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Abstract. Extriangulated categories were introduced by Nakaoka and Palu by extracting
the similarities between exact categories and triangulated categories. A notion of homotopy
cartesian square in an extriangulated category is defined in this article. We prove that
in an extriangulated category with enough projective objects, the extension subcategory
of two covariantly finite subcategories is covariantly finite. As an application, we give
a simultaneous generalization of a result of X.W. Chen (2009) and of a result of R. Gentle,
G. Todorov (1996).
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1. Introduction

Let C be an additive category. By a subcategory X of C we always mean a full

additive subcategory. Recall that a subcategory X of C is said to be covariantly

finite in C if for every object M of C , there exists some X in X and a morphism

f : M → X such that for every X ′ in X the sequence

HomC (X,X ′)
◦f
−→ HomC (M,X ′) −→ 0

is exact. In this case such an f is called a left X -approximation of M . For details,

see [1].

Let C be an abelian category and let X and Y be two subcategories. We denote

by X ∗ Y the subcategory which consists of objects B in C admitting a short

exact sequence 0 → A → B → C → 0 where A ∈ X and C ∈ Y . It is called

the extension subcategory of Y by X . Recall that an abelian category C has

enough projective objects, if for each object M there exists an epimorphism P →M

where P is a projective object. The following result is due to Gentle and Todorov.
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Theorem 1.1 ([6], Theorem 1.1). Let C be an abelian category with enough

projective objects. If X and Y are covariantly finite subcategories of C , then the

extension subcategory X ∗Y is a covariantly finite subcategory of C .

Let C be a triangulated category with the shift functor [1], and let X and Y be

two subcategories. LetX ∗Y be the extension subcategory, that is, the subcategory

consisting of objects B such that there exists a triangle A → B → C → A[1] where

A ∈ X and C ∈ Y . Chen proved the following result.

Theorem 1.2 ([5], Theorem 1.3). Let C be a triangulated category. IfX and Y

are covariantly finite subcategories of C , then the extension subcategory X ∗ Y is

a covariantly finite subcategory of C .

Applications of the results of Gentle-Todorov and Chen are presented, see [5], [7],

[8], [10].

Recently, the notion of an extriangulated category was introduced in [11], which is

a simultaneous generalization of an exact category (which is itself a generalization of

the concept of an abelian category) and of a triangulated category. The main result

of this paper is the following, which is a simultaneous generalization of a result of

Chen [5], Theorem 1.3 and of a result of Gentle-Todorov [6], Theorem 1.1.

Theorem 1.3. Let C be an extriangulated category with enough projective ob-

jects. If X and Y are covariantly finite subcategories of C , then the extension

subcategory X ∗ Y is a covariantly finite subcategory of C .

Moreover, under suitable conditions, we can prove that a partial converse of The-

orem 1.3 holds.

2. Preliminaries

We recall the definition and basic properties of extriangulated categories from [11].

Let C be an additive category. Suppose that C is equipped with a biadditive

functor

E : C
op × C → Ab,

where Ab is the category of abelian groups. For any pair of objects A,C ∈ C ,

an element δ ∈ E(C,A) is called an E-extension. Thus formally, an E-extension is

a triplet (A, δ, C). Let (A, δ, C) be an E-extension. Since E is a bifunctor, for any

a ∈ C (A,A′) and c ∈ C (C′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C′, A).
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We briefly denote them by a∗δ and c∗δ. For any A,C ∈ C , the zero element

0 ∈ E(C,A) is called the split E-extension.

Definition 2.1 ([11], Definition 2.3). Let (A, δ, C), (A′, δ′, C′) be any pair of

E-extensions. A morphism

(a, c) : (A, δ, C)→ (A′, δ′, C′)

of E-extensions is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C′) in C , satisfying

the equality a∗δ = c∗δ′. Simply we denote it as (a, c) : δ → δ′.

Definition 2.2 ([11], Definition 2.6). Let δ = (A, δ, C), δ′ = (A′, δ′, C′) be any

pair of E-extensions. Let

C
ιC−→ C ⊕ C′ ιC′

←− C′

and

A
pA
←− A⊕ A′ pA′

−→ A′

be the coproduct and the product in B, respectively. Since E is biadditive, we have

a natural isomorphism

E(C ⊕ C′, A⊕A′) ∼= E(C,A) ⊕ E(C,A′)⊕ E(C′, A)⊕ E(C′, A′).

Let δ⊕ δ′ ∈ E(C⊕C′, A⊕A′) be the element corresponding to (δ, 0, 0, δ′) through

the above isomorphism. This is the unique element which satisfies

E(ιC , pA)(δ ⊕ δ′) = δ, E(ιC , pA′)(δ ⊕ δ′) = 0,

E(ιC′ , pA)(δ ⊕ δ′) = 0, E(ιC′ , pA′)(δ ⊕ δ′) = δ′.

Let A,C ∈ C be any pair of objects. Sequences of morphisms in C

A
x
−→ B

y
−→ C and A

x′

−→ B′ y′

−→ C

are said to be equivalent if there exists an isomorphism b ∈ C (B,B′) which makes

the following diagram commutative.

A
x // B

y
//

≃ b

��

C

A
x′

// B′
y′

// C

We denote the equivalence class of A
x
−→ B

y
−→ C by [A

x
−→ B

y
−→ C].

For any A,C ∈ C , we denote 0 =
[

A
(10)
−→ A⊕ C

(0,1)
−→ C

]

.

For any two equivalence classes, we denote [A
x
−→ B

y
−→ C]⊕ [A′ x′

−→B′ y′

−→ C′] =

[A⊕A′ x⊕x′

// B ⊕B′
y⊕y′

// C ⊕ C′].
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Definition 2.3 ([11], Definition 2.9). Let s be a correspondence which associates

an equivalence class s(δ) = [A
x
−→ B

y
−→ C] to any E-extension δ ∈ E(C,A). This s

is called a realization of E, if it satisfies the following condition:

⊲ Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, with

s(δ) = [A
x
−→ B

x
−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C′].

Then, for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) which makes the

following diagram commutative.

(2.1) A
x //

a

��

B
y

//

b
��

C

c

��
A′

x′

// B′
y′

// C′

In the above situation, we say that the triplet (a, b, c) realizes (a, c).

Definition 2.4 ([11], Definition 2.10). A realization s of E is called additive if

it satisfies the following conditions.

(1) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

(2) For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C′, A′),

s(δ ⊕ δ′) = s(δ)⊕ s(δ′)

holds.

Definition 2.5 ([11], Definition 2.12). A triplet (C ,E, s) is called an externally

triangulated category (or extriangulated category for short) if it satisfies the following

conditions:

(ET1) E : C
op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, realized as

s(δ) = [A
x
−→ B

y
−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C′].

For any commutative square

A
x //

a

��

B
y

//

b
��

C

A′
x′

// B′
y′

// C′

in C , there exists a morphism (a, c) : δ → δ′ satisfying cy = y′b.

(ET3)op Dual of (3).
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(ET4) Let (A, δ,D) and (B, δ′, F ) be E-extensions realized by

A
f
−→ B

f ′

−→ D and B
g
−→ C

g′

−→ F,

respectively. Then there exist an object E ∈ C , a commutative diagram

A
f

// B
f ′

//

g

��

D

d

��
A

h // C

g′

��

h′

// E

e

��
F F

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h
−→ C

h′

−→ E, which

satisfy the following compatibilities.

(i) D
d
−→ E

e
−→ F realizes f ′

∗δ
′,

(ii) d∗δ′′ = δ,

(iii) f∗δ
′′ = e∗δ′.

(ET4)op Dual of (4).

We use the following terminology.

Definition 2.6 ([11]). Let (C ,E, s) be a triplet satisfying (ET1) and (ET2).

(1) A sequence A
x
−→ B

y
−→ C is called a conflation if it realizes some E-extension

δ ∈ E(C,A). In this article, we write the conflation as A
x
 B

y
։ C.

(2) A morphism f ∈ C (A,B) is called an inflation if it admits some conflation

A
f
 B ։ C.

(3) A morphism f ∈ C (A,B) is called a deflation if it admits some conflation

K  A
f
։ B.

(4) If a conflation A
x
 B

y
։ C realizes δ ∈ E(C,A), we call the pair (A

x
 B

y
։

C, δ) an E-triangle, and write it in the following way:

A
x
−→ B

y
−→ C

δ
99K

(5) Let A
x
−→ B

y
−→ C

δ
99K and A′ x′

−→ B′ y′

−→ C′
δ′

99K be any pair of E-triangles.

If a triplet (a, b, c) realizes (a, c) : δ → δ′ as in (2.1), then we write it as

A
x //

a

��

B
y

//

b
��

C
δ //❴❴❴

c

��
A′

x′

// B′
y′

// C′
δ′ //❴❴❴

and call (a, b, c) a morphism of E-triangles.
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(6) An object P ∈ C is called projective if for any E-triangle A
x
−→ B

y
−→ C

δ
99K

and any morphism c ∈ C (P,C), there exists b ∈ C (P,B) satisfying yb = c. We

denote the subcategory of projective objects by P ⊆ C . Dually, the subcategory

of injective objects is denoted by I ⊆ C .

(7) We say that C has enough projective objects if for any object C ∈ C , there

exists an E-triangle A
x
−→ P

y
−→ C

δ
99K satisfying P ∈ P . We can define the

notion of having enough injectives dually.

(8) An extriangulated category C is said to be Frobenius if it has enough projectives

and enough injectives and the projectives coincide with the injectives.

We now give some examples of extriangulated categories.

Example 2.7. (1) An exact category B can be viewed as an extriangulated

category. For the definition and basic properties of an exact category, see [4]. In

fact, a biadditive functor E := Ext1B : B
op × B → Ab and the realization s is defined

by associating the equivalence classes of short exact sequences to themselves. For

more details, see [11], Example 2.13.

(2) Let C be a triangulated category with the shift functor [1]. Put E :=

C (−,−[1]). For any δ ∈ E(C,A) = C (C,A[1]), take a triangle

A
x
−→ B

y
−→ C

δ
−→ A[1]

and define s(δ) = [A
x
−→ B

y
−→ C]. Then (C ,E, s) is an extriangulated category. It

is easy to see that extension closed subcategories of triangulated categories are also

extriangulated categories. For more details, see [11], Proposition 3.22.

(3) Let C be an extriangulated category, and J a subcategory of C . If J ⊆ P∩I,

then C /J is an extriangulated category. This construction gives extriangulated

categories which are not exact nor triangulated in general. For more details, see [11],

Proposition 3.30.

Example 2.8. Let Db(Tn) be the bounded derived category of the abelian cat-

egory Tn. It is triangulated with shift functor [1], the shift of complexes. It has

Auslander-Reiten triangles, and the Auslander-Reiten translation is the derived func-

tor of the Auslander-Reiten translation τ of Tn. By abuse of notation, we also denote

it by τ . The cluster tube of rank n is defined in [2], as the orbit category

Cn := Db(Tn)/τ
−1[1].

The category Cn has a triangulated structure such that the canonical projec-

tion functor π : Db(Tn) → Cn is triangulated, by Keller [9], Theorem 9.9. It is
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2-Calabi-Yau, that is to say, there is a bifunctorial isomorphism DHomCn
(M,N) ∼=

HomCn
(N,M [2]) for objects M and N in Cn, where D = Homk(−, k) denotes du-

ality with respect to the base field k. It has Auslander-Reiten triangles, and the

Auslander-Reiten translation τ is naturally equivalent to the shift functor [1]. The

Auslander-Reiten quiver of Cn is depicted as

◦

��✼
✼✼
✼

✤
✤
✤
✤

✤
✤
✤
✤

◦

��✼
✼✼
✼ ◦ ◦

��✼
✼✼
✼ ◦

✤
✤
✤
✤

✤
✤
✤
✤

◦

��✼
✼✼
✼

CC✞✞✞
◦

��✼
✼✼
✼

CC✞✞✞
◦

��✼
✼✼
✼

CC✞✞✞

◦

��✼
✼✼
✼

CC✞✞✞

✤
✤
✤
✤ ◦

��✼
✼✼
✼

CC✞✞✞
◦ ◦

��✼
✼✼
✼

CC✞✞✞
◦

✤
✤
✤
✤

◦

��✼
✼✼
✼

CC✞✞✞
◦

��✼
✼✼
✼

CC✞✞✞
◦

CC✞✞✞

��✼
✼✼
✼

◦

CC✞✞✞
◦

CC✞✞✞
◦ ◦

CC✞✞✞
◦

where the leftmost and rightmost columns are identified.

TakeX to be the additive subcategory of Cn consisting of objects whose indecom-

posable summands are of quasi-length one or two. We know thatX is a functorially

finite subcategory of Cn satisfying τX = X , but {0} 6= X & Cn. By [12], Corol-

lary 4.12, we obtain that (Cn,F, s′) is a Frobenius extriangulated category whose

projective-injective objects are precisely X . When X 6= {0}, the Frobenius extri-

angulated category (C ,F, s′) is not triangulated, since X is projective and injective

and non-zero. When X 6= C , it is easy to see that the Frobenius extriangulated

category (C ,F, s′) is not exact. Otherwise any F-extension splits and then any object

in C is projective and injective. Then X = C , a contradiction. Hence the Frobenius

extriangulated category (C ,F, s′) is neither triangulated nor exact.

Remark 2.9. (1) As in Example 2.7(1), an exact category can be regarded as

an extriangulated category, whose inflations are monomorphic and whose deflations

are epimorphic. Conversely, let (C ,E, s) be an extriangulated category, in which any

inflation is monomorphic, and any deflation is epimorphic. If we let S be the class

of conflations given by the E-triangles, then (C ,S) is an exact category in the sense

of [4]. For more details, see [11], Corollary 3.18.

(2) In a triangulated category C , it is easy to see that P = 0 and I = 0, C has

enough projectives and enough injectives. Thus C is a Frobenius extriangulated

category. Conversely, let C be a Frobenius extriangulated category. If P = I = 0,

then C is triangulated. For more details, see [11], Corollary 7.6.
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Lemma 2.10 ([11], Proposition 3.3). Let C be an extriangulated category and

let

A
x
−→ B

y
−→ C

δ
99K

be an E-triangle. Then we have the following exact sequence:

C (−, A)
C (−,x)

// C (−, B)
C (−,y)

// C (−, C)→ E(−, A)
E(−,x)

// E(−, B)
E(−,y)

// E(−, C) ,

C (C,−)
C (y,−)

// C (B,−)
C (x,−)

// C (A,−)→ E(C,−)
E(y,−)

// E(B,−)
E(x,−)

// E(A,−) ,

Lemma 2.11 ([11], Corollary 3.16). Let x : A→ B, y : D → C and let f : A→ C

be any morphisms in an extriangulated category C .

(1) If x is an inflation, then
(

f
x

)

: A→ C ⊕B is an inflation in C .

(2) If y is a deflation, then (y, f) : D ⊕A→ C is a deflation in C .

Lemma 2.12. Let (C ,E, s) be an extriangulated category. Suppose we are given

E-triangles

A
f
−→ B

f ′

−→ C 99K

A
g
−→ E

g′

−→ G 99K

D
h
−→ B

h′

−→ E 99K

satisfying h′f = g. Then there exists an E-triangle

D
d
−→ C

e
−→ G 99K

which makes

D

h

��

D

d

��
A

f
// B

f ′

//

h′

��

C

e

��
A

g
// E

g′

// G

commutative in C .

P r o o f. See the dual of Proposition 3.17 in [11]. �
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3. Proof of the main result

We introduce the notion of homotopy cartesian in an extriangulated category.

Definition 3.1. Let C be an extriangulated category. Then a commutative

square

A
f

//

a

��

B

b

��
X

u // Y

is called homotopy cartesian square if there exists an E-triangle

A
( f

−a) // B ⊕X
(b, u)

// Y
δ

99K

in C .

In order to prove our main result, we need the following lemma.

Lemma 3.2. Let C be an extriangulated catgeory and

A
f
−→ B

g
−→ C 99K

be an E-triangle in C . Then for every morphism a : A→ X , there exists a commu-

tative diagram of the form,

A
f

//

a

��

B
g

//

b

��

C //❴❴❴

X
u // Y

v // C //❴❴❴

where the left hand square is homotopy cartesian.

P r o o f. Since f is an inflation, by Lemma 2.11, we know that the morphism
(

f
−a

)

: A→ B ⊕X is an inflation. Then there exists an E-triangle

A
( f
−a) // B ⊕X

(b, u)
// Y 99K

in C . By Lemma 2.12, we obtain the commutative diagram

X

(01)
��

X

u

��
A

( f
−a) // B ⊕X

(b, u)
//

(1, 0)

��

Y

v

��
A

f
// B

g
// C
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in which X
u
−→ Y

v
−→ C 99K is an E-triangle. It follows that bf = ua and vb = g.

Thus we have the commutative diagram of E-triangles,

A
f

//

a

��

B
g

//

b

��

C //❴❴❴

X
u // Y

v // C //❴❴❴

where the left hand square is homotopy cartesian. �

Let C be an extriangulated category, and letX and Y be two subcategories. Let

X ∗Y be the extension subcategory, that is, the subcategory consisting of objects B

such that there exists an E-triangle A −→ B −→ C 99K for some A ∈ X and C ∈ Y .

We have the following result.

Theorem 3.3. Let C be an extriangulated category with enough projectives. If

X and Y are covariantly finite subcategories of C , then the extension subcategory

X ∗ Y is a covariantly finite subcategory of C .

P r o o f. Let C be an arbitrary object in C . Take a left Y -approximation

f : C → YC . Since C has enough projective objects, there exists a deflation

n : P → YC , where P is a projective object. By Lemma 2.11, the morphism

(n, f) : P ⊕ C → YC is a deflation. So there exists an E-triangle

M
(mg ) // P ⊕ C

(n, f)
// YC 99K

in C . Take a left X -approximation a : M → XM . By Lemma 3.2, we have the

commutative diagram of E-triangles,

M
(mg ) //

a

��

P ⊕ C
(n, f)

//

(b, c)

��

YC
//❴❴❴❴

XM
u // N

v // YC
//❴❴❴❴

where the left hand square is homotopy cartesian. That is, there exists an E-triangle

M

( m

g

−a

)

// P ⊕ C ⊕XM

(b, c, u)
// N 99K
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in C . We claim that c : C → N is a left (X ∗ Y )-approximation of C. Indeed,

suppose we are given a morphism k : C → Z where Z ∈ X ∗ Y such that there

exists an E-triangle

X
x
−→ Z

y
−→ Y 99K,

where X ∈ X and Y ∈ Y . Since f is a left Y -approximation of C and Y ∈ Y ,

there exists a morphism k1 : YC → Y such that k1f = yk. Since P is a projective

object, there exists a morphism t : P → Z such that yt = k1n. It follows that

k1(n, f) = (yt, yk) = y(t, k).

By (ET3)op, we obtain a commutative diagram

M
(mg ) //

k2

��✤
✤
✤ P ⊕ C

(n, f)
//

(t, k)

��

YC
//❴❴❴❴

k1

��
X

x // Z
y

// Y //❴❴❴❴

of E-triangles. Since a is a left X -approximation of M and X ∈ X , there exists

a morphism k3 : XM → X such that k3a = k2. It follows that

xk3a = xk2 = (t, k)

(

m

g

)

= tm+ kg

and then (t, k, xk3)

(

m

g

−a

)

= 0. By Lemma 2.10, there exists a morphism d : N → Z

such that d(b, c, u) = (t, k, xk3). Hence we have dc = k. This shows that c : C → N

is a left (X ∗ Y )-approximation of C.

Therefore, X ∗ Y is a covariantly finite subcategory of C . �

This theorem immediately yields the following important conclusion.

Corollary 3.4 ([6], Theorem 1.1). Let C be an abelian category with enough

projective objects. If X and Y are covariantly finite subcategories of C , then the

extension subcategory X ∗Y is a covariantly finite subcategory of C .

P r o o f. Since an abelian category can be viewed as an extriangulated category.

�

Corollary 3.5 ([5], Theorem 1.3). Let C be a triangulated category. IfX and Y

are covariantly finite subcategories of C , then the extension subcategory X ∗ Y is

a covariantly finite subcategory of C .

413



P r o o f. In a triangulated category C , it is easy to see that P consists of zero

objects. Moreover, it always has enough projectives. �

Under suitable conditions, we prove the following partial converse of Theorem 3.3.

Proposition 3.6. Let C be an extriangulated category, and letX and Y be two

subcategories of C . Assume that X ∗Y is a covariantly finite subcategory in C . If

HomC (X ,Y ) = 0, then Y is a covariantly finite subcategory in C .

P r o o f. Assume that C is an arbitrary object in C . Take its left (X ∗ Y )-

approximation ϕC : C →MC of C. As MC ∈X ∗ Y , there exists an E-triangle

X
a
−→MC

b
−→ Y 99K,

where X ∈ X and Y ∈ Y . We claim that the morphism bϕC : C → Y is a left

Y -approximation of C. Indeed, let g : C → Y ′ with Y ′ ∈ Y be any morphism in C .

Note that Y ′ ∈ Y ⊆ X ∗ Y . Since ϕC is a left (X ∗ Y )-approximation, there

exists a morphism f : MC → Y ′ such that g = fϕC . Since HomC (X ,Y ) = 0, we

have fa = 0. By Lemma 2.10, there exists f1 : Y → Y ′ such that f = f1b. Thus

g = fϕC = f1(bϕC), namely, the morphism g factors through bϕC , as required.

Therefore Y is a covariantly finite subcategory in C . �

Example 3.7. Let C be a triangulated category or an exact category, and letX

and Y be two subcategories of C . If (X ,Y ) is a torsion pair on C , where the notion

of a torsion pair is in the sense of Beligiannis and Reiten [3], then Y is a covariantly

finite subcategory in C .
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