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Abstract. We present a review of known stability tests and new explicit exponential
stability conditions for the linear scalar neutral equation with two delays

ẋ(t)− a(t)ẋ(g(t)) + b(t)x(h(t)) = 0,

where

|a(t)| < 1, b(t) > 0, h(t) 6 t, g(t) 6 t,

and for its generalizations, including equations with more than two delays, integro-
differential equations and equations with a distributed delay.

Keywords: neutral equation; exponential stability; solution estimate; integro-differential
equation; distributed delay
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1. Introduction

There are two different classes of neutral differential equations. The first one

includes the scalar linear equation

(1.1) (x(t) − a(t)x(g(t)))′ = −b(t)x(h(t)),

while the second class is represented by the equation

(1.2) ẋ(t)− a(t)ẋ(g(t)) = −b(t)x(h(t)).
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The aim of the paper is to consider explicit stability tests for equation (1.2) and its

generalizations, including integro-differential neutral equations and neutral equations

with a distributed delay. Equations (1.1) and (1.2) have different sets of solutions, so

a stability test for one of them can be applied to the other equation only if a(t) ≡ a,

g(t) = t−σ for some nonnegative constants a and σ. Here we focus on (1.2) and only
cite some interesting stability tests for equation (1.1) to compare them with known

results for equation (1.2).

Stability theory for neutral equations of the second and higher order, systems and

vector equations, stochastic neutral equations, nonlinear equations and mathematical

models described by neutral equations are investigated in monographs [4], [11], [13],

[15], [19], [20], [24] and in numerous articles. However, such systems and equations

are not in the framework of the present paper.

The following methods were used in stability investigations: Lyapunov functions

and functionals, see [15], [19], [20], [24], fixed point methods, see [11], and application

of the Bohl-Perron theorem, see [4], [13]. To obtain new stability tests, we apply

the method based on the Bohl-Perron theorem together with a priori estimations

of solutions, integral inequalities for fundamental functions of linear delay equations

and various transformations of a given equation.

The paper is organized as follows. Section 2 contains a review of some known

stability tests and methods applied to explore stability. In Section 3 we present

some auxiliary statements which are later used to prove the main stability results

for equation (1.2) in Section 4. Section 5 involves extensions of these results to some

more general models, such as equations with several delayed terms of either neutral

or nonneutral types, integro-differential equations and equations with a distributed

delay. Section 6 presents a discussion of the results, illustrating examples, as well as

suggests some open problems and projects for future research.

2. Review of known stability tests

In this section, we will give a review of most interesting results for equation (1.2)

and for its generalizations, which are the main objects of the present paper. However,

we start with stability results for (1.1) and its extensions, illustrating the state of

the arts in the stability investigations for this class of equations and applicable for

comparison with stability results for (1.2).

Proposition 2.1 ([1]). Consider the equation

(2.1) (x(t) + c(t)x(t− τ))′ + p(t)x(t) + q(t)x(t − σ) = 0,
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where σ > τ , c, p, q ∈ C([t0,∞), [0,∞)), and in addition, c is differentiable with

a locally bounded derivative.

Assume that there exist constants p1, p2, q1, q2, c1, c2 such that

0 6 p1 6 p(t) 6 p2, 0 6 q1 6 q(t) 6 q2, 0 6 c(t) 6 c1 < 1, |c′(t)| 6 c2.

If at least one of the following conditions holds:

(a) p1 + q1 > (p2 + q2)(c1 + q2σ),

(b) p1 > q2 + c1(p2 + q2),

then every solution of (2.1) satisfies lim
t→∞

x(t) = 0.

Proposition 2.2 ([29]). Consider the equation

(2.2) (x(t)− P (t)x(t − τ))′ +Q(t)x(t− σ) = 0,

where τ, σ > 0, P,Q ∈ C([t0,∞),R), Q(t) > 0.

If

∫ ∞

t0

Q(s) ds = ∞, |P (t)| 6 p < 1, lim sup
t→∞

∫ t

t−σ

Q(s) ds <
3

2
− 2p(2− p),

then equation (2.2) is asymptotically stable.

Proposition 2.2 is a nice result since for the nonneutral case P (t) ≡ 0 it is reduced

to the best possible stability result with the constant 3
2 .

There are several improvements and extension of Proposition 2.2, see [25], [26],

[27], [28]. In particular, the following result was obtained in [25].

Proposition 2.3 ([25]). Assume that
∫∞

t0
Q(s) ds = ∞, |P (t)| 6 p < 1 and at

least one of the following conditions hold:

(a) p < 1
4 , lim sup

t→∞

∫ t

t−σ

Q(s) ds < 3
2 − 2p;

(b) 1
4 6 p < 1

2 , lim sup
t→∞

∫ t

t−σ

Q(s) ds <
√

2(1− 2p).

Then equation (2.2) is asymptotically stable.

Stability tests for equation (1.2) will be classified according to the methods ap-

plied to obtain them. The method of Lyapunov functions and functionals is the most

popular tool in stability investigations for all classes of functional differential equa-

tions and in particular, for neutral equations. The following results were obtained

by this method.
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Proposition 2.4 ([15], Theorem 5.1.1). Consider the equation

(2.3) ẋ(t) +

m
∑

j=1

bjẋ(t− σj) + β

∫ ∞

0

K2(s)ẋ(t− s) ds

+ a0x(t) +

n
∑

j=1

ajx(t− τj) + α

∫ ∞

0

K1(s)x(t− s) ds = 0,

where

a0 > 0, τj > 0, σj > 0, ajτj 6= 0, bjσj 6= 0,
∫ ∞

0

|Ki(s)| ds <∞,

∫ ∞

0

s|Ki(s)| ds <∞.

Assume that

n
∑

i=0

ai + α

∫ ∞

0

K1(s) ds > 0,

m
∑

j=1

|bj |+ |β|
∫ ∞

0

|K2(s)| ds+
n
∑

i=1

|ai|τi + |α|
∫ ∞

0

|K1(s)| ds < 1.

Then all solutions of (2.3) satisfy lim
t→∞

x(t) = 0.

Equation (2.3) is autonomous. Many results for such models were obtained by

analyzing their characteristic equations (see [19], [21], the recent paper [12] and the

bibliography therein).

Proposition 2.5 ([15], Theorem 5.1.2). Consider the nonautonomous equation

(2.4) ẋ(t) + a(t)x(t− τ) + b(t)ẋ(t− σ) = 0,

where a and b are continuous functions.

Assume that lim inf
t→∞

a(t) > 0,

lim sup
t→∞

[
∫ t

t−τ

[a(s+ τ) + a(s+ 2τ)] ds+
|b(t)|
a(t+ τ)

+

∫ t

t−τ

|b(s+ τ)| ds+ 4|b(t+ σ + τ)|a(t + τ)

]

< 2,

lim sup
t→∞

[

4|b(t)b(t+ σ)|+
∫ t

t−τ

a(s+ τ) ds

]

< 1.

Then all solutions of (2.4) satisfy lim
t→∞

x(t) = 0.
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The following simple and nice test is a corollary of a stability result which was

obtained for systems of neutral equations.

Proposition 2.6 ([14]). Consider the equation

(2.5) ẋ(t) = −a(t)x(t) + b(t)x(t− τ) + c(t)ẋ(t− σ),

where a, b are continuous functions, c is continuously differentiable. If a(t) > a0 > 0,

|c(t)| 6 c0 < 1 and |b(t)| < a0, then equation (2.5) is asymptotically stable.

We suggest that Proposition 2.6 remains true if τ and σ are variable delays such

that lim
t→∞

(t − τ(t)) = ∞, lim
t→∞

(t − σ(t)) = ∞ but this conjecture is still an open

problem.

The fixed point method was introduced to investigate stability by Burton and his

collaborators (see [11]) and then applied to many functional differential equations,

including neutral equations. The following proposition is a typical result obtained

by this method.

Proposition 2.7 ([23]). Consider the equation

(2.6) x′(t) = −a(t)x(t)− b(t)x(t − τ(t)) + c(t)x′(t− τ(t)),

where a, b are continuous functions, c is differentiable, τ is twice differentiable,

τ ′(t) 6= 1, and
∫∞

0
a(u) ds = ∞. If there exists α ∈ (0, 1) such that

∣

∣

∣

∣

c(t)

1− τ ′(t)

∣

∣

∣

∣

+

∫ t

0

e−
∫

t

s
a(u) du

∣

∣

∣

∣

b(s) +
[a(s)c(s) + c′(s)](1 − τ ′(s)) + c(s)τ ′′(s)

(1− τ ′(s))2

∣

∣

∣

∣

ds 6 α,

then every solution of equation (2.6) with a small continuous initial function tends

to zero as t→ ∞.

Some other stability results for neutral equations obtained by the fixed point

method can be found in [3], [18], [22], [30].

In the recent monograph [13] Gil’ proved the Bohl-Perron theorem for many classes

of linear functional differential equations and obtained stability results for linear and

nonlinear vector equations. The developed method is very original and applies some

operator and matrix inequalities. Here we cite a result for scalar neutral equations.

Proposition 2.8 ([13], Chapter 8). Consider the equation

(2.7) ẏ(t)− aẏ(t− σ) + by(t− τ) = [Fy](t),
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where a, b are positive, while σ > 0, τ > 0, F is a continuous causal mapping acting

from L2(t0,∞) into L2(t0,∞) such that ‖Fu‖L2(t0,∞) 6 q‖u‖L2(t0,∞) for some q > 0.

Let the equation λ = λeσλa + eτλb have a positive root and b > q. Then

equation (2.7) is L2-absolutely stable, i.e. any solution of this equation belongs

to L2(t0,∞).

Note that Proposition 2.8 is concerned with an asymptotic property of solutions

which is different from asymptotic stability.

The method based on the Bohl-Perron theorem was introduced in [5] and then ap-

plied to delay differential and impulsive equations (see, for example, [2], [4], [8], [16]).

The following stability tests for a neutral equation are cited from [4].

Consider the equation

(2.8) ẋ(t)−
n
∑

i=1

qi(t)ẋ(gi(t)) +

m
∑

k=1

pk(t)x(hk(t)) = 0,

where all the parameters of the equation are measurable functions, 0 6 t−hk(t) 6 τ ,

0 6 t− gi(t) 6 δ, 0 < p0 6
m
∑

k=1

pk(t).

Proposition 2.9 ([4], Test 2.6.2, page 78). If

m
∑

k=1

pk(t) 6
1

τe

and

0 6

n
∑

i=1

qi(t) 6

(

1 + sup
t>t0

∑m
k=1 |pk(t)|

∑m
k=1 pk(t)

)−1

,

then equation (2.8) is exponentially stable.

Denote

p(t) =

m
∑

k=1

pk(t), q(t) =

n
∑

i=1

qi(t), r(t) = p(t)(1 − q(t))−1, rj(t) = r(gj(t))/r(t),

τhk
(t) =

∫ t

hk(t)

r(s) ds, τgk(t) =

∫ t

gk(t)

r(s) ds, σ(ω) =

∫ ∞

0

xω(s) ds,

where xω , 0 6 ω < π/2 is the fundamental solution of the delay equation

ẋ(t) + x(t− ω) = 0.

It is known that σ(ω) = 1 if 0 6 ω 6 1/e, and lim
ω→π/2−

σ(ω) = ∞.
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Proposition 2.10 ([4], Test 2.6.3, page 81). Assume that q(t) 6= 1 almost every-

where, lim inf
t→∞

p(t)/(1− q(t)) > 0,
n
∑

j=1

‖qjrj‖ < 1 and there exists ω ∈ [0, π/2) such

that

m
∑

k=1

‖pk‖
(

1−
n
∑

j=1

‖qjrj‖
)−1

∥

∥

∥

1

r

∥

∥

∥

(

∥

∥

∥

1

r

∥

∥

∥

m
∑

k=1

‖pk(τhk
− ω)‖+

n
∑

j=1

‖qjτgj‖

+

n
∑

j=1

‖qj(1− rj)‖
)

< (σ(ω))−1

(

1−
n
∑

j=1

‖qjrj‖
)

.

Then equation (2.8) is exponentially stable.

Here ‖·‖ is the usual essential supremum norm in the space L∞[t0,∞).

Corollary 2.11 ([4], Corollary 2.6.2, page 85). Consider the autonomous equation

(2.9) ẋ(t)− qẋ(t− δ) + px(t− τ) = 0,

where |q| < 1, p > 0. Assume that there exists ω ∈ [0, π/2) such that

(2.10) (1− q)|pτ + qω − ω|+ p|q|δ + |q|(1− |q|) < (1− |q|)2
σ(ω)

.

Then equation (2.9) is exponentially stable.

In particular, assuming ω = 1/e in (2.10), we obtain the exponential stability

condition

(2.11)
1− q

1− |q|
∣

∣

∣
pτ − (1− q)

1

e

∣

∣

∣
< 1− 2|q| − p|q|δ

1− |q| .

Every method used to investigate stability has its advantages and limitations.

Some results were obtained by deep analysis of concrete equations, like Proposi-

tions 2.2 and 2.3. Such results usually have conditions close to the best possible

ones, however this method can be applied only to a restricted class of equations.

The method of Lyapunov functions and functionals can be applied to all known

classes of functional differential equations including systems and nonlinear equations.

However, it is usually difficult to apply this method to equations with time-dependent

delays.

The fixed point method is also quite universal, but stability conditions obtained

by this method are sometimes rather restrictive (delay functions should be twice

differentiable) and far from the best known tests for partial classes of equations.
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The method proposed by Gil’ for vector delay differential equations gives new re-

sults even for ordinary differential equations by application of some matrix functions

like the logarithmic matrix norm (µ-norm).

The method based on the Bohl-Perron theorem leads to new stability tests for all

classes of linear functional differential equations. The advantage of this method is

that the stability problem is reduced to estimation of the norm or of the spectral

radius for some linear operators in functional spaces on the half-line. However, this

method is not applicable to nonlinear differential equations. New results in the

present paper are obtained using the Bohl-Perron theorem.

3. Preliminaries

We consider scalar delay differential equation (1.2) under the following conditions:

(a1) a, b, g, h are Lebesgue measurable essentially bounded functions on [0,∞);

(a2) ess sup
t>t0

|a(t)| 6 a0 < 1 for some t0 > 0, b(t) > 0;

(a3) g(t) 6 t, lim
t→∞

g(t) = ∞, mesE = 0 ⇒ mes g−1(E) = 0, where mesE is the

Lebesgue measure of the set E;

(a4) h(t) 6 t, lim
t→∞

h(t) = ∞.

Together with (1.2) we consider for each t0 > 0 an initial value problem

ẋ(t)− a(t)ẋ(g(t)) + b(t)x(h(t)) = f(t), t > t0,(3.1)

x(t) = ϕ(t), t 6 t0, ẋ(t) = ψ(t), t < t0,(3.2)

where f , ϕ and ψ satisfy the assumption:

(a5) f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded function,

ϕ, ψ : (−∞, t0) → R are Borel measurable bounded functions.

In the main part of the paper we also assume that the delays are bounded:

(a6) t− g(t) 6 δ, t− h(t) 6 τ for t > t0 and some δ > 0, τ > 0 and t0 > 0.

Definition 3.1. A function x : R → R is called a solution of problem (3.1), (3.2)

if it is absolutely continuous on each interval [t0, c], satisfies equation (3.1) for almost

all t ∈ [t0,∞) and equalities (3.2) for t 6 t0.

There exists one and only one solution of problem (3.1), (3.2), see [4].

Consider the initial value problem

(3.3) ẋ(t) + b(t)x(h(t)) = f(t), x(t) = 0, t 6 t0,

where b(t), f(t) and h(t) 6 t are Lebesgue measurable locally bounded functions.
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Definition 3.2. For each s > t0 the solution X(t, s) of the problem

(3.4) ẋ(t) + b(t)x(h(t)) = 0, x(t) = 0, ẋ(t) = 0, t < s, x(s) = 1

is called a fundamental function of equation (3.3).

We assume X(t, s) = 0 for 0 6 t < s.

The same definition will be used for other classes of linear functional differential

equations, including neutral equations.

Lemma 3.3 ([4]). The solution of problem (3.3) can be presented in the form

(3.5) x(t) =

∫ t

t0

X(t, s)f(s) ds.

Definition 3.4. We will say that equation (1.2) is (uniformly) exponentially

stable if there exist positive numbers M and γ such that the solution of prob-

lem (3.1), (3.2) has the estimate

(3.6) |x(t)| 6Me−γ(t−t0) sup
t∈(−∞,t0]

(|ϕ(t)| + |ψ(t)|), t > t0,

whereM and γ do not depend on t0 > 0, ϕ and ψ. The fundamental function X(t, s)

of equation (1.2) has an exponential estimate if it satisfies

|X(t, s)| 6M0e
−γ0(t−s), t > s > t0

for some positive numbers M0 > 0 and γ0 > 0.

The existence of an exponential estimate for the fundamental function is equiva-

lent [4] to the exponential stability for equations with bounded delays. The following

result is usually referred to as the Bohl-Perron principle.

Lemma 3.5 ([4], Theorem 4.7.1). Assume that (a1)–(a4), (a6) hold and the so-

lution of the problem

(3.7) ẋ(t)− a(t)ẋ(g(t)) + b(t)x(h(t)) = f(t), x(t) = 0, t 6 t0, ẋ(t) = 0, t < t0

is bounded on [t0,∞) for any essentially bounded function f on [t0,∞). Then equa-

tion (1.2) is exponentially stable.
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Remark 3.6. The Bohl-Perron principle is stated above for equation (1.2) with

two delays, but it is valid for linear equations with an arbitrary number of delays,

for integro-differential equations, and for equations with a distributed delay.

Remark 3.7. In Lemma 3.5 we can consider boundedness of solutions not for

all essentially bounded functions f on [t0,∞) but only for essentially bounded func-

tions f on [t1,∞) that vanish on [t0, t1) for any fixed t1 > t0, see [8]. We further use

this fact in the paper without an additional reference.

Consider now a linear equation with a single delay and a nonnegative coefficient

(3.8) ẋ(t) + a(t)x(h0(t)) = 0, a(t) > 0, 0 6 t− h0(t) 6 τ0

and denote by X0(t, s) its fundamental function.

Lemma 3.8 ([8]). Assume that X0(t, s) > 0, t > s > t0. Then

∫ t

t0+τ0

X0(t, s)a(s) ds 6 1.

Lemma 3.9 ([8], [17]). If for some t0 > 0

∫ t

h0(t)

a(s) ds 6
1

e
, t > t0,

then X0(t, s) > 0 for t > s > t0.

If in addition a(t) > a0 > 0, then equation (3.8) is exponentially stable.

To extend stability results obtained for equation (1.2) to other classes of equations,

we will need the following three “transformation” results reducing different classes

of delay equations to an equation with a single delay.

Lemma 3.10 ([7], Lemma 5). Assume that ak(t) > 0, hk(t) 6 t, k = 1, . . . ,m

are measurable, and y is continuous on [t0,∞). Then there exists a measurable

function h0 satisfying

h0(t) 6 t, min
k
hk(t) 6 h0(t) 6 max

k
hk(t)

such that
m
∑

k=1

ak(t)y(hk(t)) =

( m
∑

k=1

ak(t)

)

y(h0(t)).
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Lemma 3.11 ([9], Corollary 9). Assume that B(t, s) is a measurable function

nondecreasing in s, h(t) 6 t is measurable, and y is continuous on [t0,∞). Then

there exists a measurable function h0, h(t) 6 h0(t) 6 t such that

∫ t

h(t)

y(s) dsB(t, s) =

(
∫ t

h(t)

dsB(t, s)

)

y(h0(t)).

As a particular case of Lemma 3.11, we obtain the following result.

Lemma 3.12. Assume that A(t, s) > 0 is locally integrable, h(t) 6 t is measur-

able, and y is continuous on [t0,∞). Then there exists a measurable function h0,

h(t) 6 h0(t) 6 t such that

∫ t

h(t)

A(t, s)y(s) ds =

(
∫ t

h(t)

A(t, s) ds

)

y(h0(t)).

4. Main results

Let us fix a bounded interval I = [t0, t1], t1 > t0 > 0, and for any essen-

tially bounded function on [t0,∞) denote |f |I = ess sup
t∈I

|f(t)| for I bounded and
‖f‖[t0,∞) = ess sup

t>t0

|f(t)| for an unbounded interval.

Consider now initial value problem (3.7) with ‖f‖[t0,∞) <∞. We have the follow-
ing a priori estimation.

Lemma 4.1. Suppose (a1)–(a4) hold. The solution of (3.7) satisfies

|ẋ|I 6
‖b‖[t0,∞)

1− ‖a‖[t0,∞)
|x|I +M1, where I = [t0, t1], t1 > t0 > 0, M1 =

‖f‖[t0,∞)

1− ‖a‖[t0,∞)
.

P r o o f. We have for t ∈ I

|ẋ(t)| 6 |a(t)||ẋ(g(t))| + |b(t)||x(h(t))| + ‖f‖[t0,∞)

6 ‖a‖[t0,∞)|ẋ|I + ‖b‖[t0,∞)|x|I + ‖f‖[t0,∞).

Hence |ẋ|I 6 ‖a‖[t0,∞)|ẋ|I + ‖b‖[t0,∞)|x|I + ‖f‖[t0,∞). By (a2), ‖a‖[t0,∞) < 1, thus

the above inequality implies the estimate in the statement of the lemma. �
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Theorem 4.2. Assume that (a1)–(a4), (a6) hold and there exists t0 > 0 such

that for t > t0,

0 < b0 6 b(t),

∫ t

h(t)

b(s) ds 6
1

e

and

(4.1) ‖a‖[t0,∞) + ‖b‖[t0,∞)

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
< 1.

Then equation (1.2) is exponentially stable.

P r o o f. We will prove that the solution of (3.7) for any ‖f‖[t0,∞) <∞ is bounded
on [t0,∞). Denote by X1(t, s) the fundamental function of the delay differential

equation

(4.2) ẋ(t) + b(t)x(h(t)) = 0.

Since
∫ t

h(t) b(s) ds 6 1/e, by Lemma 3.9, X1(t, s) > 0 for any t > s > t0. The

condition b(t) > b0 > 0 and Lemma 3.9 imply that equation (4.2) is exponentially

stable and X1(t, s) has an exponential estimate.

For a solution of (3.7) written in the form

ẋ(t) + b(t)x(h(t)) = a(t)ẋ(g(t)) + f(t), x(t) = 0, t 6 t0, ẋ(t) = 0, t < t0,

we have by Lemma 3.3 the representation

x(t) =

∫ t

t0

X1(t, s)a(s)ẋ(g(s)) ds+ f1(t),

where f1(t) =
∫ t

t0
X1(t, s)f(s) ds. Since X1(t, s) has an exponential estimate and f is

bounded on [t0,∞), ‖f1‖[t0,∞) <∞.
Denote I = [t0, t1]. By Lemma 3.8,

|x(t)| 6
∫ t

t0

X1(t, s)b(s)
∣

∣

∣

a(s)

b(s)

∣

∣

∣
|ẋ(g(s))| ds+ |f1(t)| 6

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
|ẋ|I + ‖f1‖[t0,∞).

Hence

|x|I 6

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
|ẋ|I + ‖f1‖[t0,∞).

Lemma 4.1 implies

|x|I 6

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)

( ‖b‖[t0,∞)

1− ‖a‖[t0,∞)
|x|I +M1

)

+ ‖f1‖[t0,∞)

=
∥

∥

∥

a

b

∥

∥

∥

[t0,∞)

‖b‖[t0,∞)

1− ‖a‖[t0,∞)
|x|I +M2, M2 :=

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
M1 + ‖f1‖[t0,∞).

By (4.1) we have |x|I 6 M , where M does not depend on the interval I. Hence

|x(t)| 6M for t > t0. By Lemma 3.5, equation (1.2) is exponentially stable. �
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Corollary 4.3. Assume that (a1)–(a4), (a6) hold and

b(t) ≡ b > 0, bτ 6
1

e
, ‖a‖[t0,∞) <

1

2
.

Then equation (1.2) is exponentially stable.

Further, we denote u+ = max{u, 0}.

Theorem 4.4. Assume that (a1)–(a4), (a6) are satisfied, b(t) > β > 0 and at

least one of the following conditions holds

(a)

(4.3)
∥

∥

∥

a

b0

∥

∥

∥

[t0,∞)

‖b‖[t0,∞)

1− ‖a‖[t0,∞)
+
∥

∥

∥

b− b0
b0

∥

∥

∥

[t0,∞)
< 1,

where b0(t) = min{b(t), 1/(τe)};
(b)

(4.4) ‖b‖[t0,∞)

(∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
+
∥

∥

∥

(

t− h(t)− 1

‖b‖[t0,∞)e

)+∥
∥

∥

[t0,∞)

)

< 1− ‖a‖[t0,∞).

Then equation (1.2) is exponentially stable.

P r o o f. Assume that the condition in (a) holds and consider problem (3.7) with

‖f‖[t0,∞) <∞. We have

b0(t) = min
{

b(t),
1

τe

}

> β1 := min
{

β,
1

τe

}

> 0.

Then
∫ t

h(t)
b0(s) ds 6 1/e and 0 < β1 6 b0(t) 6 b(t). Problem (3.7) can be rewrit-

ten as

ẋ(t) + b0(t)x(h(t)) = a(t)ẋ(g(t))− (b(t)− b0(t))x(h(t)) + f(t),

x(t) = 0, t 6 t0, ẋ(t) = 0, t < t0.

Denote by X2(t, s) the fundamental function of the equation

(4.5) ẋ(t) + b0(t)x(h(t)) = 0.

By Lemma 3.9, X2(t, s) > 0 and equation (4.5) is exponentially stable.

Let I = [t0, t1]. For the solution of (3.7) we have

x(t) =

∫ t

t0

X2(t, s)[a(s)ẋ(g(s))− (b(s)− b0(s))x(h(s))] ds+ f1(t),
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where f1(t) =
∫ t

t0
X2(t, s)f(s) ds and ‖f1‖[t0,∞) <∞. Then

|x(t)| 6
∫ t

t0

X2(t, s)b0(s)
[ 1

b0(s)
(|a(s)||ẋ(g(s))| + (b(s)− b0(s))|x(h(s))|)

]

ds

+ ‖f1‖[t0,∞).

Hence, first by Lemma 3.8 and then by Lemma 4.1,

|x|I 6

∥

∥

∥

a

b0

∥

∥

∥

[t0,∞)
|ẋ|I +

∥

∥

∥

b− b0
b0

∥

∥

∥

[t0,∞)
|x|I + ‖f1‖[t0,∞)

6

(∥

∥

∥

a

b0

∥

∥

∥

[t0,∞)

‖b‖[t0,∞)

1− ‖a‖[t0,∞)
+
∥

∥

∥

b− b0
b0

∥

∥

∥

[t0,∞)

)

|x|I +M1.

Condition (4.3) implies |x|I < M , whereM does not depend on the interval I. Hence

‖x‖[t0,∞) <∞, and therefore by Lemma 3.5 equation (1.2) is exponentially stable.
(b) Denote

h0(t) = max
{

h(t), t− 1

‖b‖[t0,∞)e

}

.

Then
∫ t

h0(t)

b(s) ds 6
1

e
, h0(t) > h(t) and |h(t)− h0(t)| =

(

t− h(t)− 1

‖b‖[t0,∞)e

)+

.

Problem (3.7) can be rewritten as

ẋ(t)+b(t)x(h0(t)) = a(t)ẋ(g(t))+b(t)

∫ h0(t)

h(t)

ẋ(s) ds+f(t), x(t) = ẋ(t) = 0, t 6 t0.

Denote by X3(t, s) the fundamental function of the equation

(4.6) ẋ(t) + b(t)x(h0(t)) = 0.

By Lemma 3.9, X3(t, s) > 0 and equation (4.6) is exponentially stable.

Denote I = [t0, t1]. We have

x(t) =

∫ t

t0

X3(t, s)b(s)

[

1

b(s)

(

a(s)ẋ(g(s)) + b(s)

∫ h0(s)

h(s)

ẋ(ξ) dξ

)]

ds+ f3(s),

where f3(t) =
∫ t

t0
X3(t, s)f(s) ds and ‖f3‖[t0,∞) < ∞. Therefore Lemma 4.1 yields

that

|x|I 6

∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
|ẋ|I + ‖h0 − h‖[t0,∞)|ẋ|I + ‖f3‖[t0,∞)

6

(∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
+
∥

∥

∥

(

t− h(t)− 1

‖b‖[t0,∞)e

)+∥
∥

∥

[t0,∞)

) ‖b‖[t0,∞)

1− ‖a‖[t0,∞)
|x|I +M2.

Inequality (4.4) implies ‖x‖[t0,∞) 6M , whereM does not depend on the interval I,

thus ‖x‖[t0,∞) <∞, and therefore equation (1.2) is exponentially stable. �
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Corollary 4.5. Assume that (a1)–(a4), (a6) are satisfied and at least one of the

following conditions holds for t > t0:

(a) b(t) > 1/(τe) and τ‖b‖[t0,∞) < 2/e(1− ‖a‖[t0,∞));

(b) b(t) > β > 0, t − h(t) > 1/(‖b‖[t0,∞)e), ‖a/b‖[t0,∞)‖b‖[t0,∞) + τ‖b‖[t0,∞) <

1 + 1/e− ‖a‖[t0,∞).

Then equation (1.2) is exponentially stable.

P r o o f. Conditions in (a) of the corollary yield that b0(t) = 1/τe and

‖b − b0‖[t0,∞) = ‖b‖[t0,∞) − 1/(τe). Hence, after some simple calculations, con-

dition (a) of the corollary implies (4.3) of Theorem 4.4.

Assume that

t− h(t) >
1

‖b‖[t0,∞)e
.

Then

∥

∥

∥

(

t− h(t)− 1

‖b‖[t0,∞)e

)+∥
∥

∥

[t0,∞)
=

∥

∥

∥
t− h(t)− 1

‖b‖[t0,∞)e

∥

∥

∥

[t0,∞)

= ‖t− h(t)‖[t0,∞) −
1

‖b‖[t0,∞)e
6 τ − 1

‖b‖[t0,∞)e
.

The inequality

(∥

∥

∥

a

b

∥

∥

∥

[t0,∞)
+ τ − 1

‖b‖[t0,∞)e

) ‖b‖[t0,∞)

1− ‖a‖[t0,∞)
< 1

is equivalent to the last inequality in (b). �

Considering b(t) ≡ b with the cases t− h(t) > 1/(eb) and b > 1/(τe) only, we get

the following result.

Corollary 4.6. Assume that (a1)–(a4), (a6) are satisfied, b(t) ≡ b > 0, and at

least one of the following conditions holds for t > t0:

1

e
6 bτ <

2

e
(1− ‖a‖[t0,∞));(4.7)

1

e
6 b(t− h(t)) 6 bτ < 1 +

1

e
− 2‖a‖[t0,∞).(4.8)

Then equation (1.2) is exponentially stable.

In the following theorem, for equation (1.2) we obtain integral stability conditions

which do not assume boundedness of delays. Denote for b(t) 6= 0 almost everywhere

(4.9) A(t) :=
a(t)b(g(t))

b(t)
.
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Theorem 4.7. Assume that (a1)–(a4) hold, b(t) > 0,
∫∞

0
b(s) ds = ∞, b(t) 6= 0

almost everywhere,

(4.10) lim sup
t→∞

∫ t

g(t)

b(ξ) dξ <∞

and at least one of the following conditions holds for t > t0:

(a)
∫ t

h(t)
b(ξ) dξ 6 1/e, ‖A‖[t0,∞) <

1
2 ;

(b) 1/e <
∫ t

h(t)
b(ξ) dξ < 1 + 1/e− 2‖A‖[t0,∞).

Then equation (1.2) is asymptotically stable.

P r o o f. Let s = p(t) :=
∫ t

t0
b(τ) dτ, y(s) = x(t), where p(t) is a strictly increas-

ing function. Then we introduce h̃(s) and g̃(s) as

x(h(t)) = y(h̃(s)), h̃(s) 6 s, h̃(s) =

∫ h(t)

t0

b(τ) dτ, s− h̃(s) =

∫ t

h(t)

b(τ) dτ,

g̃(s) =

∫ g(t)

t0

b(τ) dτ, s− g̃(s) =

∫ t

g(t)

b(τ) dτ, g̃(s) 6 s,

ẋ(t) = b(t)ẏ(s), ẋ(g(t)) = b(g(t))ẏ(g̃(s)).

Equation (1.2) can be rewritten in the form

(4.11) ẏ(s)− ã(s)ẏ(g̃(s)) = −y(h̃(s)),

where ã(s) = A(t), and A is defined in (4.9). By inequalities (4.10), equation (4.11)

involves bounded delays. If x(t) is a solution of (1.2), then y(s) = x(t) is a solution

of (4.9).

Corollary 4.3 and condition (a) of the theorem, Corollary 4.6 and condition (b) of

the theorem imply that equation (4.11) is exponentially stable. Hence, (1.2) is stable

and lim
s→∞

y(s) = lim
t→∞

x(t) = 0, i.e., (1.2) is asymptotically stable. �

Theorem 4.7 can be applied to derive stability conditions for pantograph-type

neutral equations with unbounded delays.

Consider the equation

(4.12) ẋ(t)− aẋ(µt) = −b
t
x(λt), t > 1, |a| < 1, b > 0, µ ∈ (0, 1), λ ∈ (0, 1).

Here
∫ t

λt

b

s
ds = b ln

1

λ
<∞,

∫ t

µt

b

s
ds = b ln

1

µ
<∞.
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Corollary 4.8. Suppose that at least one of the following conditions holds:

(a) b ln(1/λ) 6 1/e, |a| < 1
2 ;

(b) 1/e < b ln(1/λ) < 1 + 1/e− 2|a|.
Then equation (4.12) is asymptotically stable.

5. Generalizations of main results

5.1. Equations with several delays. We consider here an equation with several

neutral terms

(5.1) ẋ(t)−
l

∑

k=1

ak(t)ẋ(gk(t)) = −b(t)x(h(t)),

as well as an equation with several delayed terms (not including the derivative)

(5.2) ẋ(t)− a(t)ẋ(g(t)) = −
m
∑

k=1

bk(t)x(hk(t))

under the following conditions:

(b1) a, b, ak, bk, g, h, gk, hk are Lebesgue measurable essentially bounded functions

on [0,∞);

(b2) ess sup
t>t0

|a(t)| 6 a0 < 1,
l
∑

k=1

ess sup
t>t0

|ak(t)| 6 A0 < 1, b(t) > 0, bk(t) > 0, t > t0

for some t0 > 0;

(b3) 0 6 t − g(t) 6 δ, 0 6 t − gk(t) 6 δk, mesE = 0 ⇒ mes g−1(E) = 0,

mes g−1
k (E) = 0;

(b4) 0 6 t− h(t) 6 τ , 0 6 t− hk(t) 6 τk.

Theorem 5.1. Suppose the conditions of Theorem 4.2 or at least one of the

conditions (a) or (b) of Theorem 4.4 hold, where the number ‖a‖[t0,∞) is replaced

by
l
∑

k=1

‖ak‖[t0,∞). Then equation (5.1) is exponentially stable.

The proof follows the scheme of the proofs of Theorems 4.2 and 4.4.

Theorem 5.2. Suppose bk(t) > 0, t > t0 > 0, conditions of Theorem 4.2 or at

least one of the conditions (a) or (b) of Theorem 4.4 hold, where b, h, τ are replaced

by b̄, h̄, τ , b̄(t) :=
m
∑

k=1

bk(t), h̄(t) := min
k
hk(t), τ := max

k
τk. Then equation (5.2) is

exponentially stable.
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P r o o f. Assume that the conditions of Theorem 4.2 hold, where b, h, τ are

replaced by b̄, h̄, τ . Consider the initial value problem

(5.3) ẋ(t)− a(t)ẋ(g(t)) = −
m
∑

k=1

bk(t)x(hk(t)) + f(t), x(t) = ẋ(t) = 0, t > t0

with ‖f‖[t0,∞) <∞, where x is a solution of (5.3). By Lemma 3.10, there exists h0(t),
h̄(t) 6 h0(t) 6 t such that

m
∑

k=1

bk(t)x(hk(t)) = b̄(t)x(h0(t)). Hence, x is a solution of

the initial value problem

(5.4) ẋ(t)− a(t)ẋ(g(t)) = −b̄(t)x(h0(t)) + f(t), x(t) = ẋ(t) = 0, t 6 t0.

Since h̄(t) 6 h0(t) and t−h0(t) 6 τ , all conditions of Theorem 4.2 hold, where b, h, τ

are replaced by b̄, h0, τ . By Theorem 4.2, the equation

ẏ(t)− a(t)ẏ(g(t)) = −b̄(t)y(h0(t))

is exponentially stable. Therefore the solution x of (5.4) is a bounded function. By

Lemma 3.5, equation (5.2) is exponentially stable.

The proof of the second part is similar. �

Theorem 5.2 uses the worst delay function h̄(t) 6 hk(t), k = 1, . . . ,m. In the next

theorem, we obtain sharper results by using all the delays. Further, to simplify the

notation, we will write ‖·‖ instead of ‖·‖[t0,∞).

Theorem 5.3. Suppose there exist t0 > 0, β > 0, and a set of indexes J ⊆
{1, . . . ,m} such that b(t) := ∑

k∈J

bk(t) > β for t > t0 and

(5.5)

(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

τk

∥

∥

∥

bk
b

∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥
< 1.

Then equation (5.2) is exponentially stable.

P r o o f. Consider initial value problem (5.3) with ‖f‖ <∞. Equation (5.3) can
be rewritten in the form

ẋ(t) + b(t)x(t) = a(t)ẋ(g(t)) +
∑

k∈J

bk(t)

∫ t

hk(t)

ẋ(s) ds+
∑

k/∈J

bk(t)x(hk(t)) + f(t).
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Hence,

x(t) =

∫ t

t0

e−
∫

t

s
b(ξ) dξb(s)

[

1

b(s)

(

a(s)ẋ(g(s)) +
∑

k∈J

bk(s)

∫ s

hk(s)

ẋ(ξ) dξ

+
∑

k/∈J

bk(s)x(hk(s))

)]

ds+ f1(t),

where f1(t) =
∫ t

t0
e−

∫
t

s
b(ξ) dξf(s) ds, and ‖f1‖ <∞.

Denote I = [t0, t1]. Then

|x|I 6

(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

τk

∥

∥

∥

bk
b

∥

∥

∥

)

|ẋ|I +
∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥
|x|I +M1.

From (5.3), similarly to the proof of Lemma 4.1, we obtain an a priori estimate

(5.6) |ẋ|I 6

∑m
k=1 ‖bk‖
1− ‖a‖ |x|I +M2.

Therefore

|x|I 6

[(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

τk

∥

∥

∥

bk
b

∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥

]

|x|I +M,

where M does not depend on the interval I. Inequality (5.5) implies ‖x‖ <∞, thus
by Lemma 3.5, equation (5.2) is exponentially stable. �

Corollary 5.4. Suppose for t0 > 0, b(t) :=
m
∑

k=1

bk(t) > b0 > 0 and

(5.7)

(

∥

∥

∥

a

b

∥

∥

∥
+

m
∑

k=1

τk

∥

∥

∥

bk
b

∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ < 1.

Then equation (5.2) is exponentially stable.

P r o o f. The statement of the corollary follows from Theorem 5.3 if we take

J = {1, 2, . . . ,m}. �

Corollary 5.5. Suppose there exists t0 > 0 and index i, 1 6 i 6 m such that for

t > t0, bi(t) > β > 0 and

(5.8)
(∥

∥

∥

a

bi

∥

∥

∥
+ τi

)

∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k 6=i

∥

∥

∥

bk
bi

∥

∥

∥
< 1.

Then equation (5.2) is exponentially stable.
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P r o o f. We take J = {i} ⊆ {1, 2, . . . ,m} and apply Theorem 5.3. �

In the next theorem we partially improve the results of the previous theorem.

Theorem 5.6. Suppose there exist t0 > 0, b0 > 0 and a set of indexes

J ⊆ {1, . . . ,m} such that b(t) :=
∑

k∈J

bk(t) > b0 for t > t0 and also

(5.9)

(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

∥

∥

∥

bk
b

∥

∥

∥

∥

∥

∥
t− hk(t)−

1

Be

∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥
< 1,

where B =
∑

k∈J

‖bk‖. Then equation (5.2) is exponentially stable.

P r o o f. Consider initial value problem (5.3) with ‖f‖ <∞. Equation (5.3) can
be rewritten in the form

ẋ(t) + b(t)x
(

t− 1

Be

)

= a(t)ẋ(g(t)) +
∑

k∈J

bk(t)

∫ t−1/Be

hk(t)

ẋ(s) ds

+
m
∑

k/∈J

bk(t)x(hk(t)) + f(t).

Denote by X1(t, s) the fundamental function of the equation

(5.10) ẋ(t) + b(t)x
(

t− 1

Be

)

= 0.

By Lemma 3.9, X1(t, s) > 0 and equation (5.10) is exponentially stable.

Hence, from (3.7)

x(t) =

∫ t

t0

X1(t, s)b(s)

(

1

b(s)

[

a(s)ẋ(g(s)) +
∑

k∈J

bk(s)

∫ s−1/(Be)

hk(s)

ẋ(ξ) dξ

+

m
∑

k/∈J

bk(s)x(hk(s))

])

ds+ f1(t),

where f1(t) =
∫ t

t0
X1(t, s)f(s) ds, and ‖f1‖ <∞. Denote I = [t0, t1]. Then

|x|I 6

(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

∥

∥

∥

bk
b

∥

∥

∥

∥

∥

∥
t− hk(t)−

1

Be

∥

∥

∥

)

|ẋ|I +
∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥
|x|I +M1.

From (5.3), using a priori estimate (5.6), we obtain

|x|I 6

[(

∥

∥

∥

a

b

∥

∥

∥
+

∑

k∈J

∥

∥

∥

bk
b

∥

∥

∥

∥

∥

∥
t− hk(t)−

1

Be

∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k/∈J

∥

∥

∥

bk
b

∥

∥

∥

]

|x|I +M,

where M does not depend on the interval I. Inequality (5.9) implies ‖x‖ <∞, thus

by Lemma 3.5, equation (5.2) is exponentially stable. �
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Corollary 5.7. Suppose there exists t0 > 0 such that b(t) :=

m
∑

k=1

bk(t) > b0 > 0,

|a(t)| 6 a0 < 1 for t > t0, and

(5.11)

(

∥

∥

∥

a

b

∥

∥

∥
+

m
∑

k=1

∥

∥

∥

bk
b

∥

∥

∥

∥

∥

∥
t− hk(t)−

1
∑m

k=1 ‖bk‖e
∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ < 1.

Then equation (5.2) is exponentially stable.

Corollary 5.8. Suppose there exists t0 > 0 and index i, 1 6 i 6 m such that

bi(t) > b0 > 0 for t > t0, and the following condition holds:

(5.12)

(

∥

∥

∥

a

bi

∥

∥

∥
+
∥

∥

∥
t− hi(t)−

1

‖bi‖e
∥

∥

∥

)∑m
k=1 ‖bk‖
1− ‖a‖ +

∑

k 6=i

∥

∥

∥

bk
bi

∥

∥

∥
< 1.

Then equation (5.2) is exponentially stable.

Corollary 5.9. Suppose there exists t0 > 0 such that

b(t) :=

m
∑

k=1

bk(t) > b0 > 0, t− hk(t) >
1

∑m
k=1 ‖bk‖e

for t > t0, k = 1, . . . ,m, and

(5.13)

(

∥

∥

∥

a

b

∥

∥

∥
+

m
∑

k=1

τk

∥

∥

∥

bk
b

∥

∥

∥

) m
∑

j=1

‖bj‖ < 1 +
1

e

m
∑

k=1

∥

∥

∥

bk
b

∥

∥

∥
− ‖a‖.

Then equation (5.2) is exponentially stable.

P r o o f. We have for t > t0,

∣

∣

∣

∣

t− hk(t)−
1

∑m
j=1 ‖bj‖e

∣

∣

∣

∣

= t− hk(t)−
1

∑m
j=1 ‖bj‖e

6 τk − 1
∑m

j=1 ‖bj‖e
.

Hence, (5.11) holds if

(5.14)

[

∥

∥

∥

a

b

∥

∥

∥
+

m
∑

k=1

∥

∥

∥

bk
b

∥

∥

∥

(

τk − 1
∑m

j=1 ‖bj‖e
)

] m
∑

j=1

‖bj‖ < 1− ‖a‖.

Inequality (5.14) is equivalent to (5.13). �

883



5.2. Equations with distributed delays and integro-differential equa-

tions. Consider a neutral equation with distributed delays

(5.15) ẋ(t)− a(t)ẋ(g(t)) + b(t)

∫ t

h(t)

x(s) dsB(t, s) = 0,

where a, b, g, h satisfy (a1)–(a4), B(t, s) is measurable on [0,∞)× [0,∞), B(t, ·) is
a left continuous nondecreasing function for almost all t, B(·, s) is locally integrable
for any s, B(t, h(t)) = 0, and B(t, t+) = 1. Then

∫ t

h(t)
dsB(t, s) = 1.

Theorem 5.10. Suppose there exists t0 > 0 such that a(t) 6 a0 < 1, b(t) >

b0 > 0, t − g(t) 6 δ, t − h(t) 6 τ for t > t0 and at least one of the conditions of

Theorems 4.2 or 4.4 hold. Then equation (5.15) is exponentially stable.

P r o o f. Suppose that for t > t0, x is a solution of the initial value problem

(5.16) ẋ(t)− a(t)ẋ(g(t)) + b(t)

∫ t

h(t)

x(s) dsB(t, s) = f(t), x(t) = ẋ(t) = 0, t 6 t0,

where f is an essentially bounded function on [t0,∞). By Lemma 3.11 there exists

a function h0(t), h(t) 6 h0(t) 6 t such that

∫ t

h(t)

x(s) dsB(t, s) = x(h0(t)),

hence, x satisfies the equation

(5.17) ẋ(t)− a(t)x(g(t)) + b(t)x(h0(t)) = f(t).

By either Theorem 4.2 or 4.4, equation (5.17) is exponentially stable. Hence, x is

a function bounded on [t0,∞), therefore by Lemma 3.5, equation (5.15) is also ex-

ponentially stable. �

The integro-differential equation

(5.18) ẋ(t)− a(t)ẋ(g(t)) +

∫ t

h(t)

K(t, s)x(s) ds = 0,

where K(t, s) is a Lebesgue measurable locally integrable function on [0,∞)× [0,∞),

K(t, s) > 0, is a particular case of (5.15). After denoting

b(t) =

∫ t

h(t)

K(t, s) ds,

B(t, s) =







1

b(t)

∫ s

h(t)

K(t, ζ) dζ, b(t) > 0,

0, b(t) = 0,

equation (5.18) has the form of (5.15). We assume that a, b, g, h satisfy (a1)–(a4).
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As a direct corollary of Theorem 5.10 we obtain the following result:

Theorem 5.11. Suppose there exists t0 > 0 such that a(t) > a0 > 0, b(t) :=
∫ t

h(t)K(t, s) ds > b0 > 0, t− g(t) 6 δ, t− h(t) 6 τ for t > t0 and at least one of the

conditions of Theorems 4.2 or 4.4 hold. Then equation (5.18) is exponentially stable.

6. Discussion and open problems

In the present paper, we have not considered mixed neutral differential equa-

tions which include delay terms together with integro-differential or distributed delay

terms, for example, the equation

(6.1) ẋ(t)− a(t)ẋ(g(t)) + p(t)x(r(t)) +

∫ t

h(t)

K(t, s)x(s) ds = 0.

However, if x is a solution of (6.1) and K(t, s) > 0, then by Lemma 3.12 there exists

a function h0(t), h(t) 6 h0(t) 6 t such that x is also a solution of the equation

(6.2) ẋ(t)− a(t)ẋ(g(t)) + p(t)x(r(t)) + b(t)x(h0(t)) = 0,

where b(t) =
∫ t

h(t)
K(t, s) ds. Hence, any stability test for equation (6.2) with three

delays implies stability conditions for mixed neutral differential equation (6.1).

Another possible extension includes a distributed delay in the derivative part,

such as

ẋ(t)−
∫ t

g(t)

ẋ(s) dsA(t, s) or ẋ(t)−
∫ t

g(t)

A(t, s)ẋ(s) ds.

To obtain exponential stability conditions for these equations, we can apply the

schemes of Theorems 4.2 or 4.4.

Theorem 4.7 allows us to obtain asymptotic stability conditions for equation (1.2)

with unbounded delays. The same approach can be applied to other neutral equations

considered in the paper.

Let us discuss now both known results and new stability tests presented in the

paper.

Proposition 2.1 has a simple form but involves several unnecessary restrictions,

such as c(t) > 0 and differentiability of c.

Propositions 2.2 and 2.3 in the nonneutral case p(t) ≡ 0 are reduced to the best

possible asymptotic stability condition

lim sup
t→∞

∫ t

t−σ

Q(s) ds <
3

2
.
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For equation (1.2) such results are unknown. We recall that these three propositions

can only be applied to equation (1.2) if a(t) ≡ a, g(t) = t− σ.

Proposition 2.4 gives explicit stability conditions for a general autonomous neu-

tral equation which coincide with known stability results for equations without the

neutral part.

Proposition 2.5 presents stability conditions in an integral form which is explicit

but a little bit artificial.

Proposition 2.6 is an extension of a well known stability result to neutral equations:

if the equation includes a nondelay term and this term dominates over the other

terms, this equation is asymptotically stable. In our opinion, Proposition 2.6 is

one of the best stability results for neutral equations. It is interesting whether the

statement remains true for equations with variable delays.

Most of previous results were obtained for equations with constant delays. The

fixed point method gives an opportunity to consider equations with variable delays.

One of such typical results is given in Proposition 2.7. However, this statement has

some unnecessary restrictions: the equation should include a nondelay term, the

delay function has to be twice differentiable, and the delays in the neutral and the

nonneutral parts coincide.

The result of Proposition 2.8, where the author studies an asymptotic property

different from the asymptotic stability, is interesting due to the method applied. In

particular, the author used estimates of the fundamental function for a nonoscillatory

equation.

In all stability results of Propositions 2.1–2.8, it was assumed that all parameters

of considered neutral equations are continuous functions, and the proofs were based

on this assumption. Hence, all the results are not available for equations with mea-

surable parameters. Equations with measurable parameters and with variable delays

were considered in Propositions 2.9–2.10. The method applied there was based on

the Bohl-Perron theorem. Proposition 2.9 has a simple form, but also includes some

restrictions on the coefficients that we omit in the results of the present paper. In par-

ticular, it is assumed that the sum of the coefficients of the neutral terms is nonnega-

tive. In Proposition 2.10, stability results depend on the delays in the neutral terms.

The stability tests obtained in the present paper are also based on the Bohl-Perron

theorem. However, we use a different approach applying a priori estimates of solu-

tions and integral inequalities for fundamental functions of nonoscillatory delay dif-

ferential equations. The results are also different from those in Propositions 2.9–2.10.

In particular, we do not assume that the sum of the coefficients of the neutral terms

is nonnegative as in Proposition 2.9. Our conditions do not depend on the delay

in the neutral terms as in Proposition 2.10. Thus, our conditions and conditions of

Propositions 2.9–2.10 are independent.
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Let us emphasize that Theorem 4.4 for the nonneutral case implies the best poss-

ible known stability condition τ‖b‖[t0,∞) < 1 + 1/e for delay differential equations

with one delay and measurable parameters. Theorems 5.3 and 5.6 for neutral equa-

tions with several delays give a set of 2m − 1 different stability conditions. Some of

these conditions are presented as corollaries to these theorems.

Example 6.1. Let us compare results considered in the paper, both previously

known and new. To this end consider the autonomous equation

(6.3) ẋ(t)− 1

3
ẋ(t− σ) +

1

3
x(t− τ) = 0

and the nonautonomous equation

(6.4) ẋ(t)− 1

3
ẋ(g(t)) +

1

3
x(t− τ) = 0, 0 6 t− g(t) 6 σ.

We will find conditions on τ > 0 such that for all σ > 0, equation (6.3) is exponen-

tially stable. Since the equation must be exponentially stable for σ = 0, we have the

necessary exponential stability condition τ 6 3π

2 .

Proposition 2.1 is not applicable, since the coefficient of the neutral term in (6.3)

is negative.

By Proposition 2.2, the inequality τ < 7
6 implies exponential stability.

By Proposition 2.3, any τ <
√
6 ≈ 2.45 is appropriate.

Propositions 2.4, 2.6, 2.7 do not work since the equations should include a nondelay

term.

By Proposition 2.5, τ < 5
9 is sufficient.

Proposition 2.8 does not establish exponential stability.

By Proposition 2.9 we have τ < 3/e.

Propositions 2.10 is not applicable to this equation, since it does not establish

exponential stability for any σ in the neutral term.

By Corollary 4.3 and inequality (4.8) in Corollary 4.6, τ < 3/e + 1 ≈ 2.1 implies

exponential stability.

Thus, the best condition for autonomous equation (6.3) is due to Proposition 2.3.

For nonautonomous equation (6.4), the situation is more complicated, since only

Proposition 2.9, Corollary 4.3 and Corollary 4.6 are applicable.

By Proposition 2.9 we have τ < 3/e. By Corollary 4.3, together with inequal-

ity (4.8) in Corollary 4.6, we obtain τ < 1 + 3/e.

Example 6.2. Consider again equations (6.3) and (6.4) with a fixed σ > 0,

g(t) ≡ t− σ and compare Proposition 2.10 and Corollary 4.6.
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By (2.11) in Corollary 2.11 of Proposition 2.10 we have the exponential stability

condition
2

e
− 1 +

σ

2
< τ < 1 +

2

e
− σ

2
,

while by Corollaries 4.3 and 4.6 we obtain the condition

τ < 1 +
3

e
,

which is better than τ < 1 + 2/e− σ/2 for any σ > 0.

Let us outline some open problems and topics for future research.

(1) Is it possible in Corollaries 4.3 to improve the condition ‖a‖[t0,∞) <
1
2 to the

condition ‖a‖[t0,∞) < λ, where λ ∈ (12 , 1)? What is the best possible λ in this

condition?

(2) Is it possible to apply the method reducing a neutral equation to an equation

with an infinite number of delays earlier used to study oscillation in [6]?

(3) Prove or disprove the following stability test. If

|c(t)| 6 c0 < 1, a(t) > a0 > 0, |b(t)| 6 a0,

∫ t

h0(t)

a(s) ds 6
1

e

for t large enough, then the equation

ẋ(t) = −a(t)x(h0(t)) + b(t)x(h(t)) + c(t)ẋ(g(t))

is exponentially stable. By Proposition 2.6, this result is true for h0(t) ≡ t,

h(t) = t− τ , g(t) = t− σ.

(4) Prove or disprove the following statement. If |a(t)| 6 a0 < 1, b(t) > b0 > 0

and equation (1.2) with bounded delays has a nonoscillatory solution, then this

equation is exponentially stable.

(5) Find exponential stability conditions for equation (1.2) which for the case

g(t) ≡ t are reduced to the condition

∫ t

h(t)

b(s)

1− a(s)
ds <

3

2

(in the case of continuous parameters) and to the condition

∫ t

h(t)

b(s)

1− a(s)
ds < 1 +

1

e

(in the case of measurable parameters).
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(6) Find exponential stability conditions for equation (1.2) which for the case

a(t) ≡ 0 are reduced to the condition
∫ t

h(t) b(s) ds <
3
2 (continuous parameters)

and to the condition
∫ t

h(t) b(s) ds < 1 + 1/e (measurable parameters).

(7) Consider equation (5.2), where 0 < b0 6 bk(t) 6 bk, t−hk(t) 6 τk, k = 1, . . . ,m.

Find exponential stability conditions for the equation which in the case a(t) ≡ 0

reduce to the condition
m
∑

k=1

bkτk 6 1, and in the case bk(t) ≡ bk to the condi-

tion
m
∑

k=1

bkτk < 3
2 (continuous parameters). If equation (5.2) has measurable

parameters, then 3
2 is replaced by 1 + 1/e.

(8) Consider the logistic type neutral equation

(6.5) ẋ(t)− a(t)ẋ(g(t)) = −b(t)x(h(t))(1 + x(t)),

where |a(t)| 6 a0 < 1, b(t) > b0 > 0. Find global exponential stability condi-

tions for equation (6.5) which in the case g(t) ≡ t become

∫ t

h(t)

b(s)

1− a(s)
ds <

3

2

for continuous parameters and

∫ t

h(t)

b(s)

1− a(s)
ds < 1 +

1

e

for measurable parameters. Similarly, establish global exponential stability con-

ditions for equation (6.5) which in the case a(t) ≡ 0 reduce to

∫ t

h(t)

b(s) ds <
3

2

for continuous parameters and to

∫ t

h(t)

b(s) ds < 1 +
1

e

for measurable parameters. In general, can a theory similar to [10] be developed

in the neutral case?
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