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Abstract. We show that the GVC (generalized vanishing conjecture) holds for the dif-
ferential operator Λ = (∂x − Φ(∂y))∂y and all polynomials P (x, y), where Φ(t) is any
polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
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1. Introduction

The well-known Jacobian conjecture (JC for short) was first proposed by Keller

in 1939 (see [2] and [13]). It asserts that any polynomial map F from the complex

affine n-space Cn to itself with det JF = 1 must be an automorphism of Cn. Various

special cases of this still mysterious conjecture have been investigated, and connec-

tions with some other notable problems have been established. For example, the JC

is related to some problems in combinatorics (cf. [18]), it is equivalent to the Dixmer

conjecture (cf. [1], [3], [12]) and also to the Mathieu conjecture proposed by Mathieu

in 1995 (see [9]).

It was shown independently by de Bondt and van den Essen (see [6]) and Meng

(see [10]) that for the JC one only needs to consider all polynomial maps of the form

X +H : C
n → C

n for all dimensions n, where H is cubic homogeneous and JH is

symmetric and nilpotent. Based on this result, Zhao proposed in 2007 the vanishing

conjecture (see [17], [20]) and generalized it later in [19] to the following form.

Generalized Vanishing Conjecture (GVC). Let Λ be any differential oper-

ator on C[z] := C[z1, z2, . . . , zn] with constant coefficients. If P ∈ C[z] is such that
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Λm(Pm) = 0 for allm > 1, then for any polynomial Q ∈ C[z] we have Λm(PmQ) = 0

for all sufficiently large m.

In fact, Zhao showed in [17] and [20] that the JC holds for all dimensions n if

and only if the GVC holds for all dimensions n for the case where Λ is the Laplace

operator
n
∑

i=1

∂2
zi
and P is homogeneous.

Up to now, the GVC was verified in the following special cases:

(1) n = 1;

(2) n = 2 and Λ = ∂z1 − Φ(∂z2);

(3) Λ(t) (or P (z)) is a linear combination of two monomials with different degrees

(see [15]);

(4) n = 2, Λ is homogeneous (see [4]);

(5) n 6 4, Λ is the Laplace operator;

(6) n = 5, Λ is the Laplace operator and P is homogeneous (due to [5], [7] and [19]).

In this paper, we will show that the GVC holds for the differential operator Λ =

(∂x − Φ(∂y))∂y on C[x, y] and all polynomials P (x, y) ∈ C[x, y], where Φ(t) is any

polynomial over C. The conclusion is in fact valid for any field of characteristic zero.

A more general conjecture concerning the image of differential operators, the Image

Conjecture, which implies the GVC, was proposed by Zhao in [21], and for the study

of the Image Conjecture we refer the reader to [8], [11], [14], [16], [17] etc.

2. The proof of GVC for Λ = (∂x − Φ(∂y))∂y

Throughout this section, K stands for a field of characteristic zero. For simplicity,

we write K[x, y] instead of K[z1, z2]. We consider the GVC for the differential

operator Λ = (∂x − Φ(∂y))∂y, where Φ(t) is an arbitrary polynomial over K. We

write Φ(t) as

Φ(t) = q0 + q1t+ . . .+ qst
s

where qi ∈ K, 0 6 i 6 s. And we denote by o(Φ(t)) or o(Φ) the order of the

polynomial Φ(t), i.e., the least integer m > 0 such that qm 6= 0.

We will show the following theorem.

Theorem 2.1. The GVC holds for the differential operator Λ = (∂x − Φ(∂y))∂y
and all polynomials P (x, y) ∈ K[x, y].

We start with some lemmas.

Lemma 2.2. Let Λ = (∂x − Φ(∂y))∂y and let 0 6= P (x, y) ∈ K[x, y] be such that

ΛP = 0. Then
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(1) q0 = 0 (i.e. Φ(t) = 0 or o(Φ) > 1) or P (x, y) ∈ K[x];

(2) P (x, y) = exΦ(∂y)(f(x) + g(y)) for some f(x) ∈ K[x] and g(y) ∈ K[y].

P r o o f. (1) Suppose that P (x, y) /∈ K[x] and let pm(x)ym be the leading term

of P (x, y) with respect to y. Note that

Λ = (∂x − Φ(∂y))∂y = (∂x − (q0 + q1∂y + . . .+ qs∂
s
y))∂y .

Let cxl be the leading term of pm(x) with respect to x. Since ΛP = 0, the leading

term of ΛP with respect to y is zero, i.e., (∂x − q0)∂y(pm(x)ym) = 0, which implies

that q0∂y(cx
lym) = 0 and thus q0 = 0.

(2) One may verify that ∂xe
−xΦ(∂y) = e−xΦ(∂y)(∂x − Φ(∂y)). So

∂x∂y(e
−xΦ(∂y)P ) = ∂xe

−xΦ(∂y)(∂yP ) = e−xΦ(∂y)(∂x − Φ(∂y))∂yP

= e−xΦ(∂y)(ΛP ) = 0.

So there are no terms xayb with a > 1 and b > 1 in e−xΦ(∂y)P , namely

e−xΦ(∂y)P = f(x) + g(y)

for some f(x) ∈ K[x] and g(y) ∈ K[y]. Applying exΦ(∂y) to both sides of the last

equation, we obtain that P (x, y) = exΦ(∂y)(f(x) + g(y)). �

Now we write f(x) and g(x) above as

f(x) = a0 + a1x+ a2x
2 + . . .+ akx

k, g(y) = b0 + b1y + b2y
2 + . . .+ bdy

d,

where aj , bt ∈ K, 0 6 j 6 s, 0 6 t 6 d. We may assume that a0 = 0.

Lemma 2.3. Let Λ = (∂x − Φ(∂y))∂y and 0 6= P (x, y) ∈ K[x, y]. If o(Φ) > 2

and ΛP = Λ2(P 2) = 0, then o(Φ) > deg g and P (x, y) = f(x) + g(y). Furthermore,

deg f(x) < 2 or deg g(y) < 2.

P r o o f. Since ΛP = 0, by Lemma 2.2, P (x, y) = exΦ(∂y)(f(x) + g(y)), where

f(x), g(y) are as above and a0 = f(0) = 0. So

0 = Λ2(P 2) = Λ2[exΦ(∂y)(f(x) + g(y))]2

= (∂2
x − 2∂xΦ+ Φ2)∂2

y

[

f + g + xΦ(g) +
x2

2!
Φ2(g) +

x3

3!
Φ3(g) + . . .

]2

= (∂2
x − 2∂xΦ+ Φ2)∂2

y

[

(f2 + g2 + 2fg) + (2fΦ(g) + 2gΦ(g))x

+ (Φ(g)2 + fΦ2(g) + gΦ2(g))x2

+
(1

3
fΦ3(g) +

1

3
gΦ3(g) + Φ(g)Φ2(g)

)

x3 + . . .
]

.
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Viewing Λ2(P 2) as a polynomial in K[y][x] and looking at its constant term, we

obtain that

0 = Λ2P 2|x=0 = ∂2
y(4a2g + 4a1Φ(g) + 2(Φ(g))2 + 2gΦ2(g)

− 4a1Φ(g)− 4Φ(gΦ(g)) + Φ2(g2))

= ∂2
y(4a2g + 2(Φ(g))2 + 2gΦ2(g)− 4Φ(gΦ(g)) + Φ2(g2)).

It follows that

u(y) := 4a2g + 2(Φ(g))2 + 2gΦ2(g)− 4Φ(gΦ(g)) + Φ2(g2) ∈ Ky +K.

By the hypothesis of the lemma, r := o(Φ(t)) > 2. Note that Φ(∂y) = qr∂
r
y+ higher-

order terms, and that g = bdy
d+ lower terms.

Claim: r > d.

Suppose conversely that d > r. Observe that the first polynomial in the expression

of u(y) is of degree d if a2 6= 0, and the others are all of degree 2d− 2r.

(1) If d > 2r, then 2d − 2r > d, whence the coefficient of the term in u(y) with

degree 2d− 2r is

qr
2bd

2
(

2
d! d!

(d− r)!(d − r)!
+ 2

d!

(d− 2r)!
− 4

d!(2d− r)!

(d− r)!(2d− 2r)!
+

(2d)!

(2d− 2r)!

)

,

which must be zero since u(y) ∈ Ky +K. But in the last formula, the last number

is greater than the third, and thus the coefficient is nonzero, a contradiction.

(2) If 2r > d > r, then d > 2d−2r, whence the coefficient of the term in u(y) with

degree d is 4a2bd, which must be zero since u(y) ∈ Ky +K, and thus a2 = 0. Then

one may observe the coefficient of the term in u(y) with degree 2d − 2r and arrive

at a contradiction as in the case d > 2r.

(3) If d = 2r, then all polynomials in the expression of u(y) are of degree 2r,

whence the coefficient of the term in u(y) with degree 2r is

(2.1) 0 = 4bda2 + b2dq
2
r

2(2r)!(2r)!

r!r!
+ b2dq

2
r2(2r)!− b2dq

2
r

4(3r)!

r!
+ b2dq

2
r

(4r)!

(2r)!

= bd

(

4a2 + bdq
2
r

(2(2r)!(2r)!

r!r!
+ 2(2r)!−

4(3r)!

r!
+

(4r)!

(2r)!

))

.

Now observe the term x of Λ2(P 2) ∈ K[y][x], which is

0 = ∂2
y(12a3g + 12a2Φ(g) + 6Φ(g)Φ2(g)− 8a2Φ(g)

− 4Φ(Φ(g)2)− 4Φ(gΦ2(g)) + 2Φ2(gΦ(g))).
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It follows that

v(y) := 12a3g + 12a2Φ(g) + 6Φ(g)Φ2(g)− 8a2Φ(g)

− 4Φ(Φ(g)2)− 4Φ(gΦ2(g)) + 2Φ2(gΦ(g)) ∈ Ky +K.

The first polynomial 12a3g in the expression of v(y) is of degree 2r if a3 6= 0, and

all the others are of degree r. So the coefficient of the 2r-degree term of v(y) is

12a3bd = 0 and thus a3 = 0, and then the coefficient of the r-degree term of v(y) is

(2.2) 0 = 12a2bdqr
(2r)!

r!
+ 6b2dq

3
r

(2r)!(2r)!

r!
− 8a2bdqr

(2r)!

r!
− 4b2dq

3
r

(2r)!(2r)!(2r)!

r!r!r!

− 4b2dq
3
r

(2r)!(2r)!

r!
+ 2b2dq

3
r

(2r)!(3r)!

r!r!

= bdqr
(2r)!

r!

(

4a2 + bdq
2
r

(

2(2r)!− 4
(2r)!(2r)!

r!r!
+ 2

(3r)!

r!

))

.

From the equalities (2.1) and (2.2), we obtain that

2(2r)!−
4(2r)!(2r)!

r!r!
+

2(3r)!

r!
=

2(2r)!(2r)!

r!r!
+ 2(2r)!−

4(3r)!

r!
+

(4r)!

(2r)!
,

i.e.,

(2.3)
6(2r)!(2r)!

r!r!
−

6(3r)!

r!
+

(4r)!

(2r)!
= 0.

Then
(4r)!

(2r)!
<

6(3r)!

r!
,

which is only possible when r = 2. But when r = 2, the left hand of the equal-

ity (2.3) is
6(4)!(4)!

2!2!
−

6(6)!

2!
+

8!

4!
= 6× 64,

a contradiction.

Thus we have proved the claim that r > d.

In the case r > d, we have

P (x, y) = exΦ(∂y)(f(x) + g(y)) = f(x) + g(y).

In the case r = d, we have

P (x, y) = exΦ(∂y)(f(x) + g(y)) = f(x) + g(y) + xΦ(g),

where Φ(g) is a constant, and thus in this case P (x, y) is also of the form f(x)+g(y).
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Finally, observing that

0 = Λ2(P 2) = (∂x − Φ)2∂2
y(f

2 + 2fg + g2)

= (∂2
x − 2∂xΦ + Φ2)(2f∂2

yg + ∂2
yg

2) = 2(∂2
xf)(∂

2
yg),

we have ∂2
xf or ∂

2
yg = 0, i.e., deg f < 2 or deg g < 2. �

Now we are in the position to prove Theorem 2.1.

P r o o f of Theorem 2.1. Suppose that Λm(Pm) = 0 for all m > 1. We need to

show that for any h ∈ K[x, y] we have Λm(Pmh) = 0 for all sufficiently large m. It

suffices to take h = xayb, a > 0, b > 0.

The case P = 0 is obvious and thus suppose that P 6= 0. By Lemma 2.2, q0 = 0

(i.e., o(ϕ) > 1) or P (x, y) ∈ K[x]. If P (x, y) ∈ K[x], then

Λm(Pmxayb) = (∂x − Φ(∂y))
m∂m

y (Pmxayb) = 0 ∀m > b.

So we may assume that q0 = 0, and then Λ = (∂x − Φ(∂y))∂y = (∂x − q1∂y − . . . −

qs∂
s
y)∂y. Using a linear coordinate change, we may assume that q1 = 0 i.e., o(ϕ) > 2.

By Lemma 2.3, r = o(Φ) > deg g = d and P (x, y) = f(x) + g(y), where deg f(x) < 2

or deg g(y) < 2.

In the case deg f(x) < 2, observe that

Λm(Pmxayb) = (∂x − Φ(∂y))
m∂m

y ((f + g)mxayb)

=

( m
∑

i=0

(−1)iCi
m∂m−i

x Φi(∂y)

)

∂m
y

( m
∑

j=0

Cj
mfm−jgjxayb

)

=

m
∑

i=0

m
∑

j=0

(−1)iCi
mCj

m · ∂m−i
x (fm−jxa) · Φi(∂y)∂

m
y (gjyb).

When m− i > m− j + a, we have ∂m−i
x (fm−jxa) = 0.

When m− i 6 m− j + a, i.e., a+ i > j, we have

o(Φi(∂y)∂
m
y ) = ir +m and degy(g

jyb) = dj + b,

If m > b+ ar, then noticing that a+ i > j and r > d, we have

m+ ir > b+ ar + ir > b+ jr > b + dj,

whence Φi(∂y)∂
m
y (gjyb) = 0. Therefore,

Λm(Pmxayb) = 0 ∀m > b+ ar.
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In the case deg g < 2, we have

∂m
y ((f + g)mxayb) =

m
∑

i=0

Ci
mf ixa∂m

y (gm−iyb) =

b
∑

i=0

Ci
mf ixa∂m

y (gm−iyb),

the degree of which is no more than b(deg f) + a. So for all m > b(deg f) + a, we

have

Λm(Pmxayb) = (∂x − Φ(∂y))
m∂m

y ((f + g)mxayb) = 0,

which completes the proof. �
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