r,q,S 6 c‖u‖αr+1,q,Ω‖u‖r,q,S,

which yields

|ES(|πhu|
α(πhu)wh)| 6 c(u)hr‖u‖r,q,S‖wh‖0,q′,S .

Summing over all S ∈ sh1, using the discrete Hölder inequality and trace embedding,

we conclude that

∣∣∣∣
∑

S∈sh1

ES(|πhu|
α(πhu)wh)

∣∣∣∣ 6
∑

S∈sh1

c(u)hr‖u‖r,q,S‖wh‖0,q′,S

6 c(u)hr‖u‖r,q,
⋃

sh1
‖wh‖0,q′,

⋃
sh1

6 c(u)hr‖u‖r+1,q,Ω‖wh‖1,2,Ω.

On segments S ∈ sh2 we can similarly use the estimate

|ES(|πhu|
απhuwh)| 6 c|S|r2 ||πhu|

απhu|r2,q,S‖wh‖0,q′,S .

By (5.8) we have

||πhu|
απhu|r2,q,S 6 c‖u‖αr+1,q,Ω‖u‖r2,q,S ,

which leads to

∣∣∣∣
∑

S∈sh2

ES(|πhu|
απhuwh)

∣∣∣∣ 6 c(u)hr22 ‖u‖r+1,q,Ω‖wh‖1,2,Ω.

Combining these estimates yields inequalities (6.2) and (6.3). �
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Note that the function R−1 defined in (4.10)–(4.11) is linear if the exact solution u

is sufficiently distant from zero on a large part of the boundary ∂Ω. Our theoretical

estimates for the order of convergence in the H1-norm are divided by α + 1 only

if the exact solution is zero on most of the boundary. Similarly to the Galerkin

approximation, we can improve the estimate for the rate of convergence in H1-

seminorm by omitting the denominator α + 1 if the exact solution u is zero on the

whole boundary ∂Ω. In this case, we also need to assume that the right-hand side

integrals are evaluated exactly, that is

∫

Ω

fvh dx,

∫

∂Ω

ϕvh dS

can be evaluated exactly for the given functions f , ϕ from (1.1)–(1.2), and vh ∈ Hr
h,

whereas ∫

∂Ω

|vh|
αvhwh dS, vh, wh ∈ Hr

h

is evaluated using numerical quadrature. The argument is similar to Theorem 2.6.

Theorem 6.2. Let the weak solution u ∈W r+1,q(Ω) given in (1.8) be zero on ∂Ω.

Let an approximate solution uh ∈ Hr
h be given by

(6.4) ad(uh, vh) = L(vh) ∀ vh ∈ Hr
h,

where ad and L are defined in (3.7) and (1.7). Let the quadrature formula on edges

satisfy (4.2). Then

(6.5) |u− uh|1,2,Ω 6

{
c|u|r+1,q,Ωh

r+1−2/q, q ∈ [1, 2),

c|u|r+1,q,Ωh
r, q ∈ [2,∞).

P r o o f. Neglecting the second term on the right-hand side of (4.3) gives us

|uh − πhu|
2
1,2,Ω 6 ad(uh, uh − πhu)− ad(πhu, uh − πhu).

The definitions of solutions uh and u yield

ad(uh, uh − πhu) = L(uh − πhu) = a(u, uh − πhu).

Using the fact that u is zero on ∂Ω and thus the integral of |u|αu(uh − πhu) on the

boundary is evaluated exactly, we obtain

a(u, uh − πhu) = ad(u, uh − πhu).
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Taking again into account that u|∂Ω = 0, by the above relations and the Hölder

inequality we get

|uh − πhu|
2
1,2,Ω 6 ad(u, uh − πhu)− ad(πhu, uh − πhu)

=

∫

Ω

∇(u − πhu) · ∇(uh − πhu) dx 6 |u− πhu|1,2,Ω|uh − πhu|1,2,Ω.

Dividing this inequality by |uh − πhu|1,2,Ω leads to the estimate

|uh − πhu|1,2,Ω 6 |u− πhu|1,2,Ω.

The triangle inequality further gives us

|u− uh|1,2,Ω 6 |u− πhu|1,2,Ω + |πhu− uh|1,2,Ω 6 2|u− πhu|1,2,Ω.

This relation and Theorem 2.3 yield estimate (6.5). �

7. Numerical experiments

In this chapter we present two numerical examples computed using the FEniCS

software [1]. We explore the reduction of the order of convergence caused by the

nonlinearity, how it affects different norms, and whether this changes if the exact so-

lution of problem (1.1)–(1.2) is zero on the whole boundary ∂Ω. In both experiments

we discretize the problem by the FEM. We use uniform triangular meshes with ele-

ment diameters hl = h0/2
l, l = 0, 1, . . . , 5. The amount of degrees of freedom (DOF)

is therefore expected to increase about four times with each refinement. Denoting

the error of the discrete solution by eh = u−uh, we compute the experimental order

of convergence (EOC) by

(7.1) EOC =
log ehl−1

− log ehl

log hl−1 − log hl
, l = 1, 2, . . . , 5.

The discrete problems (2.6), (4.1) represent nonlinear systems for α > 0. We solved

these problems by a dampened Newton method with tolerance on the residual 10−9.

7.1. Example 1—solution is zero on the boundary. In the first experiment

we consider problem (1.1)–(1.2) on a unit square domain Ω = (0, 1)2. The data f

and ϕ are chosen so that the exact solution is

(7.2) u(x1, x2) = x1(1− x1)x2(1− x2)(x
2
1 + x22)

1/4.

This function belongs to W 4,q(Ω), q ∈ (1, 43 ), or H
3.5−δ(Ω), δ > 0. Therefore, we

expect |eh|1,2,Ω ≈ O(hmin(2.5,r)) and ‖eh‖0,2,Ω ≈ O(hmin(2.5,r)/(α+1)). This function

is shown in Figure 1(a).
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Figure 1. The exact weak solutions of the discretized problems.

We have discretized the problem by the FEM. For polynomials of degree r = 2

we have tried different values of nonlinearity parameter α = 0.5, 1.0, 1.5, 2.0, and for

parameter α = 1.5 we have tried FEM with polynomials of degrees r = 1, 2, 3, 4.

The results shown in Table 2 and Figures 2 and 3 also include the mesh element size

h = max
T∈Th

hT , the number of degrees of freedom and the number of Newton iterations.
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(b) error measured in ‖·‖0,2,Ω

Figure 2. Example 1—EOC of FEM for α = 1.5.

The H1-seminorm seems to behave as expected, i.e. the order of convergence

is min(2.5, r). The most significant part of the error measured in H1-norm was

its L2-norm. Our estimates for the L2-norm give us the order of convergence

min(2.5, r)/(α+ 1), which would be 1/(α+ 1), 2/(α+ 1), 2.5/(α+ 1), 2.5/(α+ 1)

for r = 1, 2, 3, 4, respectively. The EOC, however, suggests 2/(α+ 1), 2.5/(α+ 1),

2.5/(α+ 1), 2.5/(α+ 1) for r = 1, 2, 3, 4, respectively. The theoretical error estimate

is therefore suboptimal.
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Figure 3. Example 1—EOC measured in ‖·‖0,2,Ω for r = 2.

α = 1.5, r = 1

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 49 4 9.3448e-02 – 7.9119e-02 – 1.2244e-01 –

0.188 161 6 4.8018e-02 0.96 4.0634e-02 0.96 6.2904e-02 0.96

0.094 577 6 2.7109e-02 0.82 2.0042e-02 1.02 3.3713e-02 0.90

0.047 2177 6 1.5600e-02 0.80 9.8458e-03 1.03 1.8447e-02 0.87

0.023 8449 6 8.8992e-03 0.81 4.8780e-03 1.01 1.0148e-02 0.86

0.012 33281 6 5.0395e-03 0.82 2.4321e-03 1.00 5.5957e-03 0.86

α = 1.5, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 3 2.6724e-02 – 8.6570e-03 – 2.8091e-02 –

0.188 577 6 1.2058e-02 1.15 2.2618e-03 1.94 1.2268e-02 1.20

0.094 2177 6 5.9243e-03 1.03 5.7373e-04 1.98 5.9520e-03 1.04

0.047 8449 6 2.9464e-03 1.01 1.4479e-04 1.99 2.9499e-03 1.01

0.023 33281 6 1.4700e-03 1.00 3.6421e-05 1.99 1.4704e-03 1.00

0.012 132097 6 7.3425e-04 1.00 9.1384e-06 1.99 7.3430e-04 1.00

α = 1.5, r = 3

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 337 3 1.2840e-02 – 8.3916e-04 – 1.2867e-02 –

0.188 1249 6 4.9724e-03 1.37 1.2809e-04 2.71 4.9741e-03 1.37

0.094 4801 5 3.3908e-03 0.55 1.5021e-05 3.09 3.3908e-03 0.55

0.047 18817 6 1.6746e-03 1.02 2.0634e-06 2.86 1.6746e-03 1.02

0.023 74497 6 8.3301e-04 1.01 2.9962e-07 2.78 8.3301e-04 1.01

0.012 296449 3 4.1014e-04 1.02 4.7016e-08 2.67 4.1014e-04 1.02

Table 2. Example 1—number of DOF and Newton iterations, discretization errors and con-
vergence rates for r = 1, 2, 3, 4 and α = 0.5, 1.0, 1.5, 2.0 in FEM.
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α = 1.5, r = 4

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 577 3 9.6870e-03 – 1.4266e-04 – 9.6880e-03 –

0.188 2177 6 5.0551e-03 0.94 1.4161e-05 3.33 5.0551e-03 0.94

0.094 8449 6 2.5318e-03 1.00 2.3612e-06 2.58 2.5318e-03 1.00

0.047 33281 6 1.2653e-03 1.00 4.3600e-07 2.44 1.2653e-03 1.00

0.023 132097 6 6.3245e-04 1.00 8.1398e-08 2.42 6.3245e-04 1.00

0.012 526337 4 2.9917e-04 1.08 1.5154e-08 2.43 2.9917e-04 1.08

α = 0.5, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 4 2.3779e-03 – 8.6544e-03 – 8.9752e-03 –

0.188 577 5 6.3232e-04 1.91 2.2617e-03 1.94 2.3485e-03 1.93

0.094 2177 4 1.9356e-04 1.71 5.7372e-04 1.98 6.0550e-04 1.96

0.047 8449 3 6.0476e-05 1.68 1.4479e-04 1.99 1.5691e-04 1.95

0.023 33281 3 1.8977e-05 1.67 3.6421e-05 1.99 4.1069e-05 1.93

0.012 132097 3 6.0396e-06 1.65 9.1384e-06 1.99 1.0954e-05 1.91

α = 1.0, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 4 1.0793e-02 – 8.6566e-03 – 1.3835e-02 –

0.188 577 6 3.9942e-03 1.43 2.2618e-03 1.94 4.5901e-03 1.59

0.094 2177 6 1.6433e-03 1.28 5.7373e-04 1.98 1.7406e-03 1.40

0.047 8449 5 6.8640e-04 1.26 1.4479e-04 1.99 7.0150e-04 1.31

0.023 33281 4 2.8784e-04 1.25 3.6421e-05 1.99 2.9014e-04 1.27

0.012 132097 3 1.1988e-04 1.26 9.1384e-06 1.99 1.2023e-04 1.27

α = 2.0, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 3 4.8888e-02 – 8.6572e-03 – 4.9648e-02 –

0.188 577 6 2.5182e-02 0.96 2.2618e-03 1.94 2.5284e-02 0.97

0.094 2177 6 1.3928e-02 0.85 5.7373e-04 1.98 1.3940e-02 0.86

0.047 8449 6 7.7818e-03 0.84 1.4479e-04 1.99 7.7831e-03 0.84

0.023 33281 6 4.3594e-03 0.84 3.6421e-05 1.99 4.3595e-03 0.84

0.012 132097 6 2.4446e-03 0.83 9.1384e-06 1.99 2.4446e-03 0.83

Table 2. Example 1—number of DOF and Newton iterations, discretization errors and con-
vergence rates for r = 1, 2, 3, 4 and α = 0.5, 1.0, 1.5, 2.0 in FEM (continuation).
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7.2. Example 2—solution not identically zero on the boundary. In the

second experiment, we again consider problem (1.1)–(1.2) on a unit square domain

Ω = (0, 1)2. We prescribe the data f and ϕ in such a way that the exact solution is

(7.3) u(x1, x2) =
1
4 (1 + x1)

2 sin(2πx1x2),

shown in Figure 1(b).

This function was used in [17]. It is smooth, zero on boundary segments going

through points [0, 1], [0, 0], [1, 0] and nonzero on segments going through points [1, 0],

[1, 1], [0, 1]. The expected order of convergence is r in all norms and seminorms

considered and should not depend on the nonlinearity parameter α. The computed

results are presented in Table 3 and Figure 4.

α = 1.5, r = 1

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 49 6 2.5883e-01 – 9.5881e-01 – 9.9314e-01 –

0.188 161 5 6.1723e-02 2.07 5.3381e-01 0.84 5.3736e-01 0.89

0.094 577 4 1.5381e-02 2.00 2.8145e-01 0.92 2.8187e-01 0.93

0.047 2177 4 3.9289e-03 1.97 1.4421e-01 0.96 1.4426e-01 0.97

0.023 8449 3 9.9584e-04 1.98 7.2704e-02 0.99 7.2711e-02 0.99

0.012 33281 3 2.4986e-04 1.99 3.6390e-02 1.00 3.6391e-02 1.00

α = 1.5, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 6 1.4730e-02 – 2.3514e-01 – 2.3560e-01 –

0.188 577 4 1.2493e-03 3.56 5.8813e-02 2.00 5.8826e-02 2.00

0.094 2177 3 1.3819e-04 3.18 1.5173e-02 1.95 1.5173e-02 1.95

0.047 8449 3 1.6986e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97

0.023 33281 2 2.1254e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99

0.012 132097 2 2.6587e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

α = 1.5, r = 3

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 337 6 4.5914e-03 – 2.3116e-02 – 2.3568e-02 –

0.188 1249 3 2.4182e-04 4.25 3.4931e-03 2.73 3.5015e-03 2.75

0.094 4801 3 1.3800e-05 4.13 4.7873e-04 2.87 4.7893e-04 2.87

0.047 18817 2 8.5542e-07 4.01 6.2363e-05 2.94 6.2369e-05 2.94

0.023 74497 2 5.4140e-08 3.98 7.9229e-06 2.98 7.9231e-06 2.98

0.012 296449 2 3.4211e-09 3.98 9.9474e-07 2.99 9.9474e-07 2.99

Table 3. Example 2—number of DOF and Newton iterations, discretization errors and con-
vergence rates for r = 1, 2, 3, 4 and α = 1.5, 0.5 in FEM.
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α = 1.5, r = 4

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 577 6 8.4789e-05 – 4.2824e-03 – 4.2832e-03 –

0.188 2177 3 3.2227e-06 4.72 3.2812e-04 3.71 3.2813e-04 3.71

0.094 8449 2 1.0740e-07 4.91 2.2035e-05 3.90 2.2036e-05 3.90

0.047 33281 2 3.4969e-09 4.94 1.4299e-06 3.95 1.4299e-06 3.95

0.023 132097 2 1.1140e-10 4.97 9.0809e-08 3.98 9.0809e-08 3.98

0.012 526337 2 3.5005e-12 4.99 5.6988e-09 3.99 5.6988e-09 3.99

α = 0.5, r = 2

h DOF iter ‖e‖0,2,Ω EOC |e|1,2,Ω EOC ‖e‖1,2,Ω EOC

0.375 161 6 1.4072e-02 – 2.3527e-01 – 2.3569e-01 –

0.188 577 4 1.2379e-03 3.51 5.8815e-02 2.00 5.8828e-02 2.00

0.094 2177 4 1.3806e-04 3.16 1.5173e-02 1.95 1.5173e-02 1.95

0.047 8449 3 1.6989e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97

0.023 33281 3 2.1256e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99

0.012 132097 2 2.6588e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

Table 3. Example 2—number of DOF and Newton iterations, discretization errors and con-
vergence rates for r = 1, 2, 3, 4 and α = 1.5, 0.5 in FEM (continuation).
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Figure 4. Example 2—EOC for α = 1.5.

In the discretization of this problem, we have chosen α = 1.5 and degrees of

polynomials r = 1, 2, 3 for FEM. We have also tried r = 4 and α = 0.5. The order

of convergence is not affected by boundary nonlinearity parameter α, which is in

agreement with theoretical results. The H1-seminorm converges with the predicted

order of convergence r, but the L2-norm converges faster with order r + 1. The

L2-norm error estimate is again suboptimal, but in this case, the error is dominated

by the H1-seminorm. Therefore the resulting order of convergence in H1-norm is

still r in accordance with the theoretical results.
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The numerical experiments confirmed that the theoretical error estimates in semi-

norms were optimal and that the order of convergence depends on whether the exact

solution is zero on the whole boundary. The numerical results, however, suggest that

the order of convergence in L2-norm is suboptimal. The theoretical results give us

the order of convergence r (or r/(α + 1)), but the EOC is r+1 (or (r + 1)/(α+ 1)).

This improvement only appeared when the exact solution belonged to the space

Hr+2(Ω).

8. Conclusion

We have shown theoretically that the use of numerical integration for evaluating

forms in the definition of the approximate solution does not decrease the order of

convergence, which was derived in Section 2. In the case of noninteger α > 0 and the

degree of used polynomials r > α+1, it might be necessary to refine the triangulation

Th near the roots of the exact solution u on the boundary ∂Ω. These refined triangles

TS , S ∈ sh2, would require their size to be hTS
6 chr/(⌊α⌋+1). It is also possible to

say that the estimates in Section 2 only require the regularity of the solution, but the

estimates near the boundary edges are only possible under the regularity specified in

Section 1. Numerical experiments did not require this refinement to converge with

the derived order of convergence.

Combining Theorem 2.5, ̺−1
1 given in (4.11), and Theorem 2.6 suggested that

the Galerkin approximation given in (2.6) should always converge to the exact weak

solution defined in (1.8) in the H1-seminorm with a rate of convergence of r. The

same conclusions can be drawn from Theorem 6.1, R−1 given in (4.11) and Theo-

rem 6.2 in Section 6, which takes into account the effect of numerical integration.

This theoretical result is in agreement with the numerical experiments.
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