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1. Introduction

The notion of equiintegrable sequences naturally appears in the study of conver-

gence theorems for gauge type integrals. The idea behind this concept is a uniform

integrability of the sequence in the sense that there exists a single gauge that works

for every function from the sequence. There is a vast literature exploiting different

aspects of this concept in the theory of Kurzweil-Henstock integrals, e.g. [6], [9], [19].

On the other hand, little is known concerning conditions ensuring equiintegrability

for Stieltjes type integrals, see [1], [12].

The concept of generalized bounded variation, which goes back to [14], is a nat-

ural extension of the notion of variation to arbitrary sets, see also [7], Chapter 6.

Functions having generalized bounded variation played an important role in the first

considerations regarding descriptive characterizations of Stieltjes- and gauge-type in-

tegrals, see [22] and [2]. In [3], a given descriptive definition of the Kurzweil-Stieltjes
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integral with respect to integrators of generalized bounded variation relies on a vari-

ational measure approach. The notion of full variational measure associated to arbi-

trary functions, as introduced in [21], is consistent with the usual Lebesgue-Stieltjes

measure in the case of functions of bounded variation. Notably, the applicability

of variational measures was further explored by Štefan Schwabik in his last papers,

see [16], [17], [18], where a whole theory regarding integral extensions was built.

In this paper we investigate conditions under which a sequence {fn} is Kurzweil-

Stieltjes equiintegrable with respect to a function g of generalized bounded variation.

Our approach to this class of functions follows the work in [3], relying on a characteri-

zation of generalized bounded variation by means of variational measures. Our main

theorem, Theorem 4.6, explores a uniform differentiability type condition in con-

nection to Kurzweil-Stieltjes equiintegrable sequences. Such type condition forms

the basis of some convergence results for gauge integrals, in particular we have the

following result found in [10]:

Theorem A. Let fn : [a, b] → R, n ∈ N be a sequence of Kurzweil-Henstock

integrable functions which converges to f : [a, b] → R almost everywhere in [a, b].

Assume that the functions Fn(t) =
∫ t

a
fn(s) ds, n ∈ N, are uniformly differentiable,

that is, for every τ ∈ [a, b] and ε > 0, there exists ̺(τ) > 0 such that

(1.1) |Fn(s)− Fn(t)− fn(τ)(s− t)| 6 ε|s− t|

for every n ∈ N and τ − ̺(τ) < t 6 τ 6 s < τ + ̺(τ). Then f is Kurzweil-Henstock

integrable and
∫ b

a

f(s) ds = lim
n→∞

∫ b

a

fn(s) ds.

In our investigation of equiintegrability, using an appropriate notion of differen-

tiability compatible with Stieltjes integrals, a condition analogous to (1.1) plays a

role. As a consequence, we extend the result above to Kurzweil-Stieltjes integrable

sequences. Further, we discuss the necessity/sufficiency of some uniform properties

of the sequence of primitives in connection with equiintegrability.

2. Kurzweil-Stieltjes integral

Let [a, b] be a fixed compact interval. Given A ⊂ [a, b], a system in A is a finite

collection of tagged intervals S = {(cj, [aj , bj ]) : j = 1, . . . ,m} satisfying

a 6 a1 < b1 6 . . . 6 am < bm 6 b, and cj ∈ [aj , bj ] ∩ A, j = 1, . . . ,m.
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By ν(S) we denote the number of tagged intervals in a system S, and if no misun-

derstanding can arise we write simply S = {(cj, [aj , bj ])}. Given a gauge δ on A, i.e.

δ : A → R+, we say that a system S in A is δ-fine if

[aj , bj ] ⊂ (cj − δ(cj), cj + δ(cj)) for every j = 1, . . . , ν(S).

Further, note that a partition of the interval [a, b] is a particular type of a system in

[a, b], namely P = {(τj , [αj−1, αj ]) : j = 1, . . . , ν(P )} where α0 = a and αν(P ) = b.

Given a pair of functions f, g : [a, b] → R and a partition P = {(τj , [αj−1, αj ])}, let

S(F, dg, P ) =

ν(P )
∑

j=1

f(τj)(g(αj)− g(αj−1)).

We say that the Kurzweil-Stieltjes integral
∫ b

a
f dg exists if there exists a number

I ∈ R such that for every ε > 0 there is a gauge δ on [a, b] such that

|S(f, dg, P )− I| < ε for every δ-fine partition P of [a, b].

We denote I =
∫ b

a
f dg. The Kurzweil-Stieltjes integral has the usual properties

of linearity, additivity with respect to adjacent intervals, etc. For a comprehensive

study of this integral we refer to [12].

Accordingly, equiintegrability is defined as follows:

Definition 2.1. Let fn, gn : [a, b] → R for n ∈ N. We say that {fn} is equiinte-

grable with respect to {gn}, if the integral
∫ b

a
fn dgn exists for each n ∈ N, and for

every ε > 0 there exists a gauge δ on [a, b] such that

∣

∣

∣

∣

S(fn, dgn, P )−

∫ b

a

fn dgn

∣

∣

∣

∣

< ε

holds for every δ-fine partition P of [a, b] and for every n ∈ N.

The notion of equiintegrability yields the following basic convergence result.

Theorem 2.2. Let fn, gn : [a, b] → R, n ∈ N be such that {fn} is equiintegrable

with respect to {gn}, and assume that there exist f, g : [a, b] → R satisfying

lim
n→∞

fn(t) = f(t) and lim
n→∞

gn(t) = g(t) for all t ∈ [a, b].

Then the integral
∫ b

a
f dg exists and

(2.1)

∫ b

a

f dg = lim
n→∞

∫ b

a

fn dgn.
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Moreover, if {gn} is uniformly convergent and g is bounded, then

(2.2) lim
n→∞

sup
t∈[a,b]

∣

∣

∣

∣

∫ t

a

fn dgn −

∫ t

a

f dg

∣

∣

∣

∣

= 0.

The first convergence result in the theorem above can be obtained by the same

arguments used to prove an analogous theorem for Kurzweil-Henstock integrals that

can be found in any monograph devoted to such a theory, see e.g. [7]. The proof of

the uniform convergence of the indefinite integrals in (2.2) is slightly more technical

and relies on Saks-Henstock lemma, see [12], Theorem 6.8.2 for details. As has been

shown in [12], Example 6.8.3, the uniform convergence of the sequence {gn} as well

as the boundedness of the integrator g are essential assumptions to guarantee (2.2).

3. Generalized bounded variation

Generalized bounded variation is a natural extension of the notion of variation to

arbitrary sets. Roughly speaking, a function g : [a, b] → R is of generalized bounded

variation on a set A ⊂ [a, b] if A can be decomposed into a countable union of sets in

which g has bounded variation, see e.g. [7], Chapter 6 for details. Herein we make use

of an equivalent definition by means of variational measures. We therefore start this

section by presenting the notion of variational measure associated to an arbitrary

function.

Given g : [a, b] → R, A ⊂ [a, b] and δ : A → R+, denote

W (g,A, δ) = sup

ν(S)
∑

j=1

|g(bj)− g(aj)|,

where the supremum is taken over all δ-fine systems S = {(cj , [aj, bj ])} in A. The

set function mg defined by

mg(A) = inf{W (g,A, δ) : δ : A → R+}

is the so-called variational measure induced by g (also known as Thomson variational

measure, see [21]). It is worth mentioning that mg defines a metric outer measure

on [a, b], and it coincides with the Lebesgue outer measure in the case when g is the

identity function. For other properties of variational measures we refer to [21] (see

also [3]).

A characterization of functions of generalized bounded variation by means of vari-

ational measures goes back to the seminal work [21]. A good account on the topic

can be found in [8], and it inspires the following definition (cf. [8], Theorem 3.12).
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Definition 3.1. Let g : [a, b] → R and A ⊂ [a, b] be given. We say that g is of

generalized bounded variation on A if there exists a decomposition A =
∞
⋃

k=0

Ak such

that A0 is countable and mg(Ak) < ∞ for every k ∈ N. If, in addition, g is bounded,

then we may choose A0 = ∅.

We will denote by BVG∗[a, b] the set of functions g : [a, b] → R of generalized

bounded variation on [a, b]. Clearly, the class BVG∗[a, b] encompasses the functions

of bounded variation on [a, b]. In particular, if g is continuous and has bounded

variation on [a, b], then varJ(g) = mg(J) for any subinterval J ⊆ [a, b] (cf. [16],

Lemma 3.2). Moreover, since a function g is continuous at a point c ∈ [a, b] if and

only if mg({c}) = 0, it follows that the set of discontinuity points of a function in

BVG∗[a, b] is at most countable. However, such functions need not be regulated or

even bounded, see [21] and [11].

We recall the following notion which is of major importance in the study of a

fundamental theorem of calculus for Kurzweil-Stieltjes integrals (see [3], Section 4).

Definition 3.2. Let g : [a, b] → R be given. We say that a function F : [a, b] → R

is g-normal, if mF (A) = 0 whenever mg(A) = 0, A ⊂ [a, b].

The next two theorems summarize some properties of the Kurzweil-Stieltjes in-

tegral in connection to variational measures (for the proofs see [3], Proposition 2.9

and [11], Proposition 2.21, respectively).

Theorem 3.3. Let g : [a, b] → R be given. If f : [a, b] → R is null except on a set

Z ⊂ [a, b] with mg(Z) = 0, then
∫ t

a
f dg = 0 for every t ∈ [a, b].

Theorem 3.4. Let f, g : [a, b] → R be such that the integral
∫ b

a
f dg exists, and let

F (t) =

∫ t

a

f dg, t ∈ [a, b].

Then the function F is g-normal.

If, in addition, g ∈ BVG∗[a, b], then F ∈ BVG∗[a, b].

4. Equiintegrability

In this section we discuss equiintegrability with respect to integrators in the class

BVG∗[a, b]. Our investigation relies on assumptions concerning the sequence of prim-

itives, like a uniform differentiability condition which features in convergence results

for gauge integrals, see e.g. [10], Corollary 8.16 and [20], Theorem 7.6.3. For the sake

of clarity, we divide this section into two parts. The first is devoted to fixing the
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notions that will later compose the hypotheses of our main result. In the second part

we present our main theorem (Theorem 4.6) and further discuss its assumptions.

4.1. Preliminary definitions. Recall that a function f : [a, b] → R is said to be

regulated, if both one-sided limits f(t+), f(t−) exist at every point t ∈ [a, b] with

the convention f(a−) = f(a), and f(b+) = f(b). We denote by G[a, b] the space of

regulated functions. When it comes to compactness in this space of functions, the

following concept is crucial (cf. [4]).

Definition 4.1. A set A ⊂ G[a, b] is called equiregulated if for every ε > 0 and

every t0 ∈ [a, b] there exists η > 0 such that:

|f(t)− f(t0+)| < ε for all t0 < t < t0 + η, f ∈ A,

|f(t)− f(t0−)| < ε for all t0 − η < t < t0, f ∈ A.

The notion of g-derivative was introduced in [13] for monotone functions g (see

also [5]). Following the generalization of such a notion presented in [11], herein we

will consider derivatives with respect to functions in GL[a, b]; the subspace of G[a, b]

of all left continuous regulated functions.

Given g ∈ GL[a, b] and a function f : [a, b] → R, the derivative of f with respect

to g (or the g-derivative) at a point t ∈ [a, b] is given by

f ′
g(t) = lim

s→t

f(s)− f(t)

g(s)− g(t)
if g is continuous at t,

f ′
g(t) = lim

s→t+

f(s)− f(t)

g(s)− g(t)
if g is discontinuous at t,

provided the limit exists. Clearly, the definition above has sense only if the point t

does not belong to the set

Cg = {t ∈ [a, b] : g is constant on (t− ε, t+ ε) for some ε > 0}.

Using the notation from [13], we write Dg = {t ∈ [a, b] : g(t+) − g(t) 6= 0}. This

notion of derivative is consistent with the Kurzweil-Stieltjes integral as shown in the

following theorem borrowed from [11].

Theorem 4.2. Let g ∈ GL[a, b] ∩ BVG∗[a, b], f : [a, b] → R be such that the

integral
∫ b

a
f dg exists, and let

F (t) =

∫ t

a

f dg, t ∈ [a, b].

Then F ′
g(t) = f(t) for t ∈ [a, b] \N , where N ⊂ [a, b] with mg(N) = 0.
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Having in mind the notion of g-derivative, we formulate an analog of the uniform

differentiability condition (1.1) as follows:

Definition 4.3. Let g ∈ GL[a, b] ∩BVG∗[a, b], and let Fn : [a, b] → R, n ∈ N be

given. We say that the sequence {Fn} is uniformly g-differentiable at t0 ∈ [a, b] \Cg,

if for each n ∈ N the g-derivative (Fn)
′
g(t0) exists, and for every ε > 0 there exists

̺(t0) > 0 such that one of the following inequalities holds:

(i) In the case when t0 ∈ Dg, we have

|Fn(t)− Fn(t0)− (Fn)
′
g(t0)(g(t)− g(t0))| 6 ε|g(t)− g(t0)|

for every n ∈ N and t0 < t < t0 + ̺(t0).

(ii) In the case when g is continuous at t0, we have

|Fn(s)− Fn(t)− (Fn)
′
g(t0)(g(s)− g(t))| 6 ε|g(s)− g(t)|

for every n ∈ N and t0 − ̺(t0) < t 6 t0 6 s < t0 + ̺(t0).

The definition above somehow extends to g-derivatives the notion presented in [20],

Definition 7.6.1, stating that the limit defining the derivative of each function of the

sequence {Fn} is uniform with respect to n ∈ N.

Another concept important for the formulation of our main result is inspired by

Definition 3.2 and reads as follows:

Definition 4.4. Let g : [a, b] → R be given. We say that a sequence of functions

Fn : [a, b] → R, n ∈ N, is uniformly g-normal, if for every A ⊂ [a, b] with mg(A) = 0,

and for every ε > 0 there exists a gauge δ : A → R+ such that

ν(S)
∑

j=1

|Fn(bj)− Fn(aj)| < ε

for every n ∈ N and for every δ-fine system S = {(cj , [aj , bj])} in A.

The definition above is related to the notion of uniformly negligible variation,

cf. [20], Definition 7.6.2. Indeed, a uniformly g-normal sequence can be understood

as a sequence which has uniformly negligible variation on sets with null g-variational

measure.

4.2. Main results. Our next goal is to provide sufficient conditions for equiinte-

grability with respect to integrators of generalized bounded variation. To this end,

we will make use of the following theorem which states that sets of null g-variational
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measure can be disregarded when investigating equiintegrability with respect to a

function g.

Lemma 4.5. Let g : [a, b] → R and let fn : [a, b] → R, n ∈ N be a sequence which

is pointwise bounded. If E ⊂ [a, b] is such that mg([a, b] \E) = 0, then {fn} is equi-

integrable with respect to g if and only if {fnχE} is equiintegrable with respect to g.

P r o o f. Let hn := fnχE , n ∈ N. Note that for each n ∈ N the function hn − fn
is null except on Z = [a, b] \ E. Therefore, Lemma 3.3 ensures that

∫ b

a
hn dg exists

if and only if
∫ b

a
fn dg exists; moreover, the integrals coincide. Moreover, for any

partition P = {(τj , [αj−1, αj ])} of [a, b] and for n ∈ N we have

S(fn, dg, P )−

∫ b

a

fn dg = S(hn, dg, P )−

∫ b

a

hn dg +
∑

τj∈Z

fn(τj)(g(αj)− g(αj−1)).

This means that the result holds once we prove that for every ε > 0 there exists a

gauge δ : Z → R+ such that

∣

∣

∣

∣

ν(S)
∑

j=1

fn(cj)(g(aj)− g(bj))

∣

∣

∣

∣

< ε

for every n ∈ N and for every δ-fine system S = {(cj, [aj , bj ])} in Z. To this end, let

Zk = {t ∈ Z : |fn(t)| 6 k for every n ∈ N}, k ∈ N.

Noting that mg(Zk) 6 mg(Z) = 0, there is a gauge γk : Zk → R+ such that

(4.1) W (g, Zk, γk) <
ε

k2k
.

Moreover, since the sequence {fn} is pointwise bounded, Z =
∞
⋃

k=1

Zk and for each

t ∈ Z we can choose κ(t) ∈ N so that t ∈ Zκ(t) and t /∈ Zm for m ∈ N, m < κ(t).

Define δ(t) = γκ(t)(t), t ∈ Z, and let S = {(cj , [aj, bj ])} be a δ-fine system in Z. Thus

∣

∣

∣

∣

ν(S)
∑

j=1

fn(cj)(g(aj)− g(bj))

∣

∣

∣

∣

6

∞
∑

k=1

∑

κ(cj)=k

j=1,...,ν(S)

|fn(cj)(g(aj)− g(bj))|

6

∞
∑

k=1

k
∑

κ(cj)=k

j=1,...,ν(S)

|g(aj)− g(bj)| <
∞
∑

k=1

ε

2k
= ε

where the last inequality follows from (4.1), noting that {(cj , [aj , bj]) : κ(cj) = k}

defines a γk-fine system on Zk. This concludes the proof. �
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Now we present the main result of this paper.

Theorem 4.6. Let g ∈ GL[a, b] ∩ BVG∗[a, b], and let fn : [a, b] → R, n ∈ N be

such that the integrals
∫ b

a
fn dg exist. Assume that the functions Fn(t) =

∫ t

a
fn dg,

n ∈ N, have the following properties:

(i) the sequence {Fn} is equiregulated;

(ii) the sequence {Fn} is uniformly g-normal;

(iii) there exists Z ⊂ [a, b], with mg(Z) = 0, such that {Fn} is uniformly g-

differentiable on [a, b] \ Z.

If the sequence {fn} is pointwise bounded, then {fn} is equiintegrable with respect

to g.

P r o o f. Denote E = [a, b] \Z and hn = fnχE , n ∈ N. In view of Theorem 4.5, it

suffices to show that {hn} is equiintegrable with respect to g. To this end, given ε > 0,

we will construct (in several steps) a gauge δ on [a, b] satisfying the equiintegrability

condition.

Step 1. Since mg(Z) = 0, by condition (ii) there exists γ : Z → R+ such that

ν(S)
∑

j=1

|Fn(bj)− Fn(aj)| < ε

for every n ∈ N and for every γ-fine system S = {(cj , [aj , bj])} in Z.

Step 2. Let [a, b] =
∞
⋃

k=1

Xk be a decomposition with mg(Xk) < ∞. Without loss

of generality, assume that Xj ∩Xk = ∅ for j 6= k, and denote Ek = E ∩Xk, k ∈ N.

Noting that mg(Ek) < ∞, choose γk : Ek → R+ such that

W (g, Ek, γk) < mg(Ek) + 1.

Given t ∈ E, we know by Theorem 4.2 that (Fn)
′
g(t) = fn(t) for all n ∈ N.

Moreover, we can find a unique k ∈ N such that t ∈ Ek. Taking

εk =
ε

2k(mg(Ek) + 1)
,

by condition (iii) there exists 0 < ̺(t) < γk(t) such that: if t ∈ Ek ∩Dg we have

|Fn(v)− Fn(t)− fn(t)(g(v) − g(t))| 6 εk|g(v)− g(t)|

for every n ∈ N and t < v < t+ ̺(t); otherwise, if t ∈ Ek \Dg, we have

|Fn(v) − Fn(u)− fn(t)(g(v)− g(u))| 6 εk|g(v)− g(u)|

for every n ∈ N and t− ̺(t) < u 6 t 6 v < t+ ̺(t).
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Step 3. Consider an enumeration of Dg = {dl}. Due to the left continuity of g,

for each l ∈ N there exists ηl > 0 such that

|g(s)− g(dl)| 6
ε

2l+1(Ml + 1)
, dl − ηl < s 6 dl,

where Ml = sup{|fn(dl)| : n ∈ N}. Moreover, condition (i) ensures that for each

l ∈ N we can choose ηl > 0 so that the inequality

|Fn(s)− Fn(dl)| 6
ε

2l+1
, dl − ηl < s 6 dl for all n ∈ N,

is also satisfied.

Step 4. Now, consider δ : [a, b] → R+ given by

δ(t) =











γ(t) if t ∈ Z,

̺(t) if t ∈ E \Dg,

min{ηl, ̺(t)} if t = dl ∈ Dg for some l ∈ N.

Fixing an arbitrary n ∈ N and given a δ-fine partition P = {(τj , [αj−1, αj ])} of [a, b]

we have

|S(hn, dg, P )− Fn(b)| 6
∑

τj∈Z

|Fn(αj)− Fn(αj−1)|

+
∑

τj∈E

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)|

Clearly {(τj , [αj−1, αj ]) : τj ∈ Z} is a γ-fine system in Z, hence the definition of γ

yields
∑

τj∈Z

|Fn(αj)− Fn(αj−1)| < ε.

Moreover, using the estimates from Step 2 we obtain

∑

τj∈E\Dg

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)|

6

∞
∑

k=1

∑

τj∈Ek\Dg

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)|

6

∞
∑

k=1

εk
∑

τj∈Ek\Dg

|g(αj)− g(αj−1)| 6
∞
∑

k=1

εk(mg(Ek) + 1) 6

∞
∑

k=1

ε

2k
;

therefore

(4.2)
∑

τj∈E\Dg

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)| < ε.
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By a similar reasoning we get

∑

τj∈E∩Dg

|fn(τj)(g(αj)− g(τj))− Fn(αj) + Fn(τj)| < ε.

Having this in mind and using the inequalities from Step 3 we can estimate the sum

over τj ∈ E ∩Dg as follows:

∑

τj∈E∩Dg

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)|

< ε+
∑

τj∈E∩Dg

|fn(τj)(g(τj)− g(αj−1))− Fn(τj) + Fn(αj−1)|

6 ε+

∞
∑

l=1

∑

τj∈E∩Dg

τj=dl

(Ml|g(τj)− g(αj−1)|+ |Fn(τj)− Fn(αj−1)|)

< ε+ 2

∞
∑

l=1

ε

2l+1
< 2ε.

This together with (4.2) yields

∑

τj∈E

|fn(τj)(g(αj)− g(αj−1))− Fn(αj) + Fn(αj−1)| < 3ε.

Summarizing, for every δ-fine partition P of [a, b] we have

|S(hn, dg, P )− Fn(b)| < 4ε for every n ∈ N,

and this concludes the proof. �

To our knowledge, Theorem 4.6 provides original conditions for equiintegrability

even in the special case of integrators g of bounded variation. Besides, as we can see

in the proof, if g is assumed to be continuous, condition (i) can be suppressed.

By combining Theorems 4.6 and 2.2 we obtain a convergence result for Kurzweil-

Stieltjes integrals which extends Theorem A (see also [10], Corollary 8.16). More

precisely:

Corollary 4.7. Let g ∈ GL[a, b] ∩ BVG∗[a, b] and fn : [a, b] → R, n ∈ N be such

that the integrals
∫ b

a
fn dg exist, and assume that there exists f : [a, b] → R such

that

lim
n→∞

fn(t) = f(t) for all t ∈ [a, b].
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If the functions Fn(t) =
∫ t

a
fn dg, n ∈ N satisfy conditions (i)–(iii) from Theorem 4.6,

then the integral
∫ b

a
f dg exists and

∫ b

a

f dg = lim
n→∞

∫ b

a

fn dgn.

Note that, while Theorem A relies simply on the uniform differentiability, two extra

conditions are required to obtain its counterpart in the Kurzweil-Stieltjes setting.

Remarkably, both the conditions, (i) and (ii), correspond to properties which can be

expected from the primitives associated to sequences which are equiintegrable. The

relation between equiintegrability and equiregulatedness has been already observed

in [15]. More precisely, we have the following result which is a particular case of [15],

Proposition 3.4.

Theorem 4.8. Let g ∈ G[a, b] and let fn : [a, b] → R, n ∈ N be a sequence which

is pointwise bounded. If {fn} is equiintegrable with respect to g, then the sequence

of functions Fn(t) =
∫ t

a
fn dg, n ∈ N, is equiregulated.

As we can see in [20], Theorem 7.6.3, a uniform normality condition plays a role

when the question of convergence is considered in abstract settings. Next we show

that condition (ii) in Theorem 4.6 is indeed a natural assumption.

Theorem 4.9. Let g ∈ GL[a, b] ∩ BVG∗[a, b], and let fn : [a, b] → R, n ∈ N be

a sequence which is pointwise bounded. If {fn} is equiintegrable with respect to g,

then the sequence of functions Fn(t) =
∫ t

a
fn dg, n ∈ N, is uniformly g-normal.

P r o o f. Let [a, b] =
∞
⋃

l=1

Xl be a decomposition of [a, b] with mg(Xl) < ∞. With-

out loss of generality, assume that Xj ∩Xl = ∅ for j 6= l, and define

Ek,l := {t ∈ Xl : |fn(t)| 6 k for every n ∈ N}, k, l ∈ N.

Since {fn} is pointwise bounded, we have [a, b] =
∞
⋃

l=1

∞
⋃

k=1

Ek,l.

Let A ⊂ [a, b] be such that mg(A) = 0, and let ε > 0 be given. For each k, l ∈ N

such that A ∩ Ek,l 6= ∅, the fact that mg(A ∩ Ek,l) 6 mg(A) = 0 guarantees that

there exists a gauge γk,l : A ∩ Ek,l → R+ such that

(4.3) W (g,A ∩ Ek,l, γk,l) <
ε

k2k2l
.
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The equiintegrability together with the Saks-Henstock lemma (see [1], Lemma 7.2)

ensures that there exists a gauge γ : [a, b] → R+ such that

(4.4)
ν(S)
∑

j=1

∣

∣fn(cj)(g(bj)− g(aj))− Fn(bj) + Fn(aj)
∣

∣ < ε

for every n ∈ N and for every γ-fine system S = {(cj , [aj , bj])} in [a, b].

Denote M(t) = sup
n

|fn(t)|, t ∈ [a, b] (which is finite due to the pointwise bound-

edness of the sequence). For each t ∈ A, there exist uniquely determined numbers

κ(t), l(t) ∈ N, such that t ∈ Xl(t) and κ(t) = min{k ∈ N : M(t) 6 k}. In other

words, t ∈ Eκ(t),l(t).

Define δ : A → R+ by δ(t) = min{γ(t), γκ(t),l(t)(t)}, t ∈ A, and let S =

{(cj , [aj , bj])} be an arbitrary δ-fine system in A. For each n ∈ N, by (4.4) we have

ν(S)
∑

j=1

|Fn(bj)− Fn(aj)| 6

ν(S)
∑

j=1

|Fn(bj)− Fn(aj)− fn(cj)(g(bj)− g(aj))|

+

ν(S)
∑

j=1

|fn(cj)(g(bj)− g(aj))|

6 ε+

ν(S)
∑

j=1

M(cj)|g(bj)− g(aj)|

< ε+

∞
∑

p=1

∞
∑

k=1

k
∑

κ(cj)=k, l(cj)=p

j=1,...,ν(S)

|g(bj)− g(aj)|.

Since {(cj, [aj , bj ]) : κ(cj) = k, l(cj) = p} defines a γk,p-fine system in A∩Ek,l , using

the inequality (4.3) we get

ν(S)
∑

j=1

|Fn(bj)− Fn(aj)| < 2ε, n ∈ N,

wherefrom we conclude that {Fn} is uniformly g-normal. �

A c k n ow l e d gm e n t The author is thankful to the referees for their comments

and suggestions.
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