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EXISTENCE AND UNIQUENESS OF SOLUTIONS

OF THE FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS IN VECTOR-VALUED FUNCTION SPACE

Bahloul Rachid

Abstract. The aim of this work is to study the existence and uniqueness
of solutions of the fractional integro-differential equations d

dt
[x(t)− L(xt)] =

A[x(t)−L(xt)] +G(xt) + 1
Γ(α)

∫ t
−∞(t− s)α−1(

∫ s
−∞ a(s− ξ)x(ξ)dξ)ds+ f(t),

(α > 0) with the periodic condition x(0) = x(2π), where a ∈ L1(R+) . Our
approach is based on the R-boundedness of linear operators Lp-multipliers
and UMD-spaces.

1. Introduction

The aim of this paper is to study the existence and uniqueness of solutions for
some retarded fractional integro-differential equations with delay by using methods
of maximal regularity in spaces of vector valued functions. Motivated by the fact
that neutral functional integro-differential equations with finite delay arise in many
areas of applied mathematics, this type of equations has received much attention
in recent years. In particular, the problem of existence of periodic solutions, has
been considered by several authors. We refer the readers to papers ([3], [8], [14],
[24]) and the references listed therein for information on this subject. One of
the most important tools to prove maximal regularity is the theory of Fourier
multipliers. They play an important role in the analysis of parabolic problems. In
recent years it has become apparent that one needs not only the classical theorems
but also vector-valued extensions with operator-valued multiplier functions or
symbols. These extensions allow to treat certain problems for evolution equations
with partial differential operators in an elegant and efficient manner in analogy to
ordinary differential equations. For some recent papers on the subjet, we refer to
Weis [17], Poblete [26], Lizama [24], Keyantue [19], Hernan et al [21] et Arendt-Bu
[4].
We characterize the existence of periodic solutions for the following integro-differen-
tial equations in vector-valued spaces. Our results involve UMD spaces, the concept
of R-boundedness and a condition on the resolvent operator. We remark that many
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of the most powerful modern theorems are valid in UMD spaces, i.e., Banach spaces
in which martingale are unconditional differences. The probabilistic definition of
UMD spaces turns out to be equivalent to the Lp-boundedness of the Hilbert
transform, a transformation which is, in a sense, the typical representative example
of a multiplier operator. On the other hand the notion of R-boundedness has
played an important role in the functional analytic approach to partial differential
equations.

In this work, we study the existence of periodic solutions for the following
integro-differential equations
(1.1)

d

dt
[x(t)− L(xt)] = A[x(t)− L(xt)] +G(xt)

+ 1
Γ(α)

∫ t

−∞
(t− s)α−1(

∫ s

−∞
a(s− ξ)x(ξ)dξ)ds+ f(t) , 0 ≤ t ≤ 2π ,

where A : D(A) ⊆ X → X is a linear closed operator on Banach space (X, ‖·‖),
Γ(·) is the Euler gamma function (α > 0). and f ∈ Lp(T, X) for all p ≥ 1. For
r2π := 2πN ( some N ∈ N) L and G are in B(Lp([−r2π, 0], X); X) is the space
of all bounded linear operators and xt is an element of Lp([−r2π, 0], X) which is
defined as follows

xt(θ) = x(t+ θ) for θ ∈ [−r2π, 0] .

Initially, Arendt and Bu [3] dealt with the problem u′(t) = Au(t) + f(t), u(0) =
u(2π). Maximal regularity for the evolution problem in Lp was treated earlier by
Weis [28, 29] (see also [11] for a different proof of the operator-valued Mikhlin
multiplier theorem using a transference principle). The study in the Lp frame-
work (when 1 < p < ∞) was made possible thanks to the introduction of the
concept of randomized boundedness (hereafter R-boundedness, also known as
Riesz-boundedness or Rademacher-boundedness). With this, necessary conditions
for operator-valued Fourier multipliers were found in this context. In addition, the
space X must have the UMD property. This was done initially by L. Weis [28, 29]
for the evolutionary problem and then by Arendt-Bu [3] for periodic boundary
conditions. For non-degenerate integro-differential equations both in the periodic
and non periodic cases, operator-valued Fourier multipliers have been used by
various authors to obtain well-posedness in various scales of function spaces: see
[7, 8, 9, 19, 20, 21, 25, 26] and the corresponding references. The well-posedness
or maximal regularity results are important in that they allow for the treatment
of nonlinear problems. Earlier results on the application of operator-valued Fou-
rier multiplier theorems to evolutionary integral equations can be found in [11].
More recent examples of second order integro-differential equations with frictional
damping and memory terms have been studied in the paper [10].

In [1], Aparicio et al, studied the existence of periodic solution of degenerate
integro-differential equations in function spaces described in the following form:

(Mu′)′(t)− Λu′(t)− d

dt

∫ t

−∞
c(t− s)u(s)ds = γu(t) +Au(t)
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+
∫ t

−∞
b(t− s)Bu(s)ds+ f(t) ,

and periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π). Here,
A, B, Λ and M are closed linear operators in a Banach space X satisfying the
assumption D(A)∩D(B) ⊂ D(Λ)∩D(M), b, c ∈ L1(R+), f is an X-valued function
defined on [0, 2π], and γ is a constant.
In [22], S. Koumla, Kh. Ezzinbi, R. Bahloul established mild solutions for some
partial functional integrodifferential equations with finite delay

d

dt
x(t) = Ax(t) +

∫ t

0
B(t− s)x(s)ds+ f(t, xt) + h(t, xt)

where A : D(A)X → X is the infinitesimal generator of a C0-semigroup (T (t))t≥0
on a Banach space X, for t ≥ 0, B(t) is a closed linear operator with domain
D(B) ⊃ D(A).

This work is organized as follows: In Section 2 we collect some preliminary
results and definitions. In Section 3, we study the existence and uniqueness of
strong Lp-solution of the Eq. (1.1) solely in terms of a property of R-boundedness
for the sequence of operators ik(ikDk − ADk −Gk − (ik)−αã(ik))−1. We obtain
that the following assertion are equivalent in UMD space:

(1) (ikDk−ADk−Gk− (ik)−αã(ik)) is invertible and {ik(ikDk−ADk−Gk−
(ik)−αã(ik))−1, k ∈ Z} is R-bounded.

(2) For every f ∈ Lp(T;X) there exist a unique function u ∈ H1,p(T;X) such
that u ∈ D(A) and equation (1.1) holds for a.e. t ∈ [0, 2π].

2. Preliminaries

In this section, we collect some results and definitions that will be used in the
sequel. Let X be a complex Banach space. We denote as usual by L1(0, 2π,X)
the space of Bochner integrable functions with values in X. For a function f ∈
L1(0, 2π;X), we denote by f̂(k), k ∈ Z the k-th Fourier coefficient of f :

f̂(k) = 1
2π

∫ 2π

0
e−k(t)f(t)dt ,

where ek(t) = eikt, t ∈ R.
Let u ∈ L1(0, 2π;X). We denote again by u its periodic extension to R. Let

a ∈ L1(R+). We consider the the function

F (t) =
∫ t

−∞
a(t− s)u(s)ds, t ∈ R .

Since

(2.1) F (t) =
∫ t

−∞
a(t− s)u(s)ds =

∫ ∞
0

a(s)u(t− s)ds ,
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we have ‖F‖L1 ≤ ‖a‖1‖u‖L1 = ‖a‖L1(R+)‖u‖L1(0, 2π;X) and F is periodic of period
T = 2π as u. Now using Fubini’s theorem and (2.1) we obtain, for k ∈ Z, that

(2.2) F̂ (k) = ã(ik)û(k) , k ∈ Z

where ã(λ) =
∫∞

0 e−λta(t)dt denotes the Laplace transform of a. This identity
plays a crucial role in the paper.

Let X, Y be Banach spaces. We denote by L(X,Y ) the set of all bounded linear
operators from X to Y . When X = Y , we write simply L(X).

Proposition 2.1 ([3, Fejer’s Theorem]). Let f ∈ Lp(0, 2π;X)), then one has

f = lim
n→∞

1
n+ 1

n∑
m=0

m∑
k=−m

ekf̂(k)

with convergence in Lp(0, 2π;Y )).

R-boundedness-UMD space, Lp-multiplier and Riemann-Liouville
fractional integral. For results on operator-valued Fourier multipliers andR-boun-
dedness (used in the next section), as well as some applications to evolutionary par-
tial differential equations, we refer to Bourgain [5, 6], Clément-de Pagter-Sukochev-
-Witvliet [12], Weis [28, 29], Girardi-Weis [17, 18], Kunstmann-Weis [23], Clément-
Prüss [13], Arendt [2], Arendt-Bu [3], Ataricio-Keyantuo [1] and Suresh [27].

We shall frequently identify the spaces of (vector or operator-valued) functions
defined on [0, 2π] to their periodic extensions to R.

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e. rj(t) =
sgn(sin(2jπt)). For x ∈ X we denote by rj⊗x the vector valued function t→ rj(t)x.

The important concept of R-bounded for a given family of bounded linear
operators is defined as follows.

Definition 2.2. A family T ⊂ L(X,Y ) is called R-bounded if there exists cq ≥ 0
such that

(2.3)
∥∥∥ n∑
j=1

rj ⊗ Tjxj
∥∥∥
Lq(0,1;X)

≤ cq
∥∥∥ n∑
j=1

rj ⊗ xj
∥∥∥
Lq(0,1;X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N, where 1 ≤ q <∞. We denote by
Rq(T) the smallest constant cq such that (2.3) holds.

Remark 2.3. Several useful properties of R-bounded families can be found in the
monograph of Denk-Hieber-Prüss [16, Section 3], see also [2, 3, 12, 15, 23]. We
collect some of them here for later use.

(a) Any finite subset of L(X) is is R-bounded.
(b) If S ⊂ T ⊂ L(X) and T is R-bounded, then S is R-bounded and
Rp(S) ≤ Rp(T).

(c) Let S,T ⊂ L(X) be R-bounded sets. Then S ·T := {S · T : S ∈ S, T ∈ T}
is R-bounded and

Rp(S ·T) ≤ Rp(S) ·Rp(T) .
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(d) Let S,T ⊂ L(X) be R-bounded sets. Then S+T := {S+T : S ∈ S, T ∈ T}
is R- bounded and

Rp(S + T) ≤ Rp(S) +Rp(T) .
(e) If T ⊂ L(X) is R- bounded, then T ∪ {0} is R-bounded and
Rp(T ∪ {0}) = Rp(T).

(f) If S,T ⊂ L(X) are R- bounded, then T ∪ S is R-bounded and
Rp(T ∪ S) ≤ Rp(S) +Rp(T) .

(g) Also, each subset M ⊂ L(X) of the form M = {λI : λ ∈ Ω} is R-bounded
whenever Ω ⊂ C is bounded (I denotes the identity operator on X).

The proofs of (a), (e), (f), and (g) rely on Kahane’s contraction principle.
We sketch a proof of (f). Since we assume that S,T ⊂ L(X) are R-bounded, it

follows from (e) (which is a consequence of Kahane’s contraction principle) that
S∪{0} and T∪{0} are R-bounded. We now observe that S∪T ⊂ S∪{0}+T∪{0}.
Then using (d) and (b) we conclude that S ∪T is R-bounded.

We make the following general observation which will be valid throughout the
paper, notably in Section 4. Whenever we wish to establish R-boundedness of a
family of operators (Mk)k∈Z, if at some point we make an exception such as (k 6= 0),
(k /∈ {−1, 0}) and so on, then later we recover the property for the entire family
using items (a), (c) and (f) of the foregoing remark. The corresponding observation
for boundedness is clear.

Definition 2.4. Let ε ∈ ] 0, 1 [ and 1 < p <∞. Define the operator Hε by: for all
f ∈ Lp(R;X)

(Hεf)(t) := 1
π

∫
ε<|s|< 1

ε

f(t− s)
s

ds

if lim
ε→0

Hεf := Hf exists in Lp(R;X). Then Hf is called the Hilbert transform of
f on Lp(R, X).

Definition 2.5. A Banach space X is said to be UMD space if the Hilbert
transform is bounded on Lp(R; X) for all 1 < p <∞.

Definition 2.6. For 1 ≤ p < ∞, a sequence {Mk}k∈Z ⊂ B(X,Y ) is said to be
an Lp-multiplier if for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y ) such that
û(k) = Mkf̂(k) for all k ∈ Z.

Proposition 2.7. Let X be a Banach space and {Mk}k∈Z be an Lp-multiplier,
where 1 ≤ p <∞. Then the set {Mk}k∈Z is R-bounded.

Theorem 2.8 (Marcinkiewicz operator-valud multiplier Theorem). Let X, Y be
UMD spaces and {Mk}k∈Z ⊂ B(X,Y ). If the sets {Mk}k∈Z and {k(Mk+1 −Mk)}k∈Z
are R-bounded, then {Mk}k∈Z is an Lp-multiplier for 1 < p <∞.

Definition 2.9. The Riemann-Liouville fractional integral operator of order α > 0
is defined by

Iα−∞f(t) = 1
Γ(α)

∫ t

−∞
(t− s)α−1f(s)ds
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= 1
Γ(α)

∫ ∞
0

sα−1f(t− s)ds ,

where Γ(·) is the Euler gamma function.

Those familiar with the Fourier transform know that the Fourier transform of a
derivative can be expressed by the following:

d̂x

dt
(k) = ikx̂(k) , ∀k ∈ Z

and more generally,
d̂nx

dtn
(k) = (ik)nx̂(k) , ∀k ∈ Z

A similar identity holds for anti-derivatives

Îs−∞f(k) = (ik)−sx̂(k) , ∀k ∈ Z

Remark 2.10. If we set u(x) = eikx for k ∈ Z we have
1) Iα−∞u(t) = (ik)−αeikx

2) Iα−∞(a ∗ u)(t) = (ik)−αeikxã(ik).

3. Periodic solutions in UMD space

For a ∈ L1(R+), we denote by a ∗ x the function

(a ∗ x)(t) :=
∫ t

−∞
a(t− s)x(s)ds

and Dϕ = ϕ(0)−L(ϕ), with this notation we may rewrite Eq. (1.1) in the following
way:

(3.1) d

dt
(Dxt) = A(Dxt) + Iα−∞(a ∗ x)(t) +G(xt) + f(t) for t ∈ R

we have â ∗ x(k) = ã(ik)x̂(k) and ̂Iα−∞(a ∗ x)(k) = (ik)−αã(ik)x̂(k).
Denote by Lk(x) := L(ekx); Gk(x) := G(ekx) and ek(θ) := eikθ, Dk = I − Lk

for all k ∈ Z. We define
∆k =

(
ikDk−ADk−Gk−(ik)−αâ(ik)

)
and σZ(∆) = {k ∈ Z : ∆k is not bijective}

the periodic vector-valued space is defined by
H1,p(T;X) = {u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = ikû(k) for all k ∈ Z}

Lemma 3.1. Let f ∈ L1(T;X). If g(t) =
∫ t

0 f(s)ds and k ∈ Z, k 6= 0. Then

ĝ(k) = i

k
f̂(0)− i

k
f̂(k) .

Definition 3.2. For 1 ≤ p <∞, we say that a sequence {Mk}k∈Z ⊂ B(X,Y ) is
an (Lp, H1,p)-multiplier, if for each f ∈ Lp(T, X) there exists u ∈ H1,p(T, Y ) such
that

û(k) = Mkf̂(k) for all k ∈ Z .
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Lemma 3.3. Let 1 ≤ p <∞ and (Mk)k∈Z ⊂ B(X) (B(X) is the set of all bounded
linear operators from X to X). Then the following assertions are equivalent:
(i) (Mk)k∈Z is an (Lp, H1,p)-multiplier.
(ii) (ikMk)k∈Z is an (Lp, Lp)-multiplier.

We begin by establishing our concept of strong solution for Eq. (3.1).

Definition 3.4. Let f ∈ Lp(T;X). A function x ∈ H1,p(T;X) is said to be a
2π-periodic strong Lp-solution of Eq. (3.1) if Dxt ∈ D(A) for all t ≥ 0 and Eq.
(3.1) holds almost every where.

Lemma 3.5 ([24]). Let G : Lp(T, X)→ X be a bounded linear operateur. Then

Ĝ(u.)(k) = G(ekû(k)) := Gkû(k) for all k ∈ Z .

Proposition 3.6. Let A be a closed linear operator defined on an UMD space X.
Suppose that σZ(∆) = φ. Then the following assertions are equivalent:

(i)
(
ik(ikDk −ADk −Gk − (ik)−αã(ik))−1)

k∈Z is an Lp-multiplier for
1 < p <∞

(ii)
(
ik(ikDk −ADk −Gk − (ik)−αã(ik))−1)

k∈Z is R-bounded.

Proof. (i) ⇒ (ii) As a consequence of Proposition 2.7.
(ii) ⇒ (i) Define Mk = ik(Ck − ADk)−1, where Ck := ikDk − bk − Gk such
that bk = (ik)−αã(ik). By Theorem (2.8) it is sufficient to prove that the set
{k(Mk+1 −Mk)}k∈Z is R-bounded. Since

k [Mk+1 −Mk] = k
[
i(k + 1)(Ck+1 −ADk+1)−1 − ik(Ck −ADk)−1]

= k(Ck+1−ADk+1)−1 [i(k + 1)(Ck−ADk)−ik(Ck+1−ADk+1)] (Ck−ADk)−1

= k(Ck+1 −ADk+1)−1 [ik(Ck − Ck+1) + i(Ck −ADk) + ik(ADk+1 −ADk)]
× (Ck −ADk)−1

= k(Ck+1 −ADk+1)−1(Ck − Ck+1)ik(Ck −ADk)−1 + ik(Ck+1 −ADk+1)−1

+ k(Ck+1 −ADk+1)−1(ADk+1 −ADk)ik(Ck −ADk)−1

we have

Ck − Ck+1 = ik(Dk −Dk+1)− iDk+1 + (Gk+1 −Gk)− (bk+1 − bk)
= ik(Lk+1 − Lk) + (Gk+1 −Gk) + iLk − iI − (bk+1 − bk) .

Therefore

k(Ck+1 −ADk+1)−1(ADk+1 −ADk)ik(Ck −ADk)−1

= k(Ck+1 −ADk+1)−1ADk+1ik(Ck −ADk)−1

− k(Ck+1 −ADk+1)−1ikADk(Ck −ADk)−1

= k[Ck+1(Ck+1 −ADk+1)−1 − I]ik(Ck −ADk)−1

+ k(Ck+1 −ADk+1)−1ik[I − Ck(Ck −ADk)−1]
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Since products and sums of R-bounded sequences is R-bounded [24, Remark 2.2].
Then the proof is complete. �

Lemma 3.7. Let 1 ≤ p < ∞. Suppose that σZ(∆) = φ and that for every
f ∈ Lp(T;X) there exists a 2π-periodic strong Lp-solution x of Eq. (3.1). Then x
is the unique 2π-periodic strong Lp-solution.

Proof. Suppose that x1 and x2 two strong Lp-solution of Eq. (3.1) then x = x1−x2
is a strong Lp-solution of Eq. (3.1) corresponding to f = 0. Taking Fourier transform
in (3.1), we obtain that

ikDkx̂(k) = ADkx̂(k) + (ik)−αã(ik)x̂(k) +Gkx̂(k) , k ∈ Z .
Then

(ikDk −ADk − (ik)−αã(ik)−Gk)x̂(k) = 0 .
It follows that x̂(k) = 0 for every k ∈ Z and therefore x = 0. Then x1 = x2. �

Theorem 3.8. Let X be a Banach space. Suppose that for every f ∈ Lp(T;X)
there exists a unique strong solution of Eq. (3.1) for 1 ≤ p <∞. Then

(1) for every k ∈ Z the operator ∆k = (ikDk −ADk − (ik)−αã(ik)−Gk) has
bounded inverse

(2)
{
ik∆−1

k

}
k∈Z is R-bounded.

Before to give the proof of Theorem 3.8, we need the following lemma.

Lemma 3.9. if (ikDk − ADk − (ik)−αã(ik) − Gk)(x) = 0 for all k ∈ Z, then
ut(·) = eiktek(·)x is a 2π-periodic strong Lp-solution of the following equation

d

dt
(Dut) = A(Dut) + Iα−∞(a ∗ u)(t) +Gut .

Proof. (ikDk−ADk−(ik)−αã(ik)−Gk)(x) = 0⇒ ikDkx = ADkx+(ik)−αã(ik)x+
Gkx. Then

ikx = ikLkx+ADkx+ (ik)−αã(ik)x+Gkx .

We have ut = eiktekx and by Remark 2.10 (2),

u
′

t = ikeiktekx = eiktek(ikx)
= eiktek[ikLkx+ADkx+ (ik)−αã(ik)x+Gkx]
= ikeiktekLkx+ eiktekADkx+ eke

ikt(ik)−αã(ik)x+ eiktekGkx

= ikeiktekLkx+ eiktekADkx+ Iα−∞(a ∗ ut) +G(eiktekx)
= ikL(eiktekx) +AD(eiktekx) + Iα−∞(a ∗ ut) +G(eiktekx)
= ikL(eiktekx) +AD(eiktekx) + Iα−∞(a ∗ ut) +G(eiktekx)
= ikL(eiktekx) +AD(eiktekx) + Iα−∞(a ∗ ut) +G(eiktekx)
= ikL(ut) +A(Dut) + Iα−∞(a ∗ ut) +G(ut)

= (Lut)
′
+A(Dut) + Iα−∞(a ∗ ut) +G(ut)

(ut − Lut)
′

= A(Dut) + Iα−∞(a ∗ ut) +G(ut) ,
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(Dut)
′

= A(Dut) + Iα−∞(a ∗ ut) +G(ut)
�

Proof of Theorem 3.8. 1) Let k ∈ Z and y ∈ X. Then for f(t) = eikty, there
exists x ∈ H1,p(T;X) such that:

d

dt
Dxt = A(Dxt) + Iα−∞(a ∗ x)(t) +G(xt) + f(t) .

Taking Fourier transform, G and D are bounded. We have (̂Dx.)′(k) = x̂′(k) −
(̂Lx.)′(k) and ̂Iα−∞(a ∗ x)(k) = (ik)−αã(ik)x̂(k) by Lemma 3.5, we deduce that:

x̂′(k)− (̂Lx.)′(k) = ikx̂(k)− ikLkx̂(k) = ik(I − Lk)x̂(k) = ikDkx̂(k) .
Consequently, we have

ikDkx̂(k) = ADkx̂(k) + (ik)−αã(ik)x̂(k) +Gkx̂(k) + f̂(k)

(ikDk−ADk− (ik)−αã(ik)−Gk)x̂(k) = f̂(k) = y ⇒ (ikDk−ADk− (ik)−αã(ik)−
Gk) is surjective if (ikDk −ADk − (ik)−αã(ik)−Gk)(u) = 0, then by Lemma 3.9,
xt = eikteku is a 2π-periodic strong Lp-solution of Eq.(3.1) corresponding to the
function f(t) = 0 Hence xt = 0 and u = 0 then (ikDk −ADk − (ik)−αã(ik)−Gk)
is injective.
2) Let f ∈ Lp(T;X). By hypothesis, there exists a unique x ∈ H1,p(T, X) such
that the Eq. (3.1) is valid. Taking Fourier transforms, we deduce that

x̂(k) = (ikDk −ADk − (ik)−αã(ik)−Gk)−1f̂(k) for all k ∈ Z .
Hence

ikx̂(k) = ik(ikDk −ADk − (ik)−αã(ik)−Gk)−1f̂(k) for all k ∈ Z .
Since x ∈ H1,p(T;X), then there exists v ∈ Lp(T;X) such that

v̂(k) = ikx̂(k) = ik(ikDk −ADk − (ik)−αã(ik)−Gk)−1f̂(k) .
Then

{
ik∆−1

k

}
k∈Z is an Lp-multiplier and

{
ik∆−1

k

}
k∈Z is R-bounded. �

4. Main result

Our main result in this work is to establish that the converse of Theorem 3.8,
are true, provided X is an UMD space.

Theorem 4.1. Let X be an UMD space and A : D(A) ⊂ X → X be an closed
linear operator. Then the following assertions are equivalent for 1 < p <∞.

(1) for every f ∈ Lp(T;X) there exists a unique 2π-periodic strong Lp-solution
of Eq. (3.1).

(2) σZ(∆) = φ and
{
ik∆−1

k

}
k∈Z is R-bounded.

Lemma 4.2 ( [3]). Let f, g ∈ Lp(T;X). If f̂(k) ∈ D(A) and Af̂(k) = ĝ(k) for all
k ∈ Z. Then

f(t) ∈ D(A) and Af(t) = g(t) for all t ∈ [0, 2π] .
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Proof. 1)⇒ 2) see Theorem 3.8.
1)⇐ 2) Let f ∈ Lp(T;X). Define ∆k = (ikDk −ADk − (ik)−αã(ik)−Gk).
By Lemma 3.3, the family

{
ik∆−1

k

}
k∈Z is an Lp-multiplier it is equivalent to the

family
{

∆−1
k

}
k∈Z is an Lp-multiplier that maps Lp(T;X) into H1,p(T;X), namely

there exists x ∈ H1,p(T, X) such that

(4.1) x̂(k) = ∆−1
k f̂(k) = (ikDk −ADk − (ik)−αã(ik)−Gk)−1f̂(k) .

In particular, x ∈ Lp(T;X) and there exists v ∈ Lp(T;X) such that v̂(k) = ikx̂(k)

(4.2) (̂Dx.)′(k) := Dkv̂(k) = ikDkx̂(k) .

By Theorem 2.1, we have

xt(θ) = x(t+ θ) = lim
n→+∞

1
n+ 1

n∑
m=0

m∑
k=−m

eikteikθx̂(k) .

Hence in Lp(T;X), we obtain that

xt = lim
n→+∞

1
n+ 1

n∑
m=0

m∑
k=−m

eikteik·x̂(k) .

Since G is bounded, then

Gxt = lim
n→+∞

1
n+ 1

n∑
m=0

m∑
k=−m

eiktG(ekx̂(k))

= lim
n→+∞

1
n+ 1

n∑
m=0

m∑
k=−m

eiktGkx̂(k)

Using now (4.1) and (4.2) we have:

(̂Dx.)′(k) = ikDkx̂(k) = ADkx̂(k)+ ̂Iα−∞(a ∗ x)(k)+Gkx̂(k)+f̂(k) for all k ∈ Z .

Since A is closed, then Dxt ∈ D(A) [Lemma 4.2] and from the uniqueness theorem
of Fourier coefficients, that Eq. (3.1) is valid. �
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