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HANDLING A KULLBACK–LEIBLER DIVERGENCE
RANDOM WALK FOR SCHEDULING EFFECTIVE PATROL
STRATEGIES IN STACKELBERG SECURITY GAMES

César U. Solis, Julio B. Clempner and Alexander S. Poznyak

This paper presents a new model for computing optimal randomized security policies in
non-cooperative Stackelberg Security Games (SSGs) for multiple players. Our framework rests
upon the extraproximal method and its extension to Markov chains, within which we explic-
itly compute the unique Stackelberg/Nash equilibrium of the game by employing the Lagrange
method and introducing the Tikhonov regularization method. We also consider a game-theory
realization of the problem that involves defenders and attackers performing a discrete-time
random walk over a finite state space. Following the Kullback–Leibler divergence the players’
actions are fixed and, then the next-state distribution is computed. The player’s goal at each
time step is to specify the probability distribution for the next state. We present an explicit
construction of a computationally efficient strategy under mild defenders and attackers condi-
tions and demonstrate the performance of the proposed method on a simulated target tracking
problem.

Keywords: Stackelberg games, security, patrolling, Markov chains

Classification: 91A10, 91A35, 91A80, 91B06, 91B70, 91B74

1. INTRODUCTION

1.1. Brief review

We focus on a game theory approach well-suited to adversarial reasoning for security
resource allocation and scheduling problems referred to as Stackelberg security games
[1, 4, 7, 22, 36]. Our approach is based on multiple-players games in which there exist
limited security resources which prevent full security coverage all the time. In the game,
defenders aim to protect a set of targets that minimizes their expected utility while at-
tackers aim to assail targets that maximizes their expected utility. A central assumption
in the literature on Stackelberg security games is that limited security resources must be
deployed strategically considering differences in priorities of targets requiring security
coverage and the responses of the adversaries to the security position. In the dynam-
ics of the game defenders commit to a probabilistic defense target and the attackers
observe the probabilities with which each target is covered. However, attackers cannot
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observe the actual defense realization. Much of the work on Stackelberg security games
focuses on potential uncertainty over the types, capabilities, knowledge and priorities of
adversaries faced [18, 19, 27].

One important assumption presented in the literature is that in Stackelberg security
games it is possible to consider a security game with multiple defenders and attackers
at the same time and, all possible combinations of security decisions for all targets [31].
Real applications consider several defenders and attackers among potential targets to
defend or attack. These may be implicit as in defending critical infrastructure (branch
banking locations, ports, etc.).

Markov decision processes (MDPs) are a well-liked framework for the realization of
sequential decision-making in a random dynamic environment for game theory [11, 25].
The dynamics is as follows: at each time step the defenders and attackers observes
the state of the game and choose an action. The game then randomly transitions to its
next state considering the transition probability established by the current state and the
action chosen. In our MDP game realization, it is assumed that the cost/utility func-
tions and the transition probabilities are known in advance, the policies are previously
computed applying the extraproximal method for solving the game, and the optimality
criterion is forward-looking. In addition, we choose a more control-oriented approach:
routing the game along a state trajectory through actions selected according to a state
feedback law determined by the Kullback–Leibler (KL) divergence (or the relative en-
tropy) [24] between the actions. We allow the defenders and attackers to select the state
transitions directly, so that actions correspond to fixed probability distributions on the
underlying state space. Moreover, for presenting a real-world solution to the problem,
the control penalizes defenders’ deviation from the attackers position. We prove that the
realization converges guaranteeing that the sequential decision-making in the proposed
random model is correct.

1.2. Related work

Stackelberg security game models become a critical tool that arises in protecting dif-
ferent types of real-world targets. Conitzer and Sandholm [15] described a method to
commit to optimal randomized strategies in Stackelberg security games. Paruchuri et al.
[23] focused on Bayesian Stackelberg games suggested a mixed-integer linear program-
ming algorithm for computing a Stackelberg equilibrium. Letchford et al. [21] provided
theoretical results on the value of being able to commit and the value of being able to cor-
relate, as well as complexity results about computing Stackelberg strategies in stochastic
games. Yang et al. [36] based on bounded rationality computed the optimal strategies
of a security game. Yin et al. [37, 38] considered noise in the defender’s execution of
the suggested mixed strategy and/or the observations made by an attacker. A partic-
ular case of Stackelberg security games considers the problem of multi-robot patrolling
against intrusions around a given area with the existence of an attacker attempting to
penetrate into the area [1, 4]. The authors showed that Nash and Stackelberg strategies
are the same in the majority of cases only when the follower attacks just one target.
They also proposed an extensive form game model that makes the defender’s uncertainty
about the attacker’s ability to observe explicit. These games are security games between
a defender (allocates defensive resources), and an attacker (decide on targets to attack).
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For multiple defenders and attackers in Markov games Clempner and Poznyak [9] sug-
gested an approach for conforming coalitions in Stackelberg security games where the
coalition of the defenders achieves its synergy by computing the Strong Lp−Stackelberg/
Nash equilibrium [33]. The security model describes a strategic game in which the de-
fenders cooperate, and attackers do not cooperate. Clempner and Poznyak,[7] presented
a shortest-path method to represent the Stackelberg security game as a potential game
using the Lyapunov theory. Trejo et al. [31] employed the extraproximal method for
computing the Stackelberg/Nash equilibria in the case of one defender and multiple
attackers. Solis et al. [29] extended the work presented by [31] including multiple lead-
ers and followers and, presenting a proof of convergence. Clempner and Poznyak [9]
suggested a SSG that represents a strategic game where the defenders cooperate, and
attackers noncooperate. The same authors in [12] improved the technique described in
[7] and using the extraproximal method calculated the Lyapunov equilibrium in SSGs.
Clempner [5] presented a method for controlling the patrolling activities involving con-
straints that involve continuous-time SSGs. Guerrero et al. [16, 17] developed a method
for the SSGs solution, which used the bargaining Nash approach for computing the
cooperative equilibrium point for the defenders, while the attackers played in a non-
cooperative approach. Trejo et al. [32, 35] presented an using repeated cooperative
Stackelberg security Markov games. The Reinforcement Learning method. combines
prior knowledge and temporal-difference methods. The coalition of the defenders is
computed employing the Strong Lp−Stackelberg/Nash equilibrium [33, 34]. Albarran
and Clempner [2] provided a novel solution for computing the Stackelberg security games
for multiple players, considering finite resource allocation in domains with incomplete
information. In our model, we consider several defenders and several attackers for non-
cooperative Stackelberg security games in which the realization is based on handling a
Kullback–Leibler divergence random walk.

1.3. Main results

This paper presents the following contributions.

• Suggests a new technique for computing optimal randomized security policies in
non-cooperative Stackelberg security games for multiple defenders and attackers.

• Considers the extraproximal method and its extension to Markov chains [30],
within which we explicitly compute the unique Stackelberg/Nash equilibrium of
the game by specifying a natural model employing the Lagrange method and in-
troducing Tikhonov’s regularization method [13, 14].

• Proposes a method that computes the optimal security policies of the Stackel-
berg/Nash game exactly and efficiently presenting a ”real-world” solution to the
problem. We also consider a game-theory realization of the problem that involves
defenders and attackers performing a discrete-time random walk over a finite state
space.

• Following the Kullback–Leibler divergence [26] the players’ actions are fixed and,
then the next-state distribution is computed. The player’s goal at each time step
is to specify the probability distribution for the next state given the current state.
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• Proves the realization converge guaranteeing that the sequential decision-making
in a random dynamic model is correct.

• Presents an explicit construction of a computationally efficient strategy, under
mild defenders and attackers conditions and demonstrate the performance of the
proposed method on a simulated target tracking problem.

An application for protecting a marine canal that suggests patrolling strategies to
protect ports validates the proposed method.

1.4. Organization of the paper

The remainder of the paper is organized as follows. Section 2 contains preliminaries
on MDPs and game theory. Section 3 then describes our proposed Stackelberg security
game model presenting the extrapoximal method which employs the Lagrange method
and uses the Tikhonov regularization method. Section 4 suggests a model for random
walk based on the Kulback-Leibler divergence studying two models for the defenders
one using a classical approach and the other models penalize the defenders’ deviation
from the attackers’ location. As well as, we prove that the synchronization of the
random walk of defenders and attackers converge in probability to the product of the
individual probabilities. Some simulation results are presented in Section 5. We close
by summarizing our contributions in Section 6.

2. PRELIMINARIES

2.1. Controllable Markov process in discrete time

A controllable Markov decision process is a 5-tuple MDP = {S,A,A(s),Π, J} where
S is a finite set of states, S ⊂ N, endowed with discrete topology; A is the set of
actions, which is a metric space [6, 25]. For each s ∈ S, A(s) ⊂ A is the non-empty
set of admissible actions at state s ∈ S. Without loss of generality we may take A=
∪s∈SA(s); K = {(s, a)|s ∈ S, a ∈ A(s)} is the set of admissible state-action pairs, which
is a measurable subset of S × A; Π (k) =

[
πj|ik

]
is a stationary transition controlled

matrix, where
πj|ik ≡ P (s(t+ 1) = sj |s(t) = si, a(t) = ak)

representing the probability associated with the transition from state si ∈ S to state sj
under an action ak ∈ A (si) (k = 1, . . . ,M) at time t ∈ N. The relations πj|ik ≥ 0 and∑N
j=1 πj|ik = 1 are satisfied for all i, j, k. Finally, J : S×K→ Rn is the cost function.
The system evolves as follows: at each time t ∈ N the decision maker knows the

previous states and actions and, observes the current state, says s(t) = si ∈ S. Using
this information, the controller selects an action a(t) = ak ∈ A(s). Then two things
happen: a cost Jijk is incurred and, the system at time t + 1 moves to a new state
s(t+ 1) = sj ∈ S with probability πj|ik.

We will restrict attention to stationary policies throughout all the paper. A policy d
is a (measurable) rule for choosing actions which, at each time n ∈ N, may depend on
the current state and on the record of previous states and actions; see, for instance, [25]
for details. The class of all policies is denoted by D and, given the initial state s ∈ S and
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the policy d being used for choosing actions, the distribution of the state-action process
{(s(t), a(t))} is uniquely determined. Following, we will denote by P and E respectively
the probability measure and the expectation operator induced by the policy d. Next,
define F :=

∏
s∈S A(s) and notice that F is a compact metric space in the product

topology which consists of all functions f : S → A such that f(s) ∈ A(s) for each s ∈ S.
A policy d is stationary iff there exists f ∈ F such that the equality A(t) = f(s(t)) is
always valid under d, i. e. dk|i(t) = dk|i. Also, under the action of any stationary policy
dk|i(t) = dk|i the state process is a Markov chain with stationary transition mechanism.
For each strategy dk|i the associated transition matrix is defined as:

Π(d) := [πj|ik(d)] =

M∑
k=1

πj|ikdk|i

such that on a stationary state distribution for all dk|i and t ≥ 0.
Our results are based on the following Theorems and Lemmas (for the proof of the

following Theorem and Lemmas see [?]).

Theorem 2.1. For some state j0 ∈ (1, . . . , N) of a homogeneous (stationary) Markov
chain with the transition matrix Π and some t > 0, ξ ∈ (0, 1) for all i ∈ G let

πij0 (t) := P (s(t) = sj0 |s(0) = si) ≥ ξ. (1)

Then for any initial-state distribution P {s(0) = si} and for any i, j = 1, . . . , N there
exists the limit

p∗j := lim
t→∞

πij (t)

such that for any t ≥ 0 this limit is reachable with an exponential rate, namely,∣∣πij (t)− p∗j
∣∣ ≤ (1− ξ)t = e−αt

where α := |ln (1− ξ)|.

Corollary 2.2. Since πij0 (t) = (Πn (ij0))
ᵀ

to verify the property (1) it is sufficient to
multiply Π by itself t times up to the moment when all elements of at least one row will
be positive.

Corollary 2.3. For an optimal policy d∗k|i the corresponding homogeneous Markov
chain with the transition matrix Π∗ will be ergodic if the multiplication of Π∗ by itself
n times up to the moment when all the elements of at least one row will be all positive.

Definition 2.4. For a homogeneous finite Markov chain with transition matrix
Π = [πij ]i,j=1,...,N the parameter kerg(t0) defined by

kerg(t0) := 1− 1

2
max

i,j=1,...,N

N∑
m=1

|(π̃im(t0))− (π̃jm(t0))| ∈ [0, 1)

is said to be coefficient of ergodicity of this Markov chain at time t0, where

(π̃im(t0)) = P {s(t0) = sm| s(1) = si} = (Πn0(im))

is the probability to evolve from the initial state s1 = si to the state st0 = sm after t0
transitions.
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Lemma 2.5. The coefficient of ergodicity kerg(t0) can be estimated from below as

kerg(t0) ≥ min
i=1,...,N

max
j=1,...,N

π̃ij (t0) .

Remark 2.6. If all the elements π̃ij (t0) of the transition matrix Πt0 are positive, then
the coefficient of ergodicity kerg(t0) is also positive. Notice that there exist ergodic
Markov chains with elements π̃ij (t0) equal to zero, but with a positive coefficient of
ergodicity kerg(t0).

Theorem 2.7. If for a finite Markov chain, which is controllable by the fixed local-
optimal policy d∗k|i, with positive lower bound estimate of the ergodicity coefficient

χerg := inf
t0

max
j=1,...,N

min
i=1,...,N

π̃∗ij (t0) > 0

then the following properties hold:

1) there exists a unique stationary distribution

p∗ = lim
t→∞

pt;

2) the convergence of the current-state distribution to the stationary one is exponen-
tial:

|pt (i)− p∗ (i)| ≤ C exp {−Dn}

C = 1
1− χιerg

, D = 1
tι∗0

lnC,

t∗0 = arg min
t0

[
max

j=1,...,N
min

i=1,...,N
π̃∗ij (t0)

]
.

Remark 2.8. Theorem 2.1 ensures that Π∗ has a unique everywhere positive invariant
distribution P ∗ and, it is equivalent to the existence of some t0, such that π∗ij (t0) > 0.

Remark 2.9. Theorem 2.7 guarantees that the convergence to P ∗ is exponentially fast
(so that π∗ij (t0) is geometrically ergodic).

2.2. Markov games

The dynamic of the game for Markov chains is described as follows. The game consists
of a set of N = {1, . . . , n} players (denoted by l = 1, n) and begins at the initial state
s(0) = si which (as well as the states further realized by the process) is assumed to be
completely measurable. Each of the players l is allowed to randomize, with distribution
dlk|i(t), over the pure action choices ak ∈ Al (si) , i = 1, N and k = 1,M . From now on,

we will consider only stationary strategies dlk|i(t) = dlk|i. These choices induce the state

distribution dynamics, which in the ergodic case for any stationary strategy dlk|i the

distributions P l (s(t+ 1)=sj) exponentially quickly converge to their limits satisfying

P l (sj) =

N∑
i=1

(
M∑
k=1

πlj|ikd
l
k|i

)
P l (si) .
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The cost function of the optimization problem, depend on the states and actions, are
given by the values W l

ik, so that the “average cost function” J l in the stationary regime
can be expressed as

J l
(
c1, .., cn

)
:=

N∑
i=1

M∑
k=1

W l
ik

n∏
l=1

clik

where cl :=
[
clik
]
i=1,N ;k=1,M

is a matrix with elements

clik = dlk|iP
l (si) (2)

satisfying

cl ∈ Cladm=

{
cl :

N∑
i=1

M∑
k=1

clik = 1, clik≥0, and
M∑
k=1

cljk =
N∑
i=1

M∑
k=1

πlj|ikc
l
ik

}
where

W l
ik =

N∑
i=1

M∑
k=1

(
N∑
j=1

Jijk
n∏
l=1

πlj|ik

)
.

Notice that by (2) it follows that

P l (si) =
M∑
k=1

clik and dlk|i =
clik∑M

k=1 c
l
ik

. (3)

In the ergodic case
∑M
k=1 c

l
ik > 0 for all l = 1, n.

3. STACKELBERG SECURITY GAME

3.1. Stackelberg game

Following [8, 20, 29, 30] let us consider a set N = {1, . . . , n} of defenders (leaders)
indexed by l,

(
l = 1, n

)
, whose randomized strategies are represented by ul ∈ U l. The

set U is a convex and compact set where

ul := col
(
clik
)
, U l := Cladm, U :=

n⊗
l=1

U l

such that the operator col is the column operator, which transforms a matrix into a
column. Let u = (u1, . . . , un)> ∈ U be the joint strategy of the defenders and û = u−l

be the strategy of the complementary players adjoint to ul,

u−l :=
(
u1, . . . , ul−1, ul+1, . . . , un

)> ∈ U−l
where U−l :=

⊗n
h=1,h6=l U

h, and u = (ul, ul̂).
As well as, let us consider a set R = {1, . . . , r} of attackers (followers) indexed by h,(

h = 1, r
)

with randomized strategies vh ∈ V h. V is a convex an compact set such that

vh := col
(
chik
)
, V h := Chadm, V :=

r⊗
h=1

V h.
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Let us denote by v = (v1, . . . , vr) ∈ V :=
⊗r

h=1 V
h the joint strategy of the attackers

and vĥ = v−h is a strategy of the rest of the players adjoint to vh, namely,

v−h :=
(
v1, . . . , vh−1, vh+1, . . . , vr

)> ∈ V −h
such that V −h :=

⊗r
h=1, h6=r V

h and v = (vh, vĥ)
(
h = 1, r

)
.

In the Stackelberg game the defenders first find a strategy u∗ =
(
u1∗, . . . , un∗

)
∈ U

satisfying for any admissible ul ∈ U l and any l = 1, n

Γ (u) :=
n∑
l=1

[(
min
ul∈U l

ψl
(
ul, u−l

))
− ψl

(
ul, u−l

)]
(4)

[8, 31]. Here ψl
(
ul, u−l

)
is the cost-function of the leader l which plays the strategy

ul ∈ U l and the rest of the leaders play the strategy u−l ∈ U−l.
If we consider the utopia point

ūl := arg min
ul∈U l

ψl
(
ul, u−l

)
(5)

then, we can rewrite Eq. (4) as follows

Γ (u) :=

n∑
l=1

[
ψl
(
ūl, u−l

)
− ψl

(
ul, u−l

)]
. (6)

The functions ψl
(
ul, u−l

) (
l = 1, n

)
are assumed to be convex in all their arguments.

The function Γ (u) satisfies the Nash condition

max
u∈U

g (u) =
n∑
l=1

[
ψl
(
ūl, u−l

)
− ψl

(
ul, u−l

)]
≤ 0

for any ul ∈ U l and all l = 1, n
A strategy u∗ ∈ Uadm is said to be a Nash equilibrium if

u∗∈Arg min
u∈Uadm

{Γ (u)} .

If Γ (u) is strictly convex then u∗= arg minu∈Uadm
{Γ (u)} . Following the dynamics

of the game, the attackers observe the defenders behavior and in equilibrium selects the
expected strategy (as a response) v∗ =

(
v1∗, . . . , vr∗

)
∈ V satisfying for any admissible

vh ∈ V h and any h = 1, r

Φ (v) :=
r∑

h=1

[(
min
vh∈V h

ϕh
(
vh, v−h

))
− ϕh

(
vh, v−h

)]
.

Here ϕh
(
vh, v−h

)
is the cost-function of the follower m which plays the strategy vh ∈ V h

and the rest of the leaders play the strategy v−h ∈ V −h.
If we consider the utopia point

v̄h := arg min
vr∈V h

ϕh
(
vh, v−h

)
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then, we can rewrite Eq. (4) as follows

Φ (v) :=

r∑
h=1

(
ϕh
(
v̄h, v−h

)
− ϕh

(
vh, v−h

))
.

The functions ϕr
(
vh, v−h

) (
h = 1, r

)
are assumed to be convex in all their arguments.

The function Φ (v) satisfies the Nash condition

max
vh∈V h

f (v) =
r∑

h=1

(
ϕh
(
v̄h, v−h

)
-ϕh

(
vh, v−h

))
≤ 0

for any vh ∈ V h and all h = 1, r.
Defenders and attackers together are in a Stackelberg game: the model involves two

non-cooperatively Nash games restricted by a Stackelberg game defined as follows.

Definition 3.1. A game with n defenders and m attackers said to be a Stackelberg–
Nash game if

Γ (u|v) :=

n∑
l=1

(
ψl
(
ūl, u−l|v

)
− ψl

(
ul, u−l|v

))
where u corresponds to a defender, realizing its strategy based on the restriction v of
the attackers, such that

max
u∈U

g (u|v) =
n∑
l=1

[
ψl
(
ūl, u−l|v

)
-ψl
(
ul, u−l|v

)]
≤ 0

where u−l is a strategy of the rest of the defenders adjoint to ul, namely,

u−l :=
(
u1, . . . , ul−1, ul+1, . . . , un

)
∈ U−l

where U−l :=
n⊗

y=1, y 6=l
Uy and ūl := arg min

ul∈U l

ψl
(
ul, u−l|v

)
such that

f (v|u) :=

r∑
h=1

(
ϕh
(
v̄h, v−h|u

)
− ϕh

(
vh, v−h|u

))
given that v−h is a strategy of the rest of the attackers adjoint to vh, namely,

v−h :=
(
v1, . . . , vh−1, vh+1, . . . , vr

)
∈ V −h

V −h :=
r⊗

q=1, q 6=h
V q and v̄h := arg min

vh∈V r

ϕh
(
vh, v−h|u

)
.

3.2. Lagrange method and Tikhonov’s regularization

Considering that the loss functions for defenders and attackers admit being non-strictly
convex, an equilibrium point in the followers game may not be unique. To provide the
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uniqueness of an equilibrium let us associate problem (6) with the so-called regularized
problem [13, 14], such that for δ > 0 we have:

(u∗δ , v
∗
δ )∈ arg min

u∈U
max
v∈V

{
Fδ(u, u

−l|v)|gδ(v, v−h|u)≤0, fδ(u, u
−l|v) ≤ 0

}
Fδ(u, u

−l|v) :=
n∑
l=1

[
ψl(u

l, u−l|v)− ψl
(
ul, u−l|v

)]
+ δ

2 (‖u‖2 + ‖v‖2).

(7)

Now, the function Fδ(u, u
−l|v) is strongly convex if δ > 0. The existence of the

solution to problems (6) and (7) follows from Kakutani’s fixed point theorem which is
valid under accepted smoothness conditions. It is evident that, for δ = 0, the problem
(7) converts to problem (6).

The nonlinear programming problem (7) may be resolved by the Lagrange method
implementation. To do this, consider the augmented Lagrange function

Lδ(u, u−l, v, v−h, λ, θ) = (1 + θ)fδ(u, u
−l|v) + λgδ(v, v

−h|u)− δ
2

(
λ2 + θ2

)
. (8)

In view of the strict convexity of (8) for δ > 0, there exists a λ∗δ ≥ 0 such that the
following saddle-point [24] inequalities hold:

Lδ(u∗δ , u
−l∗
δ , v, v−h, λ, θ) ≤ Lδ(u∗δ , u

−[∗
δ , v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ ) ≤ Lδ(u, u−l, v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ ).

(9)

The vector (u∗δ , u
−l∗
δ , v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ ) can be interpreted as the δ approximation of

the solution of problem (8). Thus, we can rewrite (7) using (8) as follows

(u∗δ , u
−l∗
δ , v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ ) = arg min

u∈U
max

v∈V,λ≥0,θ≥0
{Lδ(u, u−l, v, v−h, λ, θ)}.

3.3. The Extraproximal method

In the proximal format (see, [3]) the relation (7) can be expressed as

λ∗δ = arg max
λ≥0

{
− 1

2‖λ− λ
∗
δ‖2 + γLδ(u∗δ , u

−l∗
δ , v∗δ , v

−h∗
δ , λ, θ∗δ )

}
θ∗δ = arg max

θ≥0

{
− 1

2‖θ − θ
∗
δ‖2 + γLδ(u∗δ , u

−l∗
δ , v∗δ , v

−h∗
δ , λ∗δ , θ)

}
u∗δ = arg min

u∈U

{
1
2‖u− u

∗
δ‖2 + γLδ(u, u−l∗δ , v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ )
}

u−l∗δ = arg min
u−l∈U−l

{
1
2‖u
−l − u−l∗δ ‖2 + γLδ(u∗δ , u−l, v∗δ , v

−h∗
δ , λ∗δ , θ

∗
δ )
}

v∗δ = arg max
v∈V

{
− 1

2‖v − v
∗
δ‖2 + γLδ(u∗δ , u

−l∗
δ , v, v−h∗δ , λ∗δ , θ

∗
δ )
}

v−h∗δ = arg max
v−h∈V −h

{
− 1

2‖v
−h − v−h∗δ ‖2 + γLδ(u∗δ , u

−l∗
δ , v∗δ , v

−h, λ∗δ , θ
∗
δ )
}

(10)
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where the solutions u∗δ , u
−l∗
δ , v∗δ , v

−h∗
δ and λ∗δ depend on the small parameters δ, γ >

0. The parameter γ is step decreasing and controls the extent to which the proximal
operator maps points towards the minimum of functional.

The Extraproximal Method for the conditional optimization problems (7) was sug-
gested in [3] and applied for Markov chains models in [30]. We design the method for
the static Stackelberg-Nash game in a general format. The general format iterative ver-
sion (t = 0, 1, . . .) of the extraproximal method with some fixed admissible initial values
(u0 ∈ U, u−l0 ∈ U−l, v0 ∈ V , v−h0 ∈ V −h, λ0 ≥ 0, and θ0 ≥ 0) is as follows

1. The first half-step (prediction):

λt= arg min
λ≥0

{
1
2‖λ− λt‖

2−γLδ(ut, u−lt , vt, v−ht , λ,θt)
}

θ̄t= arg min
θ≥0

{
1
2‖λ− λt‖

2−γLδ(ut, u−lt , vt, v−ht , λ̄t, θ)
}

ut= arg min
u∈U

{
1
2‖u− ut‖

2+γLδ(u, u−lt , vt, v
−h
t , λ̄t,θt)

}
u−lt = arg min

u−l∈U−l

{
1
2‖u
−l − u−lt ‖2 + γLδ(ut, u−l, vt, v−ht , λ̄t,θt)

}
vt= arg min

v∈V

{
1
2‖v − vt‖

2−γLδ(ut, u−lt , v, v−ht , λ̄t,θt)
}

v̄−ht = arg min
v−h∈V −h

{ 12‖v
−h − v−ht ‖2 − γLδ(ut, u−lt , vt, v−h, λ̄t, θt)}.

(11)

2. The second (basic) half-step

λt+1= arg min
λ≥0

{
1
2‖λ− λt‖

2−γLδ(ūt, ū−lt , v̄t, v̄−ht , λ,θt)
}

θt+1= arg min
θ≥0

{
1
2‖λ− λt‖

2−γLδ(ut, u−lt , vt, v̄−ht , λ̄t, θ)
}

ut+1= arg min
u∈U

{
1
2‖u− ut‖

2+γLδ(ut, ū−lt , v̄t, v̄
−l
t , λ̄t,θt)

}
u−ln+1= arg min

u−l∈U−l

{
1
2‖u
−l − u−lt ‖2+γLδ(ūt, u−l, v̄t, v̄−lt , λ̄t,θt)

}
vn+1= arg min

v∈V

{
1
2‖v − vt‖

2−γLδ(ūt, ū−lt , v, v̄−ht , λ̄t,θt)
}

v−hn+1= arg min
v−h∈V −h

{ 12‖v
−h − v−ht ‖2−γLδ(ūt, ū−lt , v̄t, v−h, λ̄t, θt)}.

(12)

4. KULLBACK–LEIBLER RANDOM WALK

For the realization of the game we present a random walk model where the defenders try
to catch the attackers while they both travel from state to state of an ergodic Markov
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chain. The ergodicity of the Markov chain allowed players to jump arbitrarily between
states: such a jump between states corresponds to a short-cut between two places.

During the realization of the round-based model players have no information about
the movement decisions made by their opponents and thus do not know their position
(state) in the Markov chain. The only interaction between players occurs when the
game ends: a defender catches an attacker when the defender and the attacker are both
located on the same state of the Markov chain. Therefore the movement decisions of
both players do not depend on each other.

The goal of the defenders is to catch the attackers in as few rounds as possible,
whereas the attackers aim to maximize the number of rounds until there are caught. In
this setting we study defender strategies as well as attackers strategies on the expected
number of rounds until the defenders catches the attackers. The strategies of the players
are computed solving the Stackelberg game using the extraproximal method given by
dl∗k|i and dh∗k|i respectively.

We introduce a random walk penalized by the Kullback–Leibler divergence [24] (or
the relative entropy) between the strategies of the defenders and the attackers. We

consider the distance to capture as Lc(dlk|i||d
h
k|i) ,

∑N
i=1 d

l
k|i log

dlk|i
dh
k|i

and the distance

to escape as Le(dhk|i||d
l
k|i) ,

∑N
i=1 d

h
k|i log

dhk|i
dl
k|i

. For determining the penalization of the

defender we consider:
Le(dhk|i||d

l
k|i) > Lc(dlk|i||d

h
k|i). (13)

for a fixed i. The interpretation is that the perception of the defender and the attacker
is different.

For the defender we investigate two models: in one model the defender as usual
travel from state to state of the ergodic Markov chain, and in the other model the
control penalizes the defenders’ deviation from the attackers’ location.

The controlled state component is a standard Markov chain. The discrete steps are
indexed by n = 0, 1, . . .. We assume that the initial state at step 0 is fixed and denoted
sl(0) for every leader and sh(0) for every follower. At the t−th step, the following
happen:

Algorithm without penalization:
while( not capture condition (see below Eq. (14)) )

for every leader select random a state sl from P lt
for every follower select random a state sh from Pht
Set states sl and sh, and draw

end
Algorithm with penalization:
while(not capture condition see below (Eq. (14)))

for every leader select random a state sl from P lt
for every follower select random a state sh from Pht
if( Le(dhk|i||d

l
k|i) > Lc(dlk|i||d

h
k|i) )

select random a state sl such that sl 6= sh.
Set states sl and sh, and draw

end
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Formally, given (Ω,F , P ) a probability space (Ω is a sample space; F is a -algebra
of measurable subsets (events) of Ω; and P is a probability measure on F [24], let us
introduce the capture condition at time t (defenders and attackers are located at the
same state) as follows:

N∑
j=1

χ(α : sl(t) = sj ∧ sh(t) = sj) =
N∑
j=1

χ(α : sl(t) = sj)χ(α : sh(t) = sj), α ∈ Ω,

where α ∈ Ω is a trajectory.
Now, the capture event of all the attackers is given by

n∑
l=1

r∑
h=1

N∑
j=1

χ(α : sl(t) = sj)χ(α : sh(t) = sj). (14)

A fixed Markov transition matrix πlj|ik is given. Then, the state transitions induced by

the strategy dl∗k|i are governed by the conditional probability law

Πl∗
ij(d) =

M∑
k=1

πlj|ikd
l∗
k|i.

Then, considering that

P {α : A ∈ F} = E {χ(α : A ∈ F)} ,

we have that the total probability Pt of converging to a state j at time n for all the
defenders and attackers is given by

Pt =

n∑
l=1

r∑
h=1

N∑
j=1

Pt
{
α : sl(t) = sj

}
Pt
{
α : sh(t) = sj

}
,

where

P lj,n
{
α : sl(t) = sj

}
=

N∑
i=1

M∑
k=1

πlj|ikd
l∗
k∗|iP

l
t−1
{
α : sl(t− 1) = si

}
,

and

Phj,t
{
α : sh(t) = sj

}
=

N∑
i=1

M∑
k=1

πhj|ikd
h∗
k∗|iP

h
t−1
{
α : sh(t− 1) = si

}
.

Now, defining

Πl∗
ij =

M∑
k=1

πlj|ikd
l∗
k|i, Πh∗

ij =
M∑
k=1

πhij|kd
h∗
k|i, .

we have

P lt
{
α : s(t)l = sj

}
=

n∑
i=1

Πl∗
ijP

l
t−1
{
α : sl(t− 1) = si

}
,
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and

Pht
{
α : s(t)h = sj

}
=

N∑
i=1

Πh∗
ij P

h
t−1
{
α : sh(t− 1) = si

}
.

Then, the probability Pt satisfies the following relation

Pt =

n∑
l=1

r∑
h=1

N∑
i=1

N∑
i=1

[
Πl∗
ijP

l
t−1 {si}

] [
Πh∗
ij P

h
t−1 {si}

]
.

The probability of the state-vector Pt converges to a state j at time t by the Weier-
strass Theorem. Indeed, let {Xt} and {Yt} be two chains and let X and Y two ran-
dom variables associated P lt

{
α : s(t)l = sj

}
= P lt{X = sj} and Pht

{
α : s(t)h = sj

}
=

Pht {Y = sj}, respectively. Because, P lt
{
α : slt = sj

}
and Pht

{
α : sht = sj

}
converge,

then we will suppose that {Xt} converges to X and {Yt} converges to Y in distribution
when t → ∞. Let

{
Xω(t)Yα(t)

}
be a subsequence of {XtYt}. We need to show that a

subsequence converges to XY . Since {Xt} converges to X in probability, there exists ζ
such that

{
Xω(ζ(t))

}
converges to X by the Weierstrass Theorem. As well as, {Yt} con-

verges to Y in probability, there exists ξ such that
{
Yω(ζ(ξ(t)))

}
converges to Y . Then,

we have that
{
Xω(ζ(ξ(t)))Yω(ζ(ξ(t)))

}
converges to XY . As a result, the probability of

the state-vector Pt converges. Then, the theorem is proved.

5. NUMERICAL EXAMPLE

We present an application for protecting a marine canal suggesting patrolling strategies
to protect ports. The mission involves ensuring the safety and security of all passenger,
cargo, and vessel operations. Given the particular variety of critical infrastructure that
an adversary may attack within the port agencies conducts patrols to protect such in-
frastructure. Whereas attackers have the opportunity to observe patrol patterns, limited
security resources imply that agencies patrols cannot be at every location any time. To
support agencies in the process of patrolling resources allocation we employ the proposed
Stackelberg-Nash game framework fixing two independents agencies as the defenders
against two independent thieves (attackers) that conduct surveillance before potentially
launching an attack. We consider five different ports as control points and two actions
conceptualized as patrol and surveillance [28]. In surveillance the agencies conduct ob-
servations to gain information for particular purposes (that in some case can violate the
privacy). It reserves the right to respond in problematic situations or risk appears taking
place. It main goals are: a) acquire intelligence information (subject, criminal group,
etc.), b) intercepting communications, etc. In patrol the agencies monitors a particular
area, alert for suspicious behavior or other types of danger. For instance, a naval task
force sailing in a strategic shipping lane. The agencies have special obligations to do:
a) locate contraband or places of illegal activities, b) prevent a crime from occurring,
etc. The output of the example is a schedule of patrols that includes what port to visit
for each agency. The schedule is realized by handling a Kullback–Leibler divergence
random walk approach where thieves are pursued by agencies and their detention is de-
termined by a capture condition. The transition matrices, as well as, the cost matrices
are empirically defined.
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For the Agency 1 we have the transition matrices:

π1
j|i1 =


0.2464 0.2329 0.1234 0.1111 0.2862
0.4706 0.1626 0.0996 0.0711 0.1960
0.0849 0.3656 0.2388 0.2110 0.0997
0.1647 0.1514 0.2743 0.1847 0.2249
0.1740 0.1234 0.1499 0.2691 0.2835



π1
j|i2 =


0.1413 0.0950 0.2003 0.1243 0.4390
0.1874 0.1787 0.1502 0.2942 0.1894
0.2454 0.1733 0.0733 0.2287 0.2793
0.3365 0.1384 0.1422 0.1848 0.1982
0.2761 0.3698 0.1000 0.1390 0.1151


and the cost matrices are given by:

u1ij1 =


4 82 63 59 94
14 23 1 68 28
24 16 12 52 3
10 17 70 69 56
16 17 24 31 22

u1ij2 =


94 19 36 26 20
32 79 9 79 47
34 11 6 41 14
78 24 28 9 72
13 67 13 79 18

 .

For the Agency 2 we have the transition matrices:

π2
j|i1 =


0.2082 0.3760 0.1896 0.1202 0.1061
0.4259 0.1001 0.1598 0.1549 0.1593
0.3533 0.1836 0.2729 0.0747 0.1156
0.0884 0.3181 0.3800 0.0812 0.1324
0.0783 0.1472 0.1256 0.1694 0.4796



π2
j|i2 =


0.2706 0.2719 0.2210 0.1360 0.1004
0.1628 0.1912 0.2130 0.1275 0.3054
0.1486 0.1096 0.1501 0.3140 0.2777
0.1503 0.1042 0.2647 0.2638 0.2170
0.2587 0.1187 0.3104 0.1279 0.1843


and the cost matrices are given by:

u2ij1 =


29 88 12 79 33
15 24 26 11 97
17 19 24 4 19
70 11 29 41 24
17 97 30 27 25

u2ij2 =


62 13 24 74 68
37 28 28 6 2
134 1 44 5 26
20 12 33 12 21
80 32 231 16 19

 .

For the Thief 3 we have the transition matrices:

π3
j|i1 =


0.1414 0.2632 0.3927 0.1097 0.0930
0.2042 0.1825 0.1275 0.3735 0.1123
0.2082 0.4375 0.1532 0.1312 0.0700
0.4116 0.2252 0.0882 0.1388 0.1362
0.1351 0.2024 0.1243 0.3610 0.1772


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π3
j|i2 =


0.1333 0.3410 0.1076 0.2790 0.1391
0.1994 0.0775 0.1187 0.4362 0.1682
0.2444 0.1112 0.3544 0.2146 0.0754
0.2045 0.2076 0.1967 0.2465 0.1447
0.1767 0.1285 0.1280 0.3548 0.2119


and the cost matrices are given by:

u3i,j|1 =


6 1 6 46 18
69 2 52 44 40
5 82 8 3 4
8 3 65 9 81
5 15 1 14 7

u3i,j|2 =


40 30 11 6 3
53 44 38 3 5
42 2 20 6 9
66 9 9 74 42
3 17 34 27 9

 .

For the Thief 4 we have the transition matrices:

π4
j|i1 =


0.3083 0.1398 0.2809 0.0975 0.1735
0.0845 0.1905 0.2199 0.3059 0.1993
0.1984 0.0980 0.2365 0.3485 0.1186
0.1871 0.1293 0.3087 0.1339 0.2410
0.3270 0.0741 0.2641 0.1064 0.2285



π4
j|i2 =


0.1266 0.4097 0.1374 0.0969 0.2294
0.4062 0.1854 0.2306 0.1099 0.0679
0.1198 0.1316 0.2961 0.3518 0.1008
0.1163 0.1488 0.2993 0.3431 0.0926
0.1109 0.2108 0.1331 0.3284 0.2167


and the cost matrices are given by:

u4ij1 =


61 4 7 74 19
11 36 13 3 6
14 6 17 17 39
18 20 34 32 6
10 3 3 2 7

u4ij2 =


25 1 7 2 5
11 59 7 16 6
46 1 9 14 6
7 54 7 53 3
17 1 22 19 6

 .

Then, fixing γ0 = 0.024 and δ0 = 5.0 × 10−3 we have that the resulting equilibrium
point of the Stackelberg security game is given by:

d1∗k|i =


0.5845 0.4155
0.7237 0.2763
0.9664 0.0336
0.0308 0.9692
0.4245 0.5755

 d2∗k|i =


0.6132 0.3868
0.7607 0.2393
0.9788 0.0212
0.0360 0.9640
0.1135 0.8865



d3∗k|i =


0.4860 0.5140
0.5553 0.4447
0.6735 0.3265
0.2198 0.7802
0.7252 0.2748

 d4∗k|i =


0.6791 0.3209
0.3174 0.6826
0.4775 0.5225
0.3947 0.6053
0.7919 0.2081

 .
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Fig. 1. Convergence for the Agency 1.

Figures 1 and 2 show the convergence of the strategies of the Agency 1 and Agency 2.
The Figures 3 and 4 show the convergence of the strategies of the Thief 3 and Thief 4.

The realization of the random walk is a round-based model where the defenders
catch the attackers while they both travel from state to state of an ergodic MDP. The
realization of the random walk without penalization is shown in Figure 5. This walk
can be described as follows. In the course of the random walk without penalization
attackers and defenders have no information about the movement decisions made by the
other players and then they do not know their position in the MDP. The only interaction
between players occurs when the game finishes. In this case Thief 2 is captured at state
5 by agency 1 after two iterations, and Thief 1 is captured at state 1 by agency 1 and
agency 2 in cooperation after 14 steps and the realization is over.

On the other hand, the realization of the random walk employing the algorithm with
penalization is shown in Figure 6. During the random walk with penalization agencies
and thieves have full information about the movement decisions made by the other
players. In this case Thief 1 is captured at state 1 after 36 steps and Thief 2 is captured
at state 2 after 40 steps and the realization is over. This behavior is in correspondence
with the penalization imposed by the selection of the actions of the strategies.
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Fig. 2. Convergence for the Agency 2.
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Fig. 3. Convergence for the Thief 3.
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Fig. 4. Convergence for the Thief 4.
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Fig. 5. Random walk realization without penalization.
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Fig. 6. Random walk realization with penalization.

6. CONCLUSION

The problem studied in this paper combines aspects of both game theory and stochas-
tic control using several ideas and techniques from the theory of MDPs with average
cost criterion for solving the game and some new results concerning optimal policies
for MDPs with KL for selecting the optimal control law. In particular, the framework
presented in this work computes the Stackelberg/Nash equilibrium for multiple players
in non-cooperative Stackelberg security games presenting a real-world solution to the
problem. For solving the problem, we used the extraproximal method, within which we
explicitly compute the unique Stackelberg/Nash equilibrium of the game by specifying
a natural model employing the Lagrange method and introducing the Tikhonov regular-
ization method. We introduced a random walk based on the Kulback-Leibler divergence
studying two models for the defenders: in one model the defender travel from state to
state of the ergodic MDP, and in the other model the control penalizes the defenders’ de-
viation from the attackers’ location. We proved that the synchronization of the random
walk of defenders and attackers converge in probability to the product of the individual
probabilities.

(Received February 18, 2017)
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