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KYBERNET IKA — VOLUME 5 5 ( 2 0 1 9 ) , NUMBER 2 , PAGES 2 9 5 – 3 0 6

SUFFICIENT CONDITIONS FOR A T-PARTIAL ORDER
OBTAINED FROM TRIANGULAR NORMS TO BE
A LATTICE

Lifeng Li, Jianke Zhang and Chang Zhou

For a t-norm T on a bounded lattice (L,≤), a partial order ≤T was recently defined and
studied. In [11], it was pointed out that the binary relation ≤T is a partial order on L, but
(L,≤T ) may not be a lattice in general. In this paper, several sufficient conditions under which
(L,≤T ) is a lattice are given, as an answer to an open problem posed by the authors of [11].
Furthermore, some examples of t-norms on L such that (L,≤T ) is a lattice are presented.
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1. INTRODUCTION

In [7], a partial order generated by a commutative semigroup was introduced by Clifford.
There have been numerous attempts to extend this ordering to other semigroups (such
as [10, 15]). Especially Mitsch [17] succeeded introducing a natural partial order of
semigroups. This order was extended to t-norms on a bounded lattice (L,≤, 0, 1) by
Karaçal and Kesicioǧlu in [11], and named T-order. Let (L,≤, 0, 1) be a bounded lattice,
the T-order is defined as follows:

x ≤T y :⇔ T (l, y) = x for some l ∈ L (1)

for any elements x, y of L and T is a t-norm on L. In addition, in [11] it was given the
relationship between T-order and partial order “≤” of L:

If x ≤T y then x ≤ y (2)

T-order is a pretty interesting partial order, in resent years, many scholars focus on
T-order and other partial orders on (L,≤, 0, 1). An equivalence relation on the class
of t-norms on a bounded lattice was introduced by Kesicioǧlu, Karaçal and Mesiar
(see [13]) based on T-partial orders, and they also characterized the equivalence classes
linked to some special t-norms. Later on, in [3, 9], V and U-partial orders, respectively
induced by nullnorms and uninorms were introduced and some basic properties of them
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were investigated. In [16], it was introduced an equivalence relations induced by the
U-partial order.

And the authors in [11] pointed out that the binary relation ≤T is a partial order on
L, but (L,≤T ) may not be a lattice in general. One of the open problems posed in the
study [11] is: let (L,≤, 0, 1) be a bounded lattice and T be a t-norm on L, give examples
that (L,≤T ) is a lattice, where T 6= TW .

If L = [0, 1], in [13] the following example was given to answer this open problem:

Example 1.1. (Kesicioǧlu et al. [13]) Consider the function T � : [0, 1]2 → [0, 1] defined
by

T �(x, y) =

{
0, (x, y) ∈ (0, k)2;
min(x, y), otherwise,

0 < k < 1. (3)

Then ([0, 1],≤T�) is a lattice.

In [2], the following theorem was given to answer this open problem:

Theorem 1.2. (Aşıcıand Karaçal [2]) Let T be a t-norm on [0, 1] and the family
(Tλ)λ∈(0,1) be given by

Tλ(x, y) =

{
0, T (x, y) ≤ λ and x, y 6= 1;

T (x, y), otherwise.
(4)

Then

(i) (Tλ)λ∈(0,1) is a t-norm.

(ii) If T is divisible on [0, 1], then (L,≤Tλ) is complete lattice.

Followed by [2] and [13], in the present paper, we continue to answer this open
problem on the condition of L is a complete lattice. The rest of this paper is organized
as follows. It reviews fundamental notions and properties of t-norm in Sect.2. In Sect.3,
some kinds of t-norms such that (L,≤T ) is a lattice are given. The paper is concluded
with a brief summary and an outlook for further research in Sect.4.

2. PRELIMINARIES

Definition 2.1. (Birkhoff [1], Drygaś [8]) A bounded lattice (L,≤, 0, 1) is a lattice
which has the top and bottom elements, which are written as 1 and 0, respectively, that
is, there exist two elements 1, 0 ∈ L such that 0 ≤ x ≤ 1, for all x ∈ L.

Definition 2.2. (Birkhoff [1]) Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b,
a subinterval [a, b] of L is defined as

[a, b] = {x ∈ L, a ≤ x ≤ b}

Similarly, [a, b) = {x ∈ L, a ≤ x < b}, (a, b] = {x ∈ L, a < x ≤ b} and (a, b) = {x ∈
L, a < x < b}.
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Definition 2.3. (Çaylı et al. [5], Karaçal [12]) Let (L,≤, 0, 1) be a bounded lattice.
An operation T : L2 → L is called a triangular norm (t-norm) if it is commutative,
associative, increasing with respect to both variables and it satisfies

T (x, 1) = x, ∀x ∈ L.

Definition 2.4. (Casasnovas and Mayor [4]) A t-norm T on L is divisible if the fol-
lowing condition holds: ∀x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

Example 2.5. The following are two basic t-norms TM and TW which are the strongest
and the weakest t-norms, respectively, on a bounded lattice L

TM (x, y) = x ∧ y,

TW (x, y) =

{
x ∧ y, x, y ∈ {1};
0, otherwise.

If L = [0, 1], the following are the four basic t-norms TM , TP , TL, TD given by, respec-
tively:

TM (x, y) = min{x, y},
TP (x, y) = xy,
TL(x, y) = max{x+ y − 1, 0},

TD(x, y) =

{
0, (x, y) ∈ [0, 1)2,
min{x, y}, otherwise.

Theorem 2.6. (Casasnovas and Mayor [4]) Let (L,≤, 0, 1) be a bounded lattice, T be
a t-norm on L. Then the binary relation ≤T is a partial order on L.

3. SOME KINDS OF T-NORMS SUCH THAT (L,≤T ) IS A LATTICE

Let (L,≤, 0, 1) be a bounded lattice. Consider a t-norm T on L. For X ⊆ L, we denote
the set of the upper bounds of X and lower bounds of X with respect to “≤T ” on L by
XT and XT respectively. We generalize Theorem 1.1 from the unit interval [0, 1] to an
arbitrary complete lattice.

Theorem 3.1. Let T be a t-norm on a complete lattice L and the family (Ta)a∈L be
given by

Ta(x, y) =

{
0, T (x, y) ≤ a and 1 /∈ {x, y};
T (x, y), otherwise.

(5)

Then the following statements hold:

(i) (Ta)a∈L is a t-norm.

(ii) If T is divisible on L, then (L,≤Ta) is complete lattice.
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P r o o f . (i) (a) Since T is a t-norm on L, then T is commutative. It leads to Ta is
commutative.

(b) We will show that Ta is associative. For any x, y, z ∈ L, if one of x, y, z is 1, then
Ta(Ta(x, y), z) = Ta(x, Ta(y, z)). For any x, y, z ∈ L \ {1}.

(b1) Let T (x, y) ≤ a, then Ta(Ta(x, y), z) = Ta(0, z) = 0 and T (x, T (y, z)) = T (T (x, y), z) ≤
T (a, z) ≤ T (a, 1) = a. Therefore

Ta(x, Ta(y, z)) =

{
Ta(x, 0), T (y, z) ≤ a;

Ta(x, T (y, z)), otherwise.
= 0.

Then Ta(Ta(x, y), z) = Ta(x, Ta(y, z)).

(b2) Let T (x, y) � a. If T (T (x, y), z) ≤ a, then Ta(Ta(x, y), z) = Ta(T (x, y), z) = 0 and
T (x, T (y, z)) = T (T (x, y), z) ≤ a. Therefore

Ta(x, Ta(y, z)) =

{
Ta(x, 0), T (y, z) ≤ a;

Ta(x, T (y, z)), otherwise.
= 0.

If T (T (x, y), z) � a, then Ta(Ta(x, y), z) = Ta(T (x, y), z) = T (T (x, y), z) and T (T (x, y), z) =
T (x, T (y, z)) ≤ T (1, T (y, z)) = T (y, z). Therefore Ta(x, Ta(y, z)) = Ta(x, T (y, z)) =
T (x, T (y, z)).

Then Ta(Ta(x, y), z) = Ta(x, Ta(y, z)).

(c) We show that Ta satisfies the monotonicity. Let x1 ≤ x2, if T (x1, y) ≤ a and
x1 6= 1, y 6= 1 (The case x1 = 1 or y = 1 is trivial), then 0 = Ta(x1, y) ≤ Ta(x2, y).
If T (x1, y) � a, from T (x1, y) ≤ T (x2, y), we have T (x2, y) � a. Thus Ta(x1, y) =
T (x1, y) ≤ T (x2, y) = Ta(x2, y).

(d) Since Ta(x, 1) = T (x, 1) = x for all x ∈ L, we have that 1 is neutral element. Thus,
Ta is a t-norm on L.

(ii) Since 0 = Ta(0, x) and x = Ta(x, 1), then 0 ≤Ta x ≤Ta 1 for any x ∈ L. Thus,∨
Ta

{xτ | τ ∈ Φ} =
∨
Ta

{xτ | τ ∈ Φ, xτ 6= 0}

∧
Ta

{xτ | τ ∈ Φ} =
∧
Ta

{xτ | τ ∈ Φ, xτ 6= 1}.

Let T be a divisible t-norm on complete lattice L and {xτ | τ ∈ Φ} ⊆ L\{0, 1} be
arbitrary.

(a) We will show existence of
∨
Ta
{xτ | τ ∈ Φ}.

(a1) Suppose that there exists xτ0 ∈ {xτ | τ ∈ Φ} such that xτ0 ≤ a. Since Ta(xτ0 , 1) =
T (xτ0 , 1) = xτ0 , then {xτ0 , 1} ⊆ {xτ0}Ta . Suppose k ∈ {xτ0}Ta , then there exists z ∈ L
such that xτ0 = Ta(z, k). Because of 0 6= xτ0 ≤ a, it leads to 0 6= Ta(z, k) = T (z, k) ≤ a.
From the definition of Ta, we have z = 1 or k = 1. If z = 1, xτ0 = Ta(z, k) = T (1, k) = k.
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Thus {xτ0}Ta = {xτ0 , 1}. Therefore
∨
Ta
{xτ | τ ∈ Φ} exists and

∨
Ta
{xτ | τ ∈ Φ} = 1.

(a2) Suppose xτ � a for all τ ∈ Φ. Let k =
∨
{xτ | τ ∈ Φ}, then xτ ≤ k. Since T is

a divisible t-norm, then there exist zτ ∈ L such that xτ = T (zτ , k). Because of xτ � a
and from the definition of Ta, we have xτ = T (zτ , k) = Ta(zτ , k), therefore xτ ≤Ta k,
i. e. k ∈ {xτ | τ ∈ Φ}Ta . Suppose s ∈ {xτ | τ ∈ Φ}Ta and s 6= k, then xτ ≤Ta s, it leads
to xτ ≤ s. Therefore k =

∨
{xτ | τ ∈ Φ} ≤ s. Because of xτ � a for all τ ∈ Φ and T is

a divisible t-norm on complete lattice L, it leads to k � a and there exists z ∈ L such
that k = T (z, s), therefore k ≤Ta s. Thus

∨
Ta
{xτ | τ ∈ Φ} =

∨
{xτ | τ ∈ Φ}.

(b) We will show existence of
∧
Ta
{xτ | τ ∈ Φ}.

(b1) Suppose that there exists xτ0 ∈ {xτ | τ ∈ Φ} such that xτ0 ≤ a. Since Ta(xτ0 , 0) = 0
and Ta(xτ0 , 1) = T (xτ0 , 1) = xτ0 , then {0, xτ0} ⊆ {xτ0}Ta . Suppose k ∈ {xτ0}Ta , then

there exists z ∈ L such that k = Ta(z, xτ0). If k 6= 0, from the definition of Ta we
have Ta(z, xτ0) = T (z, xτ0). Combing with T (z, xτ0) ≤ T (1, xτ0) = xτ0 ≤ a, we have
z = 1. Therefore k = Ta(z, xτ0) = T (1, xτ0) = xτ0 . Thus, {xτ0}Ta = {0, xτ0}. Therefore∧
Ta
{xτ | τ ∈ Φ} exists and

∧
Ta
{xτ | τ ∈ Φ} = 0.

(b2) Suppose xτ � a for all τ ∈ Φ. Let k =
∧
{xτ | τ ∈ Φ}, then k ≮ a, i. e. k � a or

k = a.

(b21) In the case of k � a. Since k =
∧
{xτ | τ ∈ Φ}, then k ≤ xτ , therefore

k = T (lτ , xτ ) for some lτ ∈ L. Because of k � a, then k � 0. Therefore k =
T (lτ , xτ ) = Ta(lτ , xτ ) for some lτ ∈ L, i. e.k ≤Ta xτ . Thus k ∈ {xτ | τ ∈ Φ}

Ta
. Suppose

0 6= s ∈ {xτ | τ ∈ Φ}
Ta

, then s ≤Ta xτ , therefore s ≤ xτ , i. e. s ≤
∧
{xτ | τ ∈ Φ} = k.

Thus, s = T (l, k) = Ta(l, k) for some l ∈ L. Therefore s ≤Ta k. That is to say∧
Ta
{xτ | τ ∈ Φ} =

∧
{xτ | τ ∈ Φ}.

(b22) In the case of k = a. Obviously 0 ∈ {xτ | τ ∈ Φ}
Ta

. Suppose 0 6= s ∈
{xτ | τ ∈ Φ}

Ta
, then s ≤Ta xτ . Thus s ≤ xτ , i. e. s ≤

∧
{xτ | τ ∈ Φ} = a on the

one hand. On the other hand, 0 6= s ≤ xτ implies s = T (l, xτ ) = Ta(l, xτ ) for some
l ∈ L. From the definition of Ta, we have s = T (l, xτ ) � a, which is a contradiction.
Thus 0 =

∧
Ta
{xτ | τ ∈ Φ}. �

Example 3.2. Consider the lattice (L = {0, a, b, c, d, 1},≤, 0, 1) given in Figure 1, and
the function Tb on L defined by

Tb(x, y) =

{
0, x ∧ y ≤ b and 1 /∈ {x, y};
x ∧ y, otherwise.

then Tb is a t-norm and Tb can also been described in Table 1. The order ≤Tb on L is
given in Figure 2.
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Tb 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 c 0 c
d 0 0 0 0 d d
1 0 a b c d 1

Tab. 1. T-norm Tb.

0

a

Fig 1. The order ≤ on L.

b

c d

1

0

Fig. 2. The order ≤Tb on L.

abdc

1

Suppose H = (0, k) ⊆ [0, 1), Let ∗ : H2 → H be an operation on H which is
commutative, associative, increasing with respect to both variables and

x ∗ y ≤ min{x, y}

the function T : [0, 1]2 → [0, 1] is defined by

T (x, y) =

{
x ∗ y, (x, y) ∈ H2;
min{x, y} otherwise.

. (6)

Then, T is a t-norm (Proposition 3.60 in [14]).
If x∗y = 0, then T (x, y) = T �(x, y) (Example 1.1 of this paper or Example 7 in [13]),

and authors in [13] proved that ([0, 1],≤T�) is a lattice, and

x ∨T� y =

{
k, (x, y) ∈ H2;
max{x, y}, otherwise.

,

x ∧T� y =

{
0, (x, y) ∈ H2;
min{x, y}, otherwise.

.
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Example 3.3. Let H = (0, k) ⊆ [0, 1), consider the t-norm on [0, 1] defined as follows:

T (x, y) =

{
max{x+ y − k, 0}, (x, y) ∈ H2;
min{x, y}, otherwise;

then ([0, 1],≤T ) is lattice, and for all x, y ∈ [0, 1],

x ∨T y = max{x, y},
x ∧T y = min{x, y}.

Suppose x, y ∈ (0, 1) and x < y.

(a) We will show existence of x ∨T y.

(a1) If y ≥ k. Since x = min{x, y} = T (x, y), then x ≤T y, i. e. x ∨T y = y.

(a2) If y < k. Let z = x+ k − y < k , then x = max{y + z − k, 0} = T (z, y). Therefore,
x ≤T y, i. e. x ∨T y = y.

(b) We shall show existence of x ∧T y.

(b1) If y ≥ k. Since x = min{x, y} = T (x, y), then x ≤T y, i. e. x ∧T y = x.

(b2) If y < k. Let z = x + k − y < k , then x = x = max{y + z − k, 0} = T (z, y).
Therefore, x ≤T y, i. e. x ∧T y = x.

In general, ([0, 1],≤T ) is not a lattice, which illustrated by the following example.

Example 3.4. Let H = (0, 12 ), consider the t-norm on [0, 1] defined as follows:

T (x, y) =

{
xy, (x, y) ∈ H2,
min{x, y}, otherwise.

For any x ∈ (0, 1), since x = min{x, 1} = T (x, 1), then x ∈ {x}T and x ∈ {x}
T

.

(a) Let y ∈ {x}T , i. e. x ≤T y, then x ≤ y, thus {x}T ⊆ [x, 1].

(a1) Suppose x ≥ 1
2 . x ≤ y implies x = min{x, y} = T (x, y) by definition of T , then

x ≤T y, therefore, [x, 1] ⊆ {x}T , thus {x}T = [x, 1];

(a2) Suppose 1
4 ≤ x < 1

2 . If y ≥ 1
2 > x, then x = min{x, y} = T (x, y), we have

x ≤T y, therefore [ 12 , 1] ⊆ {x}T . If x < y < 1
2 and y ∈ {x}T , then there exists

0 ≤ l < 1
2 such that x = T (l, y) = ly. (l, y) ∈ H2 implies ly < 1

4 , it is contradict with
1
4 ≤ x = T (l, y) = ly < 1

2 . Therefore, {x}T = {x} ∪ [ 12 , 1];

(a3) Suppose x < 1
4 . If y ≥ 1

2 , then x = min{x, y} = T (x, y), we have x ≤T y,

therefore, [ 12 , 1] ⊆ {x}T . If 2x < y < 1
2 , then there exists 0 ≤ l < 1

2 such that
x = ly = T (l, y). 0 ≤ l < 1

2 implies x = ly < 1
2y, i. e., 2x < y, therefore, (2x, 12 ) ⊆

{x}T . If x < y ≤ 2x < 1
2 , then there is no exists l such that x = T (l, y). Therefore,

{x}T = {x} ∪ (2x, 1].
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Then we have:

{x}T =


[x, 1], 1

2 ≤ x
{x} ∪ [ 12 , 1], 1

4 ≤ x <
1
2

{x} ∪ (2x, 1], x < 1
4

(b) Let z ∈ {x}
T

, i. e. z ≤T x, then z ≤ x, thus {x}
T
⊆ [0, x].

(b1) Suppose x ≥ 1
2 . z ≤ x implies z = min{z, x} = T (z, x) by definition of T , then

z ≤T x, therefore, [0, x] ⊆ {x}
T

, thus {x}
T

= [0, x].

(b2) Suppose x < 1
2 . If 1

2x ≤ z < x, then there is no exists l such that z = T (l, x). If
z < 1

2x, then there exists 0 ≤ l < 1
2 such that z = lx = T (l, x), therefore, [0, 12x) ⊆

{x}
T

. Thus, {x}
T

= {x} ∪ [0, 12x).
Then we have:

{x}
T

=

{
[0, x], 1

2 ≤ x
{x} ∪ [0, 12x), x < 1

2

.

Taking x = 1
8 and y = 1

6 , 1
8 ∨T

1
6 and 1

8 ∧T
1
6 , however, does not exist, since { 18}T =

{ 18} ∪ ( 1
4 , 1] and { 16}T = { 16} ∪ ( 1

3 , 1], { 18}T = { 18} ∪ [0, 1
16 ) and { 16}T = { 16} ∪ [0, 1

12 ).

Follows from Example 3.3, we have that ([0, 1],≤T ) is neither a join-semilattice nor
a meet-semilattice.

Remark 3.5. Example 1.1 can not be generalized from the unit interval [0,1] to arbi-
trary complete lattice. For arbitrary bounded lattice (L,≤, 0, 1), the function T defined
by the formula (3) in Example 1.1 needs not generate a t-norm on L. For example,
consider the lattice (L = {0, a, b, c, d, e, 1},≤, 0, 1) given in Figure 3. H = (0, e), the
function T be given by

T (x, y) =

{
0, (x, y) ∈ H2,
x ∧ y, otherwise.

0

a

Fig. 3. The order ≤ on L.

b

c e d

1
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Then T (T (a, c), d) = T (a, d) = a and T (a, T (c, d)) = T (a, b) = 0. Hence, T is not
a t-norm on L depicted in Figure 3, since the associativity is violated.

Let (L,≤, 0, 1) be a bounded lattice and a ∈ L \ {0, 1}. Çaylı in [6] gave a new
t-norm TV : L2 → L on L, where V is a t-norm on [a, 1], and

TV (x, y) =

 V (x, y), (x, y) ∈ [a, 1)2;
x ∧ y, 1 ∈ {x, y};
0, otherwise.

(7)

Theorem 3.6. If L is a complete lattice, a ∈ L \ {0, 1} and V is a divisible t-norm on
[a, 1], then (L,≤TV ) is a complete lattice.

P r o o f . Let V be divisible on [a, 1], and {xτ | τ ∈ Φ} be an arbitrary subset of L\{0, 1}.

(a) We will show existence of
∨
TV
{xτ | τ ∈ Φ}.

(a1) Suppose that there exists xτ0 ∈ {xτ | τ ∈ Φ} such that xτ0 /∈ [a, 1). Since
TV (xτ0 , 1) = xτ0 ∧ 1 = xτ0 , then {xτ0 , 1} ⊆ {xτ0}TV . Assume k ∈ {xτ0}TV , then
there exists z ∈ L such that xτ0 = TV (z, k). Because of xτ0 6= 0, it leads to TV (z, k) ={
V (z, k), (z, k) ∈ [a, 1)2;
z ∧ k, 1 ∈ {z, k}. . If (z, k) ∈ [a, 1)2, since V is a t-norm on [a, 1], then

xτ0 = TV (z, k) = V (z, k) ∈ [a, 1), which contradicts with xτ0 /∈ [a, 1), and thus z = 1
or k = 1. If z = 1, xτ0 = TV (z, k) = 1 ∧ k = k. Thus {xτ0}TV = {xτ0 , 1}. Therefore∨
TV
{xτ | τ ∈ Φ} exists and

∨
TV
{xτ | τ ∈ Φ} = 1.

(a2) Suppose xτ ∈ [a, 1) for all τ ∈ Φ. Let k =
∨
{xτ | τ ∈ Φ}, then xτ ≤ k. Since V is a

divisible t-norm on [a, 1], then there exist zτ ∈ [a, 1] such that xτ = V (zτ , k) = TV (zτ , k).
Therefore xτ ≤TV k, i. e. k ∈ {xτ | τ ∈ Φ}TV . Suppose s ∈ {xτ | τ ∈ Φ}TV , then
xτ ≤TV s, it leads to xτ ≤ s. Therefore k ≤ s. Because of xτ ∈ [a, 1) for all τ ∈ Φ and
V is a divisible t-norm on complete lattice L, it leads to k ∈ [a, 1] and there exists z ∈ L
such that k = TV (z, s), therefore k ≤TV s. Thus

∨
TV
{xτ | τ ∈ Φ} =

∨
{xτ | τ ∈ Φ}.

(b) We will show existence of
∧
TV
{xτ | τ ∈ Φ}.

(b1) Suppose that there exists xτ0 ∈ {xτ | τ ∈ Φ} such that xτ0 /∈ [a, 1). Since
TV (xτ , 0) = 0 and TV (xτ , 1) = xτ , we have {0, xτ} ⊆ {xτ}

TV
. Suppose k ∈ {xτ0}TV ,

then there exists z ∈ L such that k = TV (z, xτ0). Since xτ0 /∈ [a, 1), then k =

TV (z, xτ0) =

{
xτ0 , z = 1;
0, z < 1.

. Thus, {xτ0}TV = {0, xτ0}. Therefore
∧
TV
{xτ | τ ∈ Φ}

exists and
∧
TV
{xτ | τ ∈ Φ} = 0.

(b2) Suppose xτ ∈ [a, 1) for all τ ∈ Φ. Let k =
∧
{xτ | τ ∈ Φ}, then a ≤ k ≤ xτ . Since

V is a divisible t-norm on [a, 1], we obtain that
∧
TV
{xτ | τ ∈ Φ} =

∧
{xτ | τ ∈ Φ}.

�

Example 3.7. Consider the lattice (L = {0, a, b, c, d, 1},≤, 0, 1) given in Figure 1. The
function TV 1 on L is defined by

TV 1(x, y) =

{
x ∧ y, (x, y) ∈ [b, 1)2 or 1 ∈ {x, y};
0, otherwise.
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TV 1 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 b 0 b b
c 0 0 0 0 0 c
d 0 0 b 0 d d
1 0 a b c d 1

Tab. 2. T-norm TV 1.

then TV 1 is a t-norm and TV 1 can also be described in Table 2. The order ≤TV 1
on L

has its diagram as given in Figure 4.

a

0

Fig. 4. The order ≤TV 1 and ≤TV 2 on L.

b

c d

1

The following example shows that converse of Theorem 3.2 is not true in general.

Example 3.8. Consider the lattice (L = {0, a, b, c, d, 1},≤, 0, 1) given in Figure 1. Tak-
ing t-norm V on [b, 1] as

V (x, y) =

{
b, (x, y) ∈ [b, 1)2;

x ∧ y, otherwise.
.

Consider the function TV 2 on L defined by

TV 2(x, y) =


b, (x, y) ∈ [b, 1)2;

x ∧ y, 1 ∈ {x, y};
0, otherwise.

TV 2 described in Table 3 is a t-norm. The order ≤TV 2
on L is given in Figure 4. Hence

(L,≤TV 2
) is a complete lattice, but V (x, y) is not a divisible t-norm on [b, 1].

Example 3.9. Consider the t-norm on [0, 1] defined as follows:

TV 3(x, y) =


min{x, y}, (x, y) ∈ [ 12 , 1)2;

min{x, y}, 1 ∈ {x, y};
0, otherwise.
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TV 2 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 b 0 b b
c 0 0 0 0 0 c
d 0 0 b 0 b d
1 0 a b c d 1

Tab. 3. T-norm TV 2.

Since V (x, y) = min{x, y} is a divisible t-norm on [ 12 , 1), then ([0, 1],≤TV 3
) is lattice.

And

x ∨TV 3
y =

{
1, (x, y) /∈ [ 12 , 1)2;

max{x, y}, (x, y) ∈ [ 12 , 1)2.
,

x ∧TV 3
y =

{
0, (x, y) /∈ [ 12 , 1)2;

min{x, y}, (x, y) ∈ [ 12 , 1)2.
.

4. CONCLUSION

The objective of this paper is to give some sufficient conditions for a T-partial order
obtained from triangular norms to be a lattice. Sufficient conditions for other partial
order (for example U-partial order and V-partial order) to be a lattice will be considered
in future work.
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