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Abstract. Let D be a division ring finite dimensional over its center F . The goal of this

paper is to prove that for any positive integer n there exists a ∈ D(n), the nth multiplicative
derived subgroup such that F (a) is a maximal subfield of D. We also show that a single
depth-n iterated additive commutator would generate a maximal subfield of D.
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1. Preliminary

Throughout this paper, D is a division ring with center F. An element a ∈ D is

called algebraic over F if there exists a nonzero polynomial a0 + a1x + . . . + anx
n

over F such that a0 + a1a+ . . .+ ana
n = 0. If a ∈ D, then F (a) denotes the subfield

of D generated by F and {a}. For a (multiplicative) group G we denote by (a, b) =

aba−1b−1 the multiplicative commutator of a, b ∈ G and (G,G) the multiplicative

commutator subgroup of G. We denote by G ⊇ G′ ⊇ . . . ⊇ G(n) ⊇ . . . the derived

series of G, that is, G′ = (G,G) and G(n+1) = (G(n), G(n)) for every n > 1. For

a unital associative ring R we use [a, b] = ab− ba to denote the additive commutator

of a, b ∈ R and R1 = [R,R] the additive commutator subgroup of R. We denote

by R ⊇ R1 ⊇ . . . ⊇ Rn ⊇ . . . the additive derived series of R, that is, R1 = [R,R]

and Rn+1 = [Rn, Rn] for every n > 1. For a given division ring D we call D(n)

and Dn the nth multiplicative and additive derived groups of D, respectively. In the

case of division ring D we simply use D′ and [D,D] to denote the multiplicative and

additive group of commutators in D, respectively. If A is a subset of D, we use A∗
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to denote A \ {0}. A subfield K of D is called a maximal subfield if K is its own

centralizer in D∗.We denote by dimF D the dimension of D over F. If dimF D = n2,

then n is called the degree of division ring D. By Mn(K), GLn(K) and SLn(K) we

mean all square matrices, all invertible matrices and all matrices of determinant one

of order n with entries from K, respectively.

Mahdavi-Hezavehi in [10] investigates the algebraic properties of the multiplicative

group of commutators in a division ring and shows that any subfield K of a division

ring D which is separable over the center of D is generated over the center by

a commutator subgroup of D′. Afterwards, Mahdavi-Hezavehi and his colleagues

in [12] studied other generating properties of commutator subgroup and showed that

each finite separable extension of the center of D could be considered as a simple

extension F (c), where c is an element in D′. Now, it is natural to consider similar

questions in terms of some other elements coming from certain substructures of

a division ring. In particular, one can pose the following questions:

Question 1.1 ([11], Problems 28, 29). Let D be a division ring finite dimensional

over its center F.

(i) For any noncentral normal subgroupN ofD∗, does there exist an element c ∈ N

such that F (c) is a maximal subfield in D?

(ii) For any noncentral subnormal subgroup N of D∗, does there exist an element

c ∈ N such that F (c) is a maximal subfield in D?

In this note we rely on rational identities to show that some maximal subfields are

generated by elements coming from D(n) and Dn, or the nth derived subgroup of D
∗

and the nth iterated group of additive commutators, for any positive integer n. These

fall under a wider class of problems concerning the question of whether a noncentral

subnormal subgroup of D∗ cannot be “too small”, and questions about the images

of (noncommutative) polynomials evaluated on central simple algebras. For n = 1,

both results have been proved by Chebotar et al. in [6], Theorem 3, Theorem 6, and

recently again by the authors and Akbari in [1], Theorem 6, Theorem 7. Both [1], [6]

and the current paper use rational polynomial identities for proving the aforemen-

tioned results. The idea is simple and clever: The key is a certain (noncommutative)

polynomial gn(x, y1, . . . , yn) that vanishes whenever an algebraic element of degree

not more than n is substituted into x. One takes n < degD, substitutes a relevant

rational expression into x and proves that the resulting expression cannot vanish on

D ⊗F L, where L is some splitting field of D. In [1] and [6], the expressions sub-

stituted into x are single additive, or multiplicative commutators on two variables,

whereas here, iterated commutators are considered.
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2. Rational identities

Let F be a field and X = {x1, . . . , xm} be m noncommuting indeterminates.

Denote by F 〈X〉 and F (X), respectively, the free algebra in X over F and the

universal division ring of fractions of F 〈X〉. A rational expression over F is an

element of F (X). Let R be an F -algebra. A rational expression f over F is said to

be a rational identity of R if it vanishes on all permissible substitutions from R. In

this case, we say that R satisfies the rational identity f = 0.

Example 2.1.

(1) It is not hard to see that (Hua’s identity) (x−1+(y−1−x−1)−1)−1−x+xyx = 0

is a rational identity of every algebra over an arbitrary field F .

(2) One can easily verify that (x + y)−1 − y−1(x−1 + y−1)−1x−1 = 0 is a rational

identity of every algebra over an arbitrary field F .

(3) It is easy to check that ((x, (y, z)x(y, x)−1)3, z) = 0 vanishes on permissible

substitutions of M3(F ) for any field F .

A rational identity f of an algebra R is called nontrivial if f is nonzero in F (X),

see [6]. In the special case when R = D is a division ring, we have some further

information: assume that f = 0 is a rational identity of D. Then f is nontrivial

if and only if there exists a division ring L containing all coefficients of f and f

is not a rational identity of L. One direction of the statement is trivial, to see

the other direction, assume that f is nontrivial. Then it is well known that there

exists a division ring L with infinite center, which contains F , and that L is infinite

dimensional over its center. Hence by [7], f = 0 is not a rational identity of D. In

the example, it is easily seen that (1) and (2) are trivial, however one can verify

that (3) is nontrivial.

In this paper, our algebras R are central simple algebras over a field F . That

is, R ∼= Mn(D), where D is a division ring which is finite dimensional over F . We

denote by I(R) the set of all nontrivial rational identities of the algebra R. It is

known that a division ring D with infinite center F is a finite dimensional vector

space over its center if and only if I(D) 6= ∅, see [7]. Therefore there are rings R

with I(R) = ∅. Moreover:

Theorem 2.2 ([3], Theorem 11). Let F be an infinite field and R be a central

simple F -algebra with dimF R = n2. Assume that L is a field extension of F . Then

I(R) = I(Mn(F )) = I(Mn(L)).

We consider the following example of a rational expression which is important in

this paper. Given a positive integer n and n + 1 noncommutative indeterminates
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x, y1, . . . , yn, put

gn(x, y1, . . . , yn) =
∑

δ∈Sn+1

sign(δ)xδ(0)y1x
δ(1)y2x

δ(2) . . . ynx
δ(n),

where Sn+1 is the symmetric group of {0, . . . , n} and sign(δ) is the sign of permu-

tation δ. This is a rational expression defined in [5] as a mean to test whether

an element is algebraic of degree n. This rational expression may be considered as

a generalisation of the characteristic polynomials of matrices of degree n over a field.

Lemma 2.3. Let R = Mn(D) be a central simple algebra over its center F . For

any element a ∈ R, the following conditions are equivalent.

(1) The element a is algebraic over F of degree less than or equal to n.

(2) gn(a, r1, r2, . . . , rn) = 0 for any r1, r2, . . . , rn ∈ R.

P r o o f. It is just a corollary of [5], Corollary 2.3.8. �

3. Subfields generated by the elements in the nth multiplicative

derived subgroup

Let n be a positive integer and let x1, . . . , x2n be 2
n indeterminates. We will define

a special rational polynomial un(x1, . . . , x2n) successively as follows: set u1(x1, x2) =

(x1, x2) = x1x2x
−1
1 x−1

2 and assume that un−1(x1, . . . , x2n−1) is defined. Then we put

un(x1, . . . , x2n) = u1(un−1(x1, . . . , x2n−1), un−1(x2n−1+1, . . . , x2n)).

This polynomial relates to the solvability of a group: if G is a solvable group of

length 6 n, that is G(n) = 1, then un(a1, . . . , a2n) = 1 for every a1, . . . , a2n ∈ G. In

fact, we show the following result.

Lemma 3.1. Let un be as above. If G is a group with (multiplicative) derived

series

G ⊇ G′ ⊇ . . . ⊇ G(n) ⊇ . . . ,

then un(a1, . . . , a2n) ∈ G(n) for a1, . . . , a2n ∈ G.

P r o o f. We prove the lemma by induction on n. Assume that G is a group

and a1, a2 ∈ G. One has a1a2a
−1
1 a−1

2 ∈ G′, which implies that u1(a1, a2) ∈ G′.

Hence, the lemma holds for u1 and for the group G. Assume that for every group H ,

un−1(a1, . . . , a2n−1) ∈ H(n−1) for every a1, . . . , a2n−1 ∈ H . We must prove that

for every group G, un(b1, . . . , b2n) ∈ G(n) for every b1, . . . , b2n ∈ G. This follows

immediately from the definitions of un and G(n) by induction on n. �
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Lemma 3.2. Let K be an infinite field and m > 1. For any positive integer n and

every nonscalar matrix C ∈ SLm(K) there exist nonscalar matrices A1, . . . , A2n ∈

SLm(K) such that C = un(A1, . . . , A2n).

P r o o f. We show the lemma by induction on n. Assume that n = 1. It

is well-known that every nonscalar matrix in SLm(K) is a single commutator,

see [13]. Hence, there exist nonscalar matrices A1, A2 ∈ SLm(K) such that

C = A1A2A
−1
1 A−1

2 . Thus, the statement holds for n = 1. Assume that the statement

is true for n−1, that is, for every nonscalar matrix C ∈ SLm(K) there exist nonscalar

matrices A1, . . . , A2n−1 ∈ SLm(K) such that C = un−1(A1, . . . , A2n−1). Now by the

induction hypothesis for every nonscalar matrix C there exist nonscalar matrices

B1, B2, A1, . . . , A2n ∈ SLm(K) such that C = u1(B1, B2), B1 = un−1(A1, . . . , A2n−1)

and B2 = un−1(A2n−1+1, . . . , A2n). Therefore

C = u1(B1, B2) = u1(un−1(A1, . . . , A2n−1), un−1(A2n−1+1, . . . , A2n))

= un(A1, . . . , A2n).

This implies that the statement is true for n. �

Before showing the main result of this section, we recall the following well-known

lemma.

Lemma 3.3 ([9], page 242). Let D be a division ring with center F and K be

a subfield of D containing F . If dimF D = m2, then dimF K 6 m. The equality

holds if and only if K is a maximal subfield of D.

Theorem 3.4. Let D be a division ring finite dimensional over a its center F. For

any positive integer n there exists a ∈ D(n), the nth multiplicative derived subgroup,

such that F (a) is a maximal subfield of D.

P r o o f. If F is finite, thenD is also finite and we have nothing to prove. Suppose

that F is infinite and dimF D = m2. By Lemma 3.3, it suffices to show that there

exists a ∈ D(n) such that dimF F (a) > m. Indeed, put

l = max{dimF F (un(a1, . . . , a2n)) : a1, . . . , a2n ∈ D∗}.

Applying Lemma 2.3 we see that gl(un(a1, . . . , a2n), r1, . . . , rl) = 0 for any r1, . . . ,

rl ∈ D and a1, . . . , a2n ∈ D∗. In other words,

gl(un(x1, . . . , x2n), y1, . . . , yl) = 0

1057



is a rational identity of D. It is not hard to verify that gl(un(x1, . . . , x2n), y1, . . . , yl)

is a nonzero element of F (x1, . . . , x2n , y1, . . . , yl) (see [8], Theorem 3.4). Hence, by

Theorem 2.2 it is also a rational identity of Mn(F ). This yields that

gl(un(A1, . . . , A2n), B1, . . . , Bl) = 0

for all matrices Ai ∈ GLm(F ) and Bi ∈ Mm(F ). In view of Lemma 2.3, un(A1, . . . ,

A2n) is algebraic over F of degree not more than l for every A1, . . . , A2n ∈ Mm(F ).

Now consider the (m×m)-matrix T = (tij)16i,j6m as follows: if j = i or j = i+ 1,

then tij = 1, otherwise tij = 0. It is easy to see that T ∈ SLm(F ) and T is algebraic

of degree m over F . By Lemma 3.2, one can find matrices A1, . . . , A2n ∈ SLm(F )

such that un(A1, . . . , A2n) = T . Hence, l > m. This completes the proof. �

4. Subfields generated by the elements in the nth additive

derived subgroup

Let n be a positive integer and let x1, . . . , x2n be 2n indeterminates. We de-

fine a polynomial vn(x1, . . . , x2n) successively as follows: set v1(x1, x2) = [x1, x2] =

x1x2 − x2x1. Assume that vn−1(x1, . . . , x2n−1) is defined. Then we put

vn(x1, . . . , x2n) = v1(vn−1(x1, . . . , x2n−1), vn−1(x2n−1+1, . . . , x2n)).

Lemma 4.1. Let R be an algebra with additive derived series

R ⊇ R1 ⊇ . . . ⊇ Rn ⊇ . . . .

If vn is defined as above, then vn(a1, . . . , a2n) ∈ Rn for a1, . . . , a2n ∈ R.

P r o o f. The proof is similar to that of Lemma 3.1. �

Lemma 4.2. Let K be a field and m > 1 such that charK ∤ m. For any pos-

itive integer n and every matrix C ∈ Mm(K) with zero-trace there exist matrices

A1, . . . , A2n ∈ Mm(K) whose trace is zero and C = vn(A1, . . . , A2n).

P r o o f. The idea of the proof is similar to that of Lemma 3.2. We prove the

lemma by induction on n. Assume that n = 1. In view of [2], which states that

every matrix in Mn(K) with zero-trace is a single additive commutator, there exist

A1, A2 ∈ Mm(K) such that C = A1A2 − A2A1. Set B1 = A1 − (tr(A1)/m)Im

and B2 = A2 − (tr(A2)/m)Im, where by tr(A) we mean the trace of A. We have

C = B1B2 − B2B1 = v1(B1, B2) and tr(B1) = tr(B2) = 0. Hence, the statement

holds for n = 1. The general case follows by induction on n, similarly to the proof

of Lemma 3.2. �
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The following result is the goal of this section. Note that the same result as The-

orem 3.4, however, follows from the case where n = 1, proved in [1] and [6], since by

a theorem of Amitsur and Rowen, D1 = D2 = D3 = . . ., see [4]. However, the proof

yields a slightly stronger claim that a single depth-n iterated additive commutator

would generate a maximal subfield, which does not follow from D1 = D2 = D3 = . . .

Theorem 4.3. Let D be a division ring finite dimensional over its center F of

characteristic either zero or a prime p such that p ∤ dimF D. For any positive integer n

there exists a depth-n iterated additive commutator which generates a maximal

subfield of D.

P r o o f. First note that if charF = 0, then by a result due to Amitsur and

Rowen in [4] we have D1 = D2 = . . . Hence, in this case the result follows from [1],

Theorem 7. In case of charF = p > 0, the proof is similar to the one of Theorem 3.4.

We assume that F is infinite since if F is finite, then D is also finite and there is

nothing to prove. Suppose dimF D = m2. In view of Lemma 3.3, it suffices to show

that there exists a ∈ Dn such that dimF F (a) > m. Indeed, put

l = max{dimF F (vn(a1, . . . , a2n)) : a1, . . . , a2n ∈ D∗}.

According to Lemma 2.3 we see that gl(vn(a1, . . . , a2n), r1, . . . , rl) = 0 for any

r1, . . . , rl ∈ D and a1, . . . , a2n ∈ D∗. In other words,

gl(vn(x1, . . . , x2n), y1, . . . , yl) = 0

is a polynomial identity of D, so it is also a rational identity ofMn(F ) (Lemma 2.2).

Note that it is easily seen that gl(vn(x1, . . . , x2n), y1, . . . , yl) is a nonzero element of

F (x1, . . . , x2n , y1, . . . , yl) (see [8], Theorem 3.4). This yields that

gl(vn(A1, . . . , A2n), B1, . . . , Bl) = 0

for all matrices Ai, Bi ∈ Mm(F ). According to Lemma 2.3, vn(A1, . . . , A2n) is alge-

braic over F of degree not more than l for every A1, . . . , A2n ∈ Mm(F ). Now consider

the (m×m)-matrix T = (tij)16i,j6m defined by ti(i+1) = 1 and tij = 0 if j 6= i+ 1.

We can show that tr(T ) = 0 and T is algebraic of degree m over F . By Lemma 4.2,

there exist matrices A1, . . . , A2n ∈ Mm(F ) such that vn(A1, . . . , A2n) = T . Hence,

l > m and this completes the proof. �
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