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Abstract. We give the definition of f-biminimal submanifolds and derive the equation
for f-biminimal submanifolds. As an application, we give some examples of f-biminimal
manifolds. Finally, we consider f-minimal hypersurfaces in the product space R™ x S!(a)
and derive two rigidity theorems.
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1. INTRODUCTION

All objects in this paper, including manifolds, tensor fields and maps, are assumed
smooth unless stated otherwise.

Let ¢: (M™, g) — (N™,g) be an isometric immersion between Riemannian mani-
folds and f € C*°(N) a positive function on the ambient space. From the variational
formulas (see [2]), it follows that f-minimal submanifolds are the critical points for
the weighted volume functional V(z) = [}, e~/ do where do is the volume element
of the induced metric, generalizing the fact that minimal submanifolds are the critical
points for the standard (i.e. nonweighted) volume functional V(z) = [, do.

The f-mean curvature vector is I—:ff .= —[H + (Vf)*], where H is the mean
curvature vector of o, Vf denotes the gradient vector of f on N and (...)* stands
for the orthogonal projection of the vector (...) to the normal bundle T+M of ¢
in N. Further ¢ is called f-minimal if Hy = 0 or, equivalently

Hy = —[H+(VH =0
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In the context of biharmonic submanifolds, there has been a growing amount of
study on biharmonic submanifolds in space forms [1], [3], [4], [5], [6], [9], [12], [14]
in recent years. Some classifications of biharmonic submanifolds in conformally flat
spaces S™ X R and H™ x R have been given in [11], [18]. Lu in [2] introduced
f-biharmonic maps and calculated the first variation to obtain the f-biharmonic
map equation and the equation for the f-biharmonic conformal maps between the
same dimensional manifolds.

The f-biharmonic maps are critical points of the f-bienergy functional for maps
w: (M™,g) — (N™,7) between Riemannian manifolds:

1
Baslo) =5 [ Fr@)PYs.
M
The Euler-Lagrange equation gives the f-biharmonic map equation (see [17])

72,1(0) 1= fr2() + (Af)T(0) +2VE;7() =0,

where 7 is name of a map.

An immersion ¢: (M™, g) — (N",7) between Riemannian manifolds, or its image,
is called biminimal, if it is a critical point of the bienergy functional Es for variations
normal to the image ¢(M) C N. Equivalently, there exists a constant A € R such
that ¢ is a critical point of the A-bienergy Es » = Ea(p) + AE(p) for any smooth
variation of the map ¢;: [—¢,¢], po = @, such that V = (d/dt)pt|t—o is normal
to @(M), where E(p) = 5 [y, [de|*Vy, Ea() = 5 [y, IT(0)PVy.

Although the research on f-minimal submanifolds has not exist for a very long
time, it has been already approached by many authors, especially in the hypersurface
case, see for example [7], [8], [15] and [16], and much efforts have been devoted to the
study of the rigidity or classification problems, curvature estimates and the discussion
of stability problems.

In this paper, we give the following definition:

Definition 1.1. Let (M™, g) be an oriented compact Riemannian manifold with
boundary and let ¢: (M™,g) — (N™,g) be an isometric immersion. If

F: M x (—¢,e) - N

are variations normal to the image (M) C N with fixed energy and variational
vector field W and f € C°°(N) is a positive function on the ambient space, then we
say ¢ is f-biminimal if ¢ is the critical point of

Vi (t) = /M e THZ AV,
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In Section 3, we derive the equation for f-biminimal submanifolds. As an applica-
tion, in Section 4, we give some examples of f-biminimal submanifolds. Our examples
include the hypersurfaces ¢: (M™,g) — (N™T1G), ¢: M™ — R", ¢: S™(r) —
R™*! and ¢: S*(r1) x S™*(ry) — R™F2. In Section 5, we study f-minimal hyper-
surfaces in the product space N = R™ x S!(a). By introducing a globally defined
smooth function «, we derive two rigidity theorems.

2. PRELIMINARY

First, we give some notation that will appear in our paper. We let ¢: (M™,g) —
(N™,g) be an isometric immersion with the induced metric ¢ = ¢*g on M. Unless
otherwise specified, we always use symbols with a bar to denote all quantities of the
ambient space (N, g). For instance, V, A and V f denote the Levi-Civita connection,
the Laplacian and the gradient of the induced metric g respectively, while V, A
and V f denote those of the metric g, accordingly.

For any vector fields X,Y € X(M), the Gauss formula is given by

VxY =VxY +h(X,Y),

where h is the second fundamental form.
For any normal vector field £, the Weingarten map A¢ with respect to ¢ is given by

Vxé=—AeX + V%E,

where V1 stands for the normal connection of the normal bundle of M in N.
It is well known that
<h(Xa Y)a €> = <A€Xa Y>7

and the mean curvature vector field H is defined by H =trh.
Definition 2.1. Let (M™, g) be a compact Riemannian manifold with boundary
and let ¢: (M™,g) — (N™,g) be a smooth immersion. Suppose
F: M x(-e,e) > N

satisfies the following conditions:
(1) ¢o =¢;
(2) @ilom = wlom for all t € (—e,¢);
(3) for every ¢;: M — N is an immersion.
Then F is a variation to the immersion submanifold ¢: (M™, g) — (N",q), with
fixed boundary.
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3. f—BIMINIMAL MAPS BETWEEN RIEMANNIAN MANIFOLDS

In this section, we derive the equation for the f-biminimal submanifolds. Suppose
that
F: M x(-g,e) > N

are variations normal to the image (M) C N, with fixed energy and variational
vector field W. It is obvious that

W|¢,(3M) =0.

Theorem 3.1. Let (M™,g) be an oriented compact Riemannian manifold with
boundary and let ¢: (M™,g) — (N™,g) be an isometric immersion submanifold. If

F: M x (—¢,e) - N

are variations normal to the image (M) C N with fixed energy and variational
vector field W and f € C*°(N) is a positive function on the ambient space, then ¢
is f-biminimal if and only if

(3.1) H2Hy +2[hoh'(H) + Ric* (H) + Ay H + (|Vf|* — Af)H — 2V H] = 0.

Proof. Choose a local frame field (U;u?) in M, set

Xi(p,t) = Fugpyp (%) = (1)« (%), X, = X]h:o, 1<i<m,

W(p,t) = F*(p,t) (%)7

then the variational vector field of ¢ is W = W|t:0.
For every t, the component of the Riemannian induced metric g; = (f;)*7 is

(9t)ij = (Xi, Xj).
ﬁt is the mean curvature vector field of p;: M — N and is defined as

0 8)’

H; = (Qt)ijht(w, E

where g = (p¢)*g.
Denote Gy = det((g¢)i;), then the volume element of (M, g) is

AV, = VG du' A A du™.
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On the other hand, we set
Wj:<f/I7 (0t )« ( )>, z:g”Wj8 .

Therefore 7; is a smooth vector field of M and we have 7¢|oar = 0.
Suppose that V! is the Riemannian connection of the induced metric g;. It follows
from the fact that F' is the normal variation that

(W, X0 =0, 1<i<m

<(30t)* (Vg/aui %),W>|t=0 = <(<Pt)* Va/am%)7w> =0.

Now we compute (V3 ) (t) as follows:

H f,/
(3.2) (V) / OH e VG g1 qum
8\/ OH? e~ 7
2 —f toao1 m —fOH; 2
/H o dul A du +/M(e S HP )dv;
G~ 10 D
_ 2. —f R; _ 2,—f j
/MHte Ric 7, AV} /MHte %j g <W,ht<aui,auj)>dvt

_ Lo 70
+/ 2€_f<Va/ath,Ht>th—/ H}e™ det
M M 8

:/ HERic(e—frt)th—/ H} (Ve 1) dV;
M M
- [ e VLA Vi [ 20 (Voo ) v
M M
—/ er*f<vfﬁ>dm=/ Ric(HZe /) dV;
M M
_/ <VH,52,efth>th+/ Hf(Vf,e*fTQdV}
M M
- / He ! (W, Hy) dV + / 2e ™1 (V00 Hy, Hy) AV,
M M
—/ H2e I (Vf, W)V, :—/ (VH?, e 7)) aV,
M M
+/ Ht2<vaeif’7—t> d%_/ erif<wvﬁt>d‘/t
M M
+/ 2e*f<%/atﬁt,ﬁt>dm—/ H2e 1 (Vf,W)dV,.
M M
On the other hand, we deal with <v8/8tﬁta Hm:
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(33) (VojouHi, Hy)li=o = <%(9t)ij (va/aui = (ft)« (Va/am 88])) ﬁt>‘t=0
+ <(gt)ijv8/8t (va/am)?j — (fo)« (Va/du 88])) Ht>

. ) _ —~ .
= (~(9*(90)" 5, (90)n0(Voyou X5 He) =0 = 97 [V

t=0

070w W) li=0, H)

8/0u
i/ [5 9 9 1 1 L5
+ g { [ROW, X)X, — h(auz  Aw (W )) + VéjouViowW| H)
= <—(9t)ik(9t)jl(<va/at55c, X1) + (X, Va/atfl>)<v8/8u’5€;a Hy)le—o
J< (

+g" [EW,Xi)Xj—h(%’A (aia>>+v‘°’/8“va/8“7 il

- [VJV_B/B,“‘,B/&H W]J_ |t:07 ﬁ>

= QQikgjl<ht (%7 %)7W><va/8ui)7j, Hy)i=o

—9(Vs, . 00w W] =0, H)

8/6

+gw<[ (W, X)X (%’Aw(aiﬁ))”Lva/d“ vd/auJW}l’ﬁ>

oo (h (auwauz) W) (5o 5ar) )
+ (Rict (W), H) — (ho h'(H), W) + (A3, W, H)
= (ho h'(H),W) + (Rict (W), H) + (A

=k
=
El

Next we deal with [,, e~/ (A%, W, H) dVy denoting X = g% (W, vg/dm H)8/0u'.

(3.4) / o (AL W, B Vi
M

:/ e (AL H W) dVM+/ e/ AM(<W,ﬁ>)dVM—2/ e~/ div X dVy,
M M M

- / o (AL F, W) dVas + / Ani(e! (W, 7Y) dVay
M M
—2/ <ve*f,V(<W,ﬁ>)>dVM—/ (W, H\Ve 7t dViy
M
—2/ div(e fX)dVM+2/ (Ve ™/, X)dViy = / Ny H, WY dVyg
M M

—/ fi(e” <W,H>)de+/ 2W, HYAe™ ! dVy,
oM M

+/ 2<W,ﬁ>ﬁ(e*f)dvaM—/ <W,I?r>Ae*deM4r2/ (Ve™F X)) dViy
oM M M

= e*f<Aj4ﬁ,W>dVM+/ <W,ﬁ>Ae*fde+2/ (Ve , X)dVy
M M M
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:/ e*f<Af4ﬁ,W>dVM+/ (W, H)yAe™ AV,
M M
y ) -
g —f 1
+2/MgJ<Ve 7%><v8/8uﬂH’W>dVM

_ / eI (AL B WY dVay + /
M

[ vy, -2 /M oI (VW) dVay.

From (3.3) and (3.4), we get the identity
(3.5) / 2e 7 (Vo0 Hy, Hy)li—o dVis
M
_ / 2~ [(h o (), W) + (Rict(W), B) + (AL W, BY dVy,s
M
- / 26~ [(ho W(H), W) + (Ric’ (), W) + (AL F, W) dVis
M
+/ 2AW, HyAe ! dVy, —4/ e (V& H W) dViy.
M M
Substituting (3.5) into (3.2), we have
(3.6) (V{)'(0) = —/ (VHE, e 1) ]1—0 dVis +/ HE(Vf, e I m) im0 AV
M M
- / H2e T (W, Hy)|i—o dVas — / H2e T (V f, Wm0 dVas
M M
+ / 2e I [(hoh'(H),W) + (Rict(H), W) + (Ax,H,W)] dVys
M
+/ 2W, HyAe™F dVy, — 4/ e (Ve H W) dVy
M M
= / H2e /(—Vf+Vf—HW)dVy
M
b2 [ W ANTIE - Af) Vi
M
+ / 267 [(h o h(H) + Ric™ (W) + AL, B, W)] dVay
M
- 4/ e (Ve H W) dVy
M
_ / o (H2H; + 2[h o h'(H) + Ric™(H) + AL A
M
+ (VS = ANH — 2V, H], W) dViy.
Then ¢ is f-biminimal if and only if
H?Hy + 2[ho h'(H) + Ric™(H) + Ay H + (|Vf? = Af)H — 2V H] = 0.

It is clear that if ¢ is minimal, then it is f-biminimal.
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4. SOME EXAMPLES OF f—BIMINIMAL SUBMANIFOLDS

In this section, we give some examples of f-biminimal submanifolds.

Example 4.1. Let us consider the hypersurface such that ¢: (M™,g) —
(N™*1 g) is an isometric immersion of codimension one.

Let {e1,...,em,&} be an orthonormal frame adapted to the hypersurface ¢:
(M™,g) — (N™*1g) with ¢ being the unit normal vector with respect to the
metric g. Now there exists A € C°°(M) such that W = A\ and Algps = 0. Supposing
H = pu€ and p € C°(M) we derive

hoh'(H) = ho h () = uh o h'(€) = % (hij)*€ = ulh*¢,

Rict (H) = i j(R(u€, fu(ei) fo(e;) " = i (R(E, fulei)) fo(e;)) " = nRic(§)E,

AjrH = Aypué = (Amp)é,
Vi H = Vit = (V)R + iV € = (V€.

It is obvious that

— (1€ + E()E] + 2[ulh*E + pRic(€)€ + (V)€ + u(IVfIP = Af)E = 2(V f)(n)€]
= — [+ E(N)E + 2[ulh* + pRic(€)
+ (V) +u(VIP = Af) = 2(Vf)(p)é =0.
Consequently, we get the following Remark 4.1:

Remark 4.1. Let p: (M™,g) — (N™"! 5) be an isometric immersion of codi-
mension one. Let f € C°°(N) be a positive function on the ambient space and
H = ué, € C°°(M). Then ¢ is f-biminimal if and only if

(4.1) —pP[p+ &N+ 2[plh? + uRic(€) + (V) (1) + u(| VP = AF) =2(V ) ()] = 0.
Example 4.2. ¢: M™ — R", f: R™*! — R is defined by f(z) = 122

— —a? — - Ox, O
V=V =aVa= ) = Do e = T
a=m-+1
Vf==a',

2
Af = AT = (o) = (@2 + (@,2a) = m+ (@, H).

Substituting these identities into (3.1), we derive

H?Hy +2[ho h'(H) + Rict(H) + AL H + (|[Vf|? = Af)H — wéfﬁ]
:H2[—x+xT H]+2[hohf( 1) + Ay H
+ (| P —=m — (z, H))H — 2V H] = 0.
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Consequently, we get:

Remark 4.2. Suppose ¢: M™ — R™ and f: R™"' — R is defined by
flx) = %x2. Then ¢ is f-biminimal if and only if

(4.2) H*[—z+ax" —H)+2[hoht(H)+ Ay H+(ja" | —=m—(z, H))H -2V H] = 0.

2

Example 4.3. p: S™(r) — R™*! f: R™*T! — R is defined by f(z) = 122

1
2

Suppose H = € and p € C(M). Then we have 1 = m/r, x = —ré, H= m/ré
and |h|? = m/r?. Substituting these identities into (4.1), we derive

—12 [+ €] + 2[plb)? + uRic(©) + (V) + p( VI = Af) = 2(V£)(1)]
m (m r)+2ﬂﬂ2:%:0,

Then
2—m+7r2=0.
That is to say that r has the only value r = /m — 2 for m > 2. Therefore, we have:

Remark 4.3. Supposing ¢: S™(r) — R™*! and f: R™T! — R is defined by
flx) = %x2, then ¢ is f-biminimal if and only if = v/m — 2 for m > 2.

Example 4.4. ¢: SF(r;) x S™F(ry) — R™*+2 f: R™+2 — R is defined by

Flz) = 1a2

Let & and & be the unit normal vectors. We have

— k m—k
r=—-ri& —rbe, H=—&+ &,
1 T2
— ]{) m k k2 m_k 2
hoht(H):r_lhoht(fl)-F - hoht(£2)_r_3£1+( 3 ) &2
1 5

Substituting these identities into (3.1), we derive:

H?Hy + 2[ho h'(H) + Ric™(H) + Ay H + (|Vf? = Af)H — 2V H]

- (f—; " %) R )
+ Q[i_;fl + %&} = {[i—; (m;%k)j T%TZ L QT—k;}él
([ gyt iy
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By virtue of (3.1), the following formulas hold:

K2 (m—k)21r? -k 2k?
4. s _
(43) [r% * r3 ] 1 * r3 0
k2 (m—k)?2rs—(m—k) 2(m—k)?
44 — - =0.
(4.4) {rf * r2 } ) * rs

According to (4.3) and (4.4), it follows that
(K273 + (m — k)*1§)(2 = m+ ] +13) =0,

or equivalently
2—m+ri+ri=0.

This is to say that 1 and 7o satisfy
24 ri=m—2

for m > 2. Consequently, we get:

Remark 4.4. Let ¢: S*(r;) x S"%(ry) — R™*2 and let f: R™*2 — R be
defined by f(z) =
for m > 2.

%x2, then ¢ is f-biminimal if and only if 77 + 73 = m — 2

5. f-MINIMAL HYPERSURFACES IN THE PRODUCT SPACE N = R" x S!(a)

In this section, we aim at studying f-minimal hypersurfaces in the product space
N = R" x Sl(a) for some positive function f € C°(R" x S!(a)). Let z: M™ —
R™ xS!(a) be an immersed hypersurface with the induced metric g = 2*g on M. The
function on R™ x S'(a) is defined by f(z) = 1|21/ for any x = (21, 22) € R" xS!(a).
By choosing the natural frame {0/0z'}" ; on R"™, we obtain a local natural frame
field {0/0x%,0/9s}"_; on N = R™ x S'(a). Then the metric g has the form

n
g= Z(dxi)2 + ds?.
i=1

Let z: M™ — R"xS!(a) be f-minimal, using the local orthonormal frame {e; }?"_;
on M™ we have a frame field {EA}Z‘Lll along = with €; = x.e; and €,11 = v, the unit
normal vector of z. The angle function is defined by o = (v,9/9s) and T = (9/9s)".
In the case of f(z) = 1|21|*> = f(2) = 3(|z|*> — a?), we have

V=S e)ei + (w0, H=-(Vf)"
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or equivalently,
fi={x,e), i=1,2,....n, f,={(x,v)=—H.
Then we state and prove our theorems.

Theorem 5.1. Let M™ be an oriented compact Riemannian manifold with bound-
ary and let x: M™ — R™ x S!(a) be an isometric immersion submanifold. If

F: M" x (—¢,e) = R™ x S*(a)

are variations normal to the image x(M"™) C R™ x S'(a), with fixed energy and
variational vector field W, z: M™ — R™ x S'(a) is f-minimal and f € C*°(N) is
defined by f(z) = %|x1|2, then x is f-biminimal if and only if

(2] ~n+ 2)H —20(T,T) ~ fi{ew, - Yo fufihus =0,

Proof. Similarly to the calculation of Theorem 3.1 in [15], we have the following
equations

(5.1) ho h'(H) = —(z,v)h o h*(v) = —(z,v)|h|>v = |h|>H.
(5.2) A H = (AyH)(v) = H v

= {hn‘(l +a?) - 2Zhik<6i, %><6i, %> + vahii
k k
+kahii,k]v
k

=[H(1+a?) —2n(T,T) — H|h|* + frH v

= [H(1+ 02) = 20(T, T) = H|B* + fi(ex, %>a + fufihue]v.
(5.3)  |Vf|]*=2f- H>
(5.4) Af = (eje; — Ve,e)f = [eiei — Ve,ei + hles,e)|f =n—1+a® — H?.
(5.5) Véfﬁ = V@mei(—(x,v}v) = —(z,e;)e;({(z,v))v = (x,e;)e; (H)v

= (7, e;) (<€ia %>Of + fkhki)v = fi<<6i; %>0z + fkhki)v.
Substituting (5.1)—(5.5) into (3.1), we get

(6.6) W+ [H(L+0%) ~ (D7)~ HIP + e, 5 Vot ffihue]o
Y2f —H?—(n—1+a2— H)]H - 2fi<<ei, %>a n fkhki)v —0,

903



which implies

(2] —n+ 2)H —20(,T) ~ fi{ew, o Yo fufihus =0,

Now, from [15], Theorems 4.3-4.7, we have our rigidity theorems.

Theorem 5.2. Let x: M™ — R™ x S'(a) be a complete and properly immersed
oriented f-minimal hypersurface. If one of the following four conditions is satisfied,
(1) the angle function « is constant, or
(2) the angle function o does not change its sign and |h|? € L%, or
(3) |h|*> < 1+ a? and there is a constant ¢, 0 < ¢ < 1 such that 2|Val|? < ¢|Vh|? or
(4) 11 —-a?—¢) < |h2 < 3(1—a®+¢), ¢ = /(1 —a?)(1 — 9a?), then we have
either

(1) @« =1 and z is f-biminimal, or
(2) a =0 and z is f-biminimal if and only if

0 0

(2f—n+2)H—2h(%,$

) — frfihie = 0.

Theorem 5.3. Let x: M™ — R™ x S'(a) be a complete and properly immersed
oriented f-minimal hypersurface. If one of the following conditions is satisfied,
(1) |h|?| < 2a? and there is a constant ¢, 0 < ¢ < 1 such that 2|Va|? < ¢|Vh|? or
(2) |h|?| < 3a% -1, then we have h = 0 and z is f-biminimal.
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