Applications of Mathematics

Abdeslem Lyaghfouri

A continuity result for a quasilinear elliptic free boundary problem

Applications of Mathematics, Vol. 65 (2020), No. 1, 67-87
Persistent URL: http://dml.cz/dmlcz/147995

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A CONTINUITY RESULT FOR A QUASILINEAR ELLIPTIC FREE BOUNDARY PROBLEM

Abdeslem Lyaghfouri, Ras Al Khaimah

Received August 4, 2019. Published online January 31, 2020.

Abstract. We investigate a two dimensional quasilinear free boundary problem, and show that the free boundary is a union of graphs of continuous functions.

Keywords: quasilinear elliptic free boundary; continuity
MSC 2010: 35R35, 35J62

1. Introduction

In this paper we consider the quasilinear free boundary problem studied in [12]

$$
\left\{\begin{array}{l}
\text { Find }(u, \chi) \in W^{1, A}(\Omega) \times L^{\infty}(\Omega) \text { such that: } \tag{P}\\
\text { (i) } \quad 0 \leqslant u \leqslant M, \quad 0 \leqslant \chi \leqslant 1, \quad u(1-\chi)=0 \quad \text { a.e. in } \Omega \\
\left(\text { ii } \quad \Delta_{A} u=-\operatorname{div}(\chi H(x)) \quad \text { in }\left(W_{0}^{1, A}(\Omega)\right)^{\prime}\right.
\end{array}\right.
$$

where Ω is an open bounded domain of $\mathbb{R}^{2}, x=\left(x_{1}, x_{2}\right), M$ is a positive constant,

$$
A(t)=\int_{0}^{t} a(s) \mathrm{d} s, \quad \Delta_{A} u=\operatorname{div}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u\right)
$$

in the distributional sense is the A-Laplacian, a is a C^{1} function from $[0, \infty)$ to $[0, \infty)$ such that $a(0)=0, a(t)>0$ for $t>0$, and for some positive constants a_{0}, a_{1}

$$
\begin{equation*}
a_{0} \leqslant \frac{t a^{\prime}(t)}{a(t)} \leqslant a_{1} \quad \forall t>0 \tag{1.1}
\end{equation*}
$$

As a consequence of (1.1), we have the following monotonicity inequality (see [8]):

$$
\begin{equation*}
\left(\frac{a(|\xi|)}{|\xi|} \xi-\frac{a(|\zeta|)}{|\zeta|} \zeta\right) \cdot(\xi-\zeta)>0 \quad \forall \xi, \zeta \in \mathbb{R}^{2} \backslash\{0\}, \xi \neq \zeta \tag{1.2}
\end{equation*}
$$

For examples of functions $a(t)$, we refer to [13].
Let $H=\left(H_{1}, H_{2}\right)$ be a vector function that satisfies for some positive constants \underline{h}, \bar{h}

$$
\begin{align*}
\left|H_{1}\right| \leqslant \bar{h}, \quad 0 & <\underline{h} \leqslant H_{2} \leqslant \bar{h} \quad \text { in } \Omega, \tag{1.3}\\
H & \in C^{0,1}(\bar{\Omega}), \tag{1.4}\\
\operatorname{div}(H) & \geqslant 0 \quad \text { a.e. in } \Omega \tag{1.5}\\
\operatorname{div}(H) & \leqslant \bar{h} \quad \text { a.e. in } \Omega . \tag{1.6}
\end{align*}
$$

We refer to [13] for the definition of the Orlicz-Sobolev space $W^{1, A}(\Omega)$ and its norm.
In [12], it was shown that the free boundary which is defined as the intersection of the sets $\{u=0\}$ and $\overline{\{u>0\}}$, is a union of graphs of lower semi-continuous functions depending only on the vector function H. In this paper, we will show that these functions are actually continuous and that χ is the characteristic function of the set $\{u>0\}$.

Problem (P) describes a variety of free boundary problems including the lubrication problem [1] and the dam problem [16], [15], [2], [6], [3], [10], [18], and [19]. For a more general framework, we refer to [14], [4], [5], [9], [7], [11], [12] and [20].

Throughout this paper, we will denote by $B_{r}(x)$ or $\bar{B}_{r}(x)$ the open or closed ball, respectively, of center x and radius r in \mathbb{R}^{2}.

2. Preliminary results

When $H_{1}=0$ and H_{2} is a constant function, it is easy to show as in [7] that $\chi_{x_{2}} \leqslant 0$ in $\mathcal{D}^{\prime}(\Omega)$ and that the free boundary $\partial\{u>0\} \cap \Omega$ is the graph of a continuous function $x_{2}=\varphi\left(x_{1}\right)$. When H is not a constant vector, we can show as in [5] that

$$
\begin{equation*}
\operatorname{div}(\chi H)-\chi(\{u>0\}) \operatorname{div}(H) \leqslant 0 \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{2.1}
\end{equation*}
$$

Actually (2.1) can be obtained from (P) (ii) by adapting the proof of Lemma 2.4. As a consequence of this property, the function χ is decreasing along the orbit $\gamma(w)$ (see Figure 1) of the following differential equation (see [12]):

$$
(E(w, h))\left\{\begin{array}{l}
X^{\prime}(t, w, h)=H(X(t, w, h)) \\
X(0, w, h)=(w, h)
\end{array}\right.
$$

where $h \in \pi_{x_{2}}(\Omega), w \in \pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right)$, and where $\pi_{x_{1}}$ and $\pi_{x_{2}}$ are respectively the orthogonal projections on the x_{1} and x_{2} axes. We will denote by $X(\cdot, w)$ the maximal solution of $E(w, h)$ defined on the interval $\left(\alpha_{-}(w), \alpha_{+}(w)\right)$. We know [5] that the
limits $\lim _{t \rightarrow \alpha_{-}(w)^{+}} X(t, w)=X\left(\alpha_{-}(w), w\right) \in \partial \Omega \cap\left\{x_{2}<h\right\}$ and $\lim _{t \rightarrow \alpha_{+}(w)^{-}} X(t, w)=$ $X\left(\alpha_{+}(w), w\right) \in \partial \Omega \cap\left\{x_{2}>h\right\}$ both exist.

Figure 1.

Now, we recall for the reader's convenience a few technical properties and definitions established in [5] and [12]:
$\triangleright \alpha_{+}$and α_{-}are uniformly bounded.
\triangleright For each $h \in \pi_{x_{2}}(\Omega)$, the following mapping is one to one

$$
\begin{gathered}
T_{h}: D_{h} \rightarrow T_{h}\left(D_{h}\right) \\
(t, w) \mapsto T_{h}(t, w)=\left(T_{h}^{1}, T_{h}^{2}\right)(t, w)=X(t, w)
\end{gathered}
$$

where $D_{h}=\left\{(t, w) / w \in \pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right), t \in\left(\alpha_{-}(w), \alpha_{+}(w)\right)\right\}$.
$\triangleright \Omega=\bigcup_{h \in \pi_{x_{2}}(\Omega)} T_{h}\left(D_{h}\right)$.
$\triangleright T_{h}$ and T_{h}^{-1} are $C^{0,1}$.
\triangleright The determinant $Y_{h}(t, w)$ of the Jacobian matrix of T_{h} satisfies:
(i) $Y_{h}(t, w)=-H_{2}(w, h) \exp \left(\int_{0}^{t}(\operatorname{div} H)(X(s, w)) \mathrm{d} s\right)$ a.e. in D_{h}.
(ii) $\underline{h} \leqslant\left|Y_{h}(t, w)\right| \leqslant C \bar{h}, C>0$, a.e. in D_{h}.

The following interior regularity, established in [12], will be useful in Section 3.

Theorem 2.1. For any solution (u, χ) of (P$)$ we have $u \in C_{\mathrm{loc}}^{0,1}(\Omega)$.

The following monotonicity of χ based on (2.1) (see [5], [12]) is the key point in parameterizing the free boundary:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\chi \circ T_{h}\right) \leqslant 0 \quad \text { in } \mathcal{D}^{\prime}\left(D_{h}\right) . \tag{2.2}
\end{equation*}
$$

Property (2.2) means that χ decreases along the orbits of the differential equation $(E(w, h))$. The consequence of this monotonicity is materialized in the next theorem (see Figure 2).

Figure 2.

Theorem 2.2. Let (u, χ) be a solution of (P) and $x_{0}=T_{h}\left(t_{0}, w_{0}\right) \in T_{h}\left(D_{h}\right)$.
(i) If $u\left(x_{0}\right)=u \circ T_{h}\left(t_{0}, w_{0}\right)>0$, then there exists $\varepsilon>0$ such that

$$
u \circ T_{h}(t, w)>0 \quad \forall(t, w) \in C_{\varepsilon}=\left\{(t, w) \in D_{h} /\left|w-w_{0}\right|<\varepsilon, t<t_{0}+\varepsilon\right\} .
$$

(ii) If $u\left(x_{0}\right)=u \circ T_{h}\left(t_{0}, w_{0}\right)=0$, then $u \circ T_{h}\left(t, w_{0}\right)=0$ for all $t \geqslant t_{0}$.

The proof of Theorem 2.2 is based on the following strong maximum principle (see [12]):

Lemma 2.1. If $u \in W^{1, A}(U) \cap C^{1}(U) \cap C^{0}(\bar{U})$ satisfies $u \geqslant 0$ and $\Delta_{A} u \leqslant 0$ in U, then $u \equiv 0$ in U or $u>0$ in U.

Thanks to Theorem 2.2, we can define for each $h \in \pi_{x_{2}}(\Omega)$, the following function φ_{h} on $\pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right)$ (see [12]):

$$
\varphi_{h}(w)=\left\{\begin{array}{l}
\sup \left\{t:(t, w) \in D_{h}, u \circ T_{h}(t, w)>0\right\} \quad \text { if this set is not empty } \\
\alpha_{-}(w) \quad \text { otherwise }
\end{array}\right.
$$

Then we have (see [12]):

Proposition 2.1. For each $h \in \pi_{x_{2}}(\Omega)$, the function φ_{h} is lower semi-continuous at each $w \in \pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right)$ such that $T_{h}\left(\varphi_{h}(w), w\right) \in \Omega$. Moreover,

$$
\begin{equation*}
\left\{u \circ T_{h}(t, w)>0\right\} \cap D_{h}=\left\{t<\varphi_{h}(w)\right\} . \tag{2.3}
\end{equation*}
$$

The following lemma will be of interest in Section 3.

Lemma 2.2. Let $h \in \pi_{x_{2}}(\Omega)$. For each $k \in \pi_{x_{2}}(\Omega)$ and $w \in \pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right)$, let $t_{k}(w)$ be the unique value of t at which the orbit $\gamma(w)$ of $X(\cdot, w)$ intersects the line $\left\{x_{2}=k\right\}$ if it exists. Then the function $S(k, w)=t_{k}(w)$ is Lipschitz continuous in its domain. More precisely, we have for some positive constant C :

$$
\left|S(k, w)-S\left(k_{0}, w_{0}\right)\right| \leqslant C\left(\left|k-k_{0}\right|+\left|w-w_{0}\right|\right) \quad \forall(k, w),\left(k_{0}, w_{0}\right) \in \operatorname{domain}(S) .
$$

Proof. Let $(k, w),\left(k_{0}, w_{0}\right) \in$ domain (S). First we have from the differential equation $(E(w, h))$

$$
k=h+\int_{0}^{t_{k}(w)} H_{2}(X(s, w)) \mathrm{d} s \quad \text { and } \quad k_{0}=h+\int_{0}^{t_{k_{0}}\left(w_{0}\right)} H_{2}\left(X\left(s, w_{0}\right)\right) \mathrm{d} s
$$

If we subtract these two equalities, we obtain

$$
\begin{equation*}
k-k_{0}=\int_{0}^{t_{k}(w)} H_{2}(X(s, w)) \mathrm{d} s-\int_{0}^{t_{k_{0}}\left(w_{0}\right)} H_{2}\left(X\left(s, w_{0}\right)\right) \mathrm{d} s . \tag{2.4}
\end{equation*}
$$

Next, if we assume that $t_{k}(w)>t_{k_{0}}\left(w_{0}\right)$, then we get by (1.3)

$$
\begin{equation*}
\underline{h}\left(t_{k}(w)-t_{k_{0}}\left(w_{0}\right)\right) \leqslant \int_{t_{k_{0}}\left(w_{0}\right)}^{t_{k}(w)} H_{2}(X(s, w)) \mathrm{d} s . \tag{2.5}
\end{equation*}
$$

Now, observe that

$$
\begin{align*}
&\left.\int_{t_{k_{0}\left(w_{0}\right)}^{t_{k}(w)}} H_{2}(X(s, w)) \mathrm{d} s\right)=\int_{0}^{t_{k}(w)} H_{2}(X(s, w)) \mathrm{d} s-\int_{0}^{t_{k_{0}}\left(w_{0}\right)} H_{2}(X(s, w)) \mathrm{d} s \tag{2.6}\\
&= \int_{0}^{t_{k}(w)} H_{2}(X(s, w)) \mathrm{d} s-\int_{0}^{t_{k_{0}}\left(w_{0}\right)} H_{2}\left(X\left(s, w_{0}\right)\right) \mathrm{d} s \\
&+\int_{0}^{t_{k_{0}}\left(w_{0}\right)}\left(H_{2}\left(X\left(s, w_{0}\right)\right)-H_{2}(X(s, w))\right) \mathrm{d} s
\end{align*}
$$

Using (2.4), (2.6) and the fact that $H_{2} \circ X$ is Lipschitz continuous in \bar{D}_{h}, and since $t_{k_{0}}\left(w_{0}\right)$ is bounded independently of k_{0} and w_{0}, we obtain from (2.5) for some positive constant C_{0}

$$
\underline{h}\left(t_{k}(w)-t_{k_{0}}\left(w_{0}\right)\right) \leqslant k-k_{0}+C_{0}\left|w-w_{0}\right|,
$$

which leads for $C=\max \left(1, C_{0}\right) / \underline{h}$, to

$$
\begin{equation*}
t_{k}(w)-t_{k_{0}}\left(w_{0}\right) \leqslant C\left(\left|k-k_{0}\right|+\left|w-w_{0}\right|\right) \tag{2.7}
\end{equation*}
$$

If $t_{k}(w)<t_{k_{0}}\left(w_{0}\right)$, we get in a similar fashion

$$
\begin{equation*}
t_{k_{0}}\left(w_{0}\right)-t_{k}(w) \leqslant C\left(\left|k-k_{0}\right|+\left|w-w_{0}\right|\right) \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8), the lemma follows.
Remark 2.1. (i) Our main goal is to prove that for each $h \in \pi_{x_{2}}(\Omega)$, the function φ_{h} is actually continuous. Due to the local character of this result, we will confine ourselves to the following situation:

We assume that $u=0$ on an open and connected subset Γ of $\partial \Omega$ and consider an open subset $U=T_{h}\left(D_{h}^{+} \cap\left\{w_{*}<w<w^{*}\right\}\right.$) of $T_{h}\left(D_{h}\right)$ (see Figure 3), where $D_{h}^{+}=\left\{(t, w) / w \in \pi_{x_{1}}\left(\Omega \cap\left\{x_{2}=h\right\}\right), t \in\left(0, \alpha_{+}(w)\right)\right\}$ so that $T_{h}\left(\left\{\left(\alpha_{+}(w), w\right), w \in\right.\right.$ $\left.\left.\left(w_{*}, w^{*}\right)\right\}\right) \subset \subset \Gamma$. Hence, we are led to the following problem:

$$
\left\{\begin{array}{l}
\text { Find }(u, \chi) \in W^{1, A}(U) \times L^{\infty}(U) \text { such that: } u=0 \text { on } \Gamma, \tag{P}\\
\quad 0 \leqslant u \leqslant M, 0 \leqslant \chi \leqslant 1, u(1-\chi)=0 \quad \text { a.e. in } U \\
\int_{U}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla \zeta \mathrm{d} x \leqslant 0, \\
\quad \forall \zeta \in W^{1, A}(U), \quad \zeta \geqslant 0 \quad \text { on } \Gamma, \quad \zeta=0 \quad \text { on } \partial U \backslash \Gamma .
\end{array}\right.
$$

(ii) We observe that the free boundary $(\partial\{u>0\}) \cap U$ is the graph of the lower semi-continuous function φ_{h} in $\left(w_{*}, w^{*}\right)$. Our objective is to prove the continuity of the function φ_{h}, which we will do in Section 3 by showing that it is also upper semicontinuous. To this end, we need to generalize a few lemmas previously established for a linear operator in [5]. In the sequel and without notice, we will denote by (u, χ) a solution of the problem (P).

Figure 3.
Lemma 2.3. Let $w_{1}, w_{2} \in\left(w_{*}, w^{*}\right), k \in \pi_{x_{2}}(U)$ be such that $w_{1}<w_{2}$ and $\left\{x_{2}=k\right\} \cap \gamma\left(w_{i}\right) \neq \emptyset, i=1$, 2. If (see Figure 4)
$Z_{k}=T_{h}\left(\left\{(t, w) \in D_{h}, w \in\left(w_{1}, w_{2}\right), t>t_{k}(w)\right\}\right)=T_{h}\left(\left\{w_{1}<w<w_{2}\right\}\right) \cap\left\{x_{2}>k\right\}$, and $u \circ T_{h}\left(t_{k}\left(w_{i}\right), w_{i}\right)=0$ for $i=1,2$, then we have

$$
\begin{gathered}
\int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla \zeta \mathrm{d} x \leqslant 0 \quad \forall \zeta \in W^{1, A}\left(Z_{k}\right) \cap C^{0}\left(\bar{Z}_{k}\right), \\
\zeta \geqslant 0 \quad \text { on } \quad \bar{Z}_{k} \backslash\left\{x_{2}=k\right\}, \quad \zeta=0 \quad \text { on } \bar{Z}_{k} \cap\left\{x_{2}=k\right\} .
\end{gathered}
$$

Figure 4.

The proof of Lemma 2.3 is inspired by the one of a similar lemma in [14] for the case $H(x)=(h(x), 0)$. Our proof is based on the next lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3, we have

$$
\begin{gathered}
\int_{Z_{k}} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \mathrm{~d} x-\int_{Z_{k}} \chi_{\{u>0\}} \operatorname{div}(H) \zeta \mathrm{d} x \leqslant 0 \\
\forall \zeta \in W^{1, A}\left(Z_{k}\right) \cap C^{0}\left(\bar{Z}_{k}\right), \zeta \geqslant 0 \text { on } \bar{Z}_{k} \backslash\left\{x_{2}=k\right\}, \zeta=0 \text { on } \bar{Z}_{k} \cap\left\{x_{2}=k\right\} .
\end{gathered}
$$

Proof. Let ζ be as in the lemma, $\varepsilon>0$, and $F_{\varepsilon}(u)=\min \left\{u^{+} / \varepsilon, 1\right\}$. Using $\chi\left(Z_{k}\right) F_{\varepsilon}(u) \zeta$ as a test function for (P), we get

$$
\begin{aligned}
\int_{Z_{k}} F_{\varepsilon}(u) \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \mathrm{~d} x & +\int_{Z_{k}} H(x) \cdot \nabla\left(F_{\varepsilon}(u) \zeta\right) \mathrm{d} x \\
& \leqslant-\int_{Z_{k}} F_{\varepsilon}^{\prime}(u) \zeta|\nabla u| a(|\nabla u|) \mathrm{d} x \leqslant 0 .
\end{aligned}
$$

Integrating by parts, we obtain

$$
\begin{equation*}
\int_{Z_{k}} F_{\varepsilon}(u) \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \mathrm{~d} x-\int_{Z_{k}} \operatorname{div}(H) F_{\varepsilon}(u) \zeta \mathrm{d} x \leqslant 0 . \tag{2.9}
\end{equation*}
$$

The lemma follows by letting ε go to 0 in (2.9).
Proof of Lemma 2.3. For $\varepsilon>0$ small enough, let

$$
\alpha_{\varepsilon}(w)=\min \left\{1, \frac{\left(w-w_{1}\right)^{+}}{\varepsilon}, \frac{\left(w_{2}-w\right)^{+}}{\varepsilon}\right\}
$$

and observe that

$$
\begin{align*}
\int_{Z_{k}} & \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla \zeta \mathrm{d} x \tag{2.10}\\
= & \int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left[\left(\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x \\
& \quad+\int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left[\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x .
\end{align*}
$$

Since $\chi\left(Z_{k}\right)\left(\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta$ is a test function for (P), we have:

$$
\begin{equation*}
\int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left[\left(\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x \leqslant 0 . \tag{2.11}
\end{equation*}
$$

Applying Lemma 2.4 to the function $\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta$, we get
(2.12) $\int_{Z_{k}} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla\left[\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x \leqslant \int_{Z_{k}} \chi_{\{u>0\}} \operatorname{div}(H)\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta \mathrm{d} x$.

Taking into account (2.11)-(2.12), we obtain from (2.10)

$$
\begin{align*}
\int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u\right. & +\chi H(x)) \cdot \nabla \zeta \mathrm{d} x \tag{2.13}\\
\leqslant & \int_{Z_{k}} \chi_{\{u>0\}} \operatorname{div}(H)\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta \mathrm{d} x \\
& +\int_{Z_{k}} \chi H(x) \cdot \nabla\left[\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x .
\end{align*}
$$

Using the change of variables $x=T_{h}(t, w)$ and arguing as in the proof of Theorem 2.1 in [5], we obtain

$$
\begin{align*}
\int_{Z_{k}} \chi H(x) \cdot & \nabla\left[\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta\right] \mathrm{d} x \tag{2.14}\\
& =\int_{T_{h}^{-1}\left(Z_{k}\right)}-Y_{h} \chi \circ T_{h} \frac{\partial}{\partial t}\left[1-\alpha_{\varepsilon} \zeta \circ T_{h}\right] \mathrm{d} t \mathrm{~d} w \\
& =-\int_{T_{h}^{-1}\left(Z_{k}\right)}\left(1-\alpha_{\varepsilon}\right) Y_{h} \chi \circ T_{h} \frac{\partial}{\partial t}\left[\zeta \circ T_{h}\right] \mathrm{d} t \mathrm{~d} w .
\end{align*}
$$

Then we derive from (2.13) and (2.14)

$$
\begin{align*}
\int_{Z_{k}} & \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla \zeta \mathrm{d} x \tag{2.15}\\
\leqslant & \int_{Z_{k}} \chi_{\{u>0\}} \operatorname{div}(H)\left(1-\alpha_{\varepsilon} \circ T_{h}^{-1}\right) \zeta \mathrm{d} x \\
& \quad-\int_{T_{h}^{-1}\left(Z_{k}\right)}\left(1-\alpha_{\varepsilon}\right) Y_{h} \chi \circ T_{h} \frac{\partial}{\partial t}\left[\zeta \circ T_{h}\right] \mathrm{d} t \mathrm{~d} w .
\end{align*}
$$

Hence, the lemma follows by letting ε go to 0 in (2.15).

Lemma 2.5. Let $x_{0}=T_{h}\left(t_{0}, w_{0}\right) \in U$. If $u \circ T_{h}=0$ in $B_{r}\left(t_{0}, w_{0}\right)$, then

$$
u \circ T_{h}=0 \quad \text { in } C_{r} \quad \text { and } \quad \chi \circ T_{h}=0 \quad \text { a.e. in } C_{r},
$$

where $C_{r}=\left\{(t, w) \in D_{h},\left|w-w_{0}\right|<r, t>t_{0}\right\} \cup B_{r}\left(t_{0}, w_{0}\right)$.

Proof. By Theorem 2.2 (ii), we have $u \circ T_{h}=0$ in C_{r}. Applying Lemma 2.3 with domains $Z_{k}=T_{h}\left(\left\{w_{1}<w<w_{2}\right\}\right) \cap\left\{x_{2}>k\right\} \subset T_{h}\left(C_{r}\right),\left(k \in \pi_{x_{2}}(U)\right)$, and taking $\zeta=x_{2}-k$, we obtain $\int_{Z_{k}} \chi H_{2} \mathrm{~d} x \leqslant 0$. Then we deduce from (1.3) that $\chi=0$ a.e. in Z_{k}. This holds for all domains Z_{k} in $T_{h}\left(C_{r}\right)$. Hence, $\chi=0$ a.e. in $T_{h}\left(C_{r}\right)$.

Lemma 2.6. Let $x_{0}=T_{h}\left(t_{0}, w_{0}\right) \in U$ such that $B_{r}=B_{r}\left(t_{0}, w_{0}\right) \subset D_{h}$. Then the following three situations are impossible:

$$
\begin{aligned}
& \text { (i) } \begin{cases}u \circ T_{h}\left(t, w_{0}\right)=0 & \forall t \in\left(t_{0}-r, t_{0}+r\right), \\
u \circ T_{h}(t, w)>0 & \forall t \in\left(t_{0}-r, t_{0}+r\right), \quad \forall w \neq w_{0},\end{cases} \\
& \text { (ii) } \begin{cases}u \circ T_{h}(t, w)=0 & \forall(t, w) \in B_{r} \cap\left\{w \leqslant w_{0}\right\}, \\
u \circ T_{h}(t, w)>0 & \forall(t, w) \in B_{r} \cap\left\{w>w_{0}\right\},\end{cases} \\
& \text { (iii) } \begin{cases}u \circ T_{h}(t, w)=0 & \forall(t, w) \in B_{r} \cap\left\{w \geqslant w_{0}\right\}, \\
u \circ T_{h}(t, w)>0 & \forall(t, w) \in B_{r} \cap\left\{w<w_{0}\right\} .\end{cases}
\end{aligned}
$$

Proof. Assume that (ii) holds. The proofs of (i) and (iii) are based on similar arguments. Let $\zeta \in \mathcal{D}\left(T_{h}\left(B_{r}\right)\right), \zeta \geqslant 0$. Using the fact that, by Lemma $2.5, \chi \circ T_{h}=0$ a.e. in $B_{r} \cap\left\{w \leqslant w_{0}\right\}$, we obtain after using the change of variable T_{h}, and taking into account (1.3) and (1.5),

$$
\begin{aligned}
\int_{T_{h}\left(B_{r}\right)} & \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \mathrm{~d} x=\int_{B_{r} \cap\left\{w>w_{0}\right\}} \frac{\partial}{\partial t}\left(-Y_{h}(t, w)\right) \zeta \circ T_{h} \mathrm{~d} t \mathrm{~d} w \\
& =\int_{B_{r} \cap\left\{w>w_{0}\right\}} H_{2}(w, h)(\operatorname{div} H)(X(t, w)) \zeta \circ T_{h} \mathrm{~d} t \mathrm{~d} w \geqslant 0 .
\end{aligned}
$$

This means that $\triangle_{A} u \leqslant 0$ in $\mathcal{D}^{\prime}\left(T_{h}\left(B_{r}\right)\right)$. By Lemma 2.1, either $u>0$ or $u=0$ in $T_{h}\left(B_{r}\right)$, which contradicts the assumption.

3. Continuity of the free boundary

As pointed out in Section 2, in order to prove the continuity of the function φ_{h}, it is enough to show that it is upper semi-continuous. The main idea to do that is to compare u with a suitable barrier function near a free boundary point. In the following step, we construct such a function. For this purpose, let $\varepsilon>0, w_{1}, w_{2} \in$ $\left(w_{*}, w^{*}\right)$ such that $w_{1}<w_{2}, k \in \pi_{x_{2}}(U)$, and assume that ε is small enough to guarantee that $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)=T_{h}\left(\left\{w_{1}<w<w_{2}\right\}\right) \cap\left\{k<x_{2}<k+\varepsilon\right\} \subset \subset U$ and $\varepsilon<\underline{h} / 2 \bar{h}$.

The proof of the main result requires a number of lemmas. First, observe that since $a(t)>0$ for $t>0$, we deduce from (1.1) that a is one-to-one. Then we consider the function

$$
\bar{v}_{\varepsilon}\left(x_{1}, x_{2}\right)=\vartheta_{\varepsilon}\left(k+\varepsilon-x_{2}\right) \text { with } \vartheta_{\varepsilon}(t)=\int_{0}^{t} a^{-1}(2 \bar{h} \varepsilon-\bar{h} s) \mathrm{d} s \quad \text { for } t \in[0, \varepsilon]
$$

which satisfies

$$
\begin{equation*}
\Delta_{A} \bar{v}_{\varepsilon}=-\bar{h} \quad \text { in } Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \tag{3.1}
\end{equation*}
$$

Next, let v_{ε} be the unique solution in $W^{1, A}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right)$ of the problem

$$
\begin{cases}\Delta_{A} v_{\varepsilon}=-\operatorname{div}(H) & \text { in } Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \tag{3.2}\\ v_{\varepsilon}=\bar{v}_{\varepsilon} & \text { on } \partial Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\end{cases}
$$

Then we obtain:
Lemma 3.1. We have

$$
\begin{equation*}
0 \leqslant v_{\varepsilon} \leqslant \bar{v}_{\varepsilon} \quad \text { in } Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \tag{3.3}
\end{equation*}
$$

Proof. To simplify the notation, we drop the dependence of $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$ on $\left(w_{1}, w_{2}\right)$.
(i) Note that $v_{\varepsilon}^{-} \in W^{1, A}\left(Z_{k}^{k+\varepsilon}\right)$ and $v_{\varepsilon}^{-}=0$ on $\partial Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$. Therefore, we obtain from (3.2) and (1.5)

$$
\begin{align*}
& \int_{Z_{k}^{k+\varepsilon}} \frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon}^{-} \mathrm{d} x=\int_{Z_{k}^{k+\varepsilon}} \operatorname{div}(H) v_{\varepsilon}^{-} \mathrm{d} x \\
& \int_{Z_{k}^{k+\varepsilon}} \frac{a\left(\left|\nabla v_{\varepsilon}^{-}\right|\right)}{\left|\nabla v_{\varepsilon}^{-}\right|} \nabla v_{\varepsilon}^{-} \cdot \nabla v_{\varepsilon}^{-} \mathrm{d} x=\int_{Z_{k}^{k+\varepsilon}}-\operatorname{div}(H) v_{\varepsilon}^{-} \mathrm{d} x \tag{3.4}\\
& \int_{Z_{k}^{k+\varepsilon}}\left|\nabla v_{\varepsilon}^{-}\right| a\left(\left|\nabla v_{\varepsilon}^{-}\right|\right) \mathrm{d} x=\int_{Z_{k}^{k+\varepsilon}}-\operatorname{div}(H) v_{\varepsilon}^{-} \mathrm{d} x \leqslant 0
\end{align*}
$$

Taking into account (3.4) and the fact that $t a(t)$ is an increasing function, we deduce that $\nabla v_{\varepsilon}^{-}=0$ a.e. in $Z_{k}^{k+\varepsilon}$. Since $v_{\varepsilon}^{-}=0$ on $\partial Z_{k}^{k+\varepsilon}$, we must have $v_{\varepsilon}^{-}=0$ in $Z_{k}^{k+\varepsilon}$. Hence, $v_{\varepsilon} \geqslant 0$ in $Z_{k}^{k+\varepsilon}$.
(ii) Similarly, we observe that $\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \in W^{1, A}\left(Z_{k}^{k+\varepsilon}\right)$ and $\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+}=0$ on $\partial Z_{k}^{k+\varepsilon}$. Therefore, we obtain from (3.1) and (3.2)

$$
\begin{align*}
& \int_{Z_{k}^{k+\varepsilon}} \frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot \nabla\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x=\int_{Z_{k}^{k+\varepsilon}} \operatorname{div}(H)\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x \tag{3.5}\\
& \int_{Z_{k}^{k+\varepsilon}} \frac{a\left(\left|\nabla \bar{v}_{\varepsilon}\right|\right)}{\left|\nabla \bar{v}_{\varepsilon}\right|} \nabla \bar{v}_{\varepsilon} \cdot \nabla\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x=\int_{Z_{k}^{k+\varepsilon}} \bar{h}\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x \tag{3.6}
\end{align*}
$$

Subtracting (3.6) from (3.5), and using (1.6), we get

$$
\begin{gather*}
\int_{Z_{k}^{k+\varepsilon}}\left(\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}-\frac{a\left(\left|\nabla \bar{v}_{\varepsilon}\right|\right)}{\left|\nabla \bar{v}_{\varepsilon}\right|} \nabla \bar{v}_{\varepsilon}\right) \cdot \nabla\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x \tag{3.7}\\
=\int_{Z_{k}^{k+\varepsilon}}(\operatorname{div}(H)-\bar{h})\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+} \mathrm{d} x \leqslant 0 .
\end{gather*}
$$

Taking into account (3.7) and (1.2), we obtain $\nabla\left(v_{\varepsilon}-v_{\varepsilon}\right)^{+}=0$ a.e. in $Z_{k}^{k+\varepsilon}$. Since $\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+}=0$ on $\partial Z_{k}^{k+\varepsilon}$, we get $\left(v_{\varepsilon}-\bar{v}_{\varepsilon}\right)^{+}=0$ in $Z_{k}^{k+\varepsilon}$. Hence, $v_{\varepsilon} \leqslant \bar{v}_{\varepsilon}$ in $Z_{k}^{k+\varepsilon}$.

Lemma 3.2. After extending v_{ε} by 0 to $Z_{k+\varepsilon}$, we obtain

$$
\begin{aligned}
& \int_{Z_{k}}\left(\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}+\right.\left.\chi\left(\left[v_{\varepsilon}>0\right]\right) H(x)\right) \cdot \nabla \zeta \mathrm{d} x \geqslant 0 \\
& \forall \zeta \in W^{1, A}\left(Z_{k}\right), \zeta \geqslant 0, \zeta=0 \text { on } \partial Z_{k} \cap U .
\end{aligned}
$$

Proof. First we have $\Delta_{A} v_{\varepsilon}=-\operatorname{div} H \leqslant 0$ in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$, and by (3.3), $v_{\varepsilon} \geqslant 0$ in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$. By Lemma 2.1 we obtain $v_{\varepsilon}>0$ in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$.

Let us point out that $v_{\varepsilon}=0$ on $L=\partial Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left\{x_{2}=k+\varepsilon\right\}$ and $v_{\varepsilon} \in C_{\mathrm{loc}}^{1, \alpha}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cup L\right.$) for some $\alpha \in(0,1)$ (see [17]). Moreover, we have

$$
\begin{equation*}
\left|\nabla v_{\varepsilon}(x)\right| \leqslant a^{-1}(2 \bar{h} \varepsilon) \quad \forall x \in L \tag{3.8}
\end{equation*}
$$

Indeed, from Lemma 3.1 we have $v_{\varepsilon} \leqslant \bar{v}_{\varepsilon}$ in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$, and since $v_{\varepsilon}=\bar{v}_{\varepsilon}=0$ on L and $v_{\varepsilon}, \bar{v}_{\varepsilon} \geqslant 0$, we obtain

$$
\forall\left(x_{1}, x_{2}\right) \in Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\left|\frac{v_{\varepsilon}\left(x_{1}, x_{2}\right)-v_{\varepsilon}\left(x_{1}, k+\varepsilon\right)}{x_{2}-k-\varepsilon}\right| \leqslant\left|\frac{\bar{v}_{\varepsilon}\left(x_{1}, x_{2}\right)-\bar{v}_{\varepsilon}\left(x_{1}, k+\varepsilon\right)}{x_{2}-k-\varepsilon}\right| .
$$

Letting x_{2} go to $k+\varepsilon$, we get $\left|v_{\varepsilon x_{2}}\left(x_{1}, k+\varepsilon\right)\right| \leqslant\left|\bar{v}_{\varepsilon x_{2}}\left(x_{1}, k+\varepsilon\right)\right|$ on L, which is equivalent to $\left|\nabla v_{\varepsilon}\left(x_{1}, k+\varepsilon\right)\right| \leqslant\left|\nabla \bar{v}_{\varepsilon}\left(x_{1}, k+\varepsilon\right)\right|$ on L, since $v_{\varepsilon}=\bar{v}_{\varepsilon}=0$ on L.

Given that $\left|\nabla \bar{v}_{\varepsilon}\right|=\vartheta_{\varepsilon}^{\prime}\left(k+\varepsilon-x_{2}\right) \leqslant \vartheta_{\varepsilon}^{\prime}(0)=a^{-1}(2 \bar{h} \varepsilon)$, (3.8) holds.
Now since the outward unit normal vector to L is $\nu=e_{2}=(0,1)$, we get by (1.3) and (3.8), since $\varepsilon \in(0, \underline{h} / 2 \bar{h})$

$$
\begin{align*}
\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot \nu+H(x) \cdot \nu & =\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot e_{2}+H_{2}(x) \geqslant-a\left(\left|\nabla v_{\varepsilon}\right|\right)+\underline{h} \tag{3.9}\\
& \geqslant-2 \bar{h} \varepsilon+\underline{h} \geqslant 0 \quad \text { on } L .
\end{align*}
$$

Finally, for $\zeta \in W^{1, A}\left(Z_{k}\right), \zeta \geqslant 0, \zeta=0$ on $\partial Z_{k} \cap U$, we obtain from (3.2) and (3.9)

$$
\begin{aligned}
\int_{Z_{k}}\left(\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|}\right. & \left.\nabla v_{\varepsilon}+\chi\left(\left\{v_{\varepsilon}>0\right\}\right) H(x)\right) \cdot \nabla \zeta \mathrm{d} x \\
& =\int_{L}\left(\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot \nu+H(x) \cdot \nu\right) \zeta \mathrm{d} \sigma \geqslant 0 .
\end{aligned}
$$

Lemma 3.3. Assume that

$$
\begin{aligned}
& u \circ T_{h}\left(t_{k}\left(w_{1}\right), w_{1}\right)=u \circ T_{h}\left(t_{k}\left(w_{2}\right), w_{2}\right)=0, \\
& u \circ T_{h}\left(t_{k}(w), w\right) \leqslant \vartheta_{\varepsilon}(\varepsilon)=v_{\varepsilon}\left(t_{k}(w), w\right) \quad \forall w \in\left(w_{1}, w_{2}\right) .
\end{aligned}
$$

Then we have

$$
\lim _{\delta \rightarrow 0} \frac{1}{\delta} \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left\{0<u-v_{\varepsilon}<\delta\right\}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla\left(u-v_{\varepsilon}\right) \mathrm{d} x=0 .
$$

Proof. For $\delta, \eta>0$, let $F_{\delta}(s)$ be as in the proof of Lemma 2.4, $\mathrm{d}_{\eta}\left(x_{2}\right)=$ $F_{\eta}\left(x_{2}-\bar{k}\right)$ and $\bar{k}=k+\varepsilon$. By applying Lemma 2.3 and Lemma 3.2 respectively for $\zeta=F_{\delta}\left(u-v_{\varepsilon}\right)+d_{\eta}\left(1-F_{\delta}(u)\right)$ and $\zeta=F_{\delta}\left(u-v_{\varepsilon}\right)$, we get

$$
\begin{aligned}
\int_{Z_{k}} & \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right)\right) \mathrm{d} x \\
\leqslant & -\int_{Z_{k}}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left(d_{\eta}\left(1-F_{\delta}(u)\right)\right) \mathrm{d} x \\
& -\int_{Z_{k}}\left(\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}+\chi\left(\left\{v_{\varepsilon}>0\right\}\right) H(x)\right) \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right)\right) \mathrm{d} x \leqslant 0 .
\end{aligned}
$$

Adding these inequalities, we get since $d_{\eta}=0$ in $\left\{v_{\varepsilon}>0\right\}$

$$
\begin{aligned}
\int_{Z_{k} \cap\left\{v_{\varepsilon}>0\right\}} & F_{\delta}^{\prime}\left(u-v_{\varepsilon}\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla\left(u-v_{\varepsilon}\right) \mathrm{d} x \\
\leqslant & -\int_{Z_{k} \cap\left\{v_{\varepsilon}=0\right\}}\left(1-d_{\eta}\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla\left(F_{\delta}(u)\right) \mathrm{d} x \\
& -\int_{Z_{k} \cap\left\{v_{\varepsilon}=0\right\}}\left(1-F_{\delta}(u)\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+\chi H(x)\right) \cdot \nabla \mathrm{d}_{\eta} \mathrm{d} x=I_{1}^{\delta \eta}+I_{2}^{\delta \eta} .
\end{aligned}
$$

Since

$$
\left|I_{1}^{\delta \eta}\right| \leqslant \int_{D_{k \cap\left\{\bar{k}<x_{2}<\bar{k}+\eta\right\}}}(a(|\nabla u|)+|H(x)|)\left|\nabla\left(F_{\delta}(u)\right)\right| \mathrm{d} x
$$

we obtain $\lim _{\eta \rightarrow 0} I_{1}^{\delta \eta}=0$. As for $I_{2}^{\delta \eta}$, we have

$$
\begin{aligned}
I_{2}^{\delta \eta}= & -\int_{Z_{k} \cap\left[u=v_{\varepsilon}=0\right]} \chi H(x) \cdot \nabla \mathrm{d}_{\eta} \mathrm{d} x \\
& -\int_{Z_{k} \cap\left[u>v_{\varepsilon}=0\right]}\left(1-F_{\delta}(u)\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+H(x)\right) \cdot \nabla \mathrm{d}_{\eta} \mathrm{d} x \\
\leqslant & -\int_{Z_{k} \cap\left[u>v_{\varepsilon}=0\right]}\left(1-F_{\delta}(u)\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u+H(x)\right) \cdot \nabla \mathrm{d}_{\eta} \mathrm{d} x=I_{3}^{\delta \eta},
\end{aligned}
$$

since we have by (1.3) $\chi H(x) \cdot \nabla \mathrm{d}_{\eta}=\chi H_{2}(x) \partial_{x_{2}} d_{\eta}=\eta^{-1} \chi H_{2}(x) \chi_{\left\{\bar{k}<x_{2}<\bar{k}+\eta\right\}} \geqslant 0$ in $Z_{k} \cap\left\{u=v_{\varepsilon}=0\right\}$.

Let $J=\left\{w \in\left(w_{1}, w_{2}\right) / \varphi_{h}(w)>t_{\bar{k}}(w)\right\}$. Then given that $u \in C_{\mathrm{loc}}^{0,1}(U)$, one has for some positive constant C

$$
\begin{aligned}
\left|I_{3}^{\delta \eta}\right| & \leqslant \frac{C}{\eta} \int_{Z_{k} \cap\left\{u>v_{\varepsilon}=0\right\} \cap\left\{\bar{k}<x_{2}<\bar{k}+\eta\right\}}\left(1-F_{\delta}(u)\right) \mathrm{d} x \\
& =\frac{C}{\eta} \int_{J} \int_{t_{\bar{k}}(w)}^{\min \left(\varphi_{h}(w), t_{\bar{k}+\eta}(w)\right)}\left(1-F_{\delta}\left(u \circ T_{h}\right)\right)(t, w) \cdot\left(-Y_{h}(t, w)\right) \mathrm{d} t \mathrm{~d} w \\
& \leqslant C \bar{h} \int_{J}\left(\frac{1}{\eta} \int_{t_{\bar{k}}(w)}^{t_{\bar{k}}(w)+\eta}\left(1-F_{\delta}\left(u \circ T_{h}\right)\right) \mathrm{d} t\right) \mathrm{d} w .
\end{aligned}
$$

Since the function $t \mapsto 1-F_{\delta}\left(u \circ T_{h}(t, w)\right)$ is continuous, we obtain

$$
\underset{\eta \rightarrow 0}{\limsup }\left|I_{3}^{\delta \eta}\right| \leqslant C \bar{h} \int_{J}\left(1-F_{\delta}\left(u \circ T_{h}\left(t_{\bar{k}}(w), w\right)\right)\right) \mathrm{d} w .
$$

Hence,

$$
\begin{aligned}
\int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left\{0<u-v_{\varepsilon}<\delta\right\}} & \frac{1}{\delta}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla\left(u-v_{\varepsilon}\right)^{+} \mathrm{d} x \\
& \leqslant C \int_{J}\left(1-F_{\delta}\left(u \circ T_{h}\left(t_{\bar{k}}(w), w\right)\right)\right) \mathrm{d} w
\end{aligned}
$$

The lemma follows by letting $\delta \rightarrow 0$.

Lemma 3.4. Assume that the assumptions of Lemma 3.3 hold. Then we have

$$
\begin{equation*}
\int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \mathbb{A}(x) \nabla\left(u-v_{\varepsilon}\right)^{+} \cdot \nabla \zeta \mathrm{d} x=0 \quad \forall \zeta \in \mathcal{D}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right) \tag{3.10}
\end{equation*}
$$

where

$$
\mathbb{A}(\xi)=\left(\mathbb{A}_{i j}\right), \quad \mathbb{A}_{i j}=\frac{\partial \mathcal{A}^{i}}{\partial x_{j}} \quad \text { and } \quad \mathcal{A}^{i}(\xi)=\frac{a(|\xi|)}{|\xi|} \xi_{i}
$$

Proof. First, we observe that we have for any $\zeta \in \mathcal{D}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right)$

$$
\begin{align*}
& \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \chi\left(\left\{u>v_{\varepsilon}\right\}\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla \zeta \mathrm{d} x \tag{3.11}\\
& =\lim _{\delta \rightarrow 0} \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} F_{\delta}\left(u-v_{\varepsilon}\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla \zeta \mathrm{d} x=\lim _{\delta \rightarrow 0} I_{\delta},
\end{align*}
$$

where

$$
\begin{align*}
I_{\delta}= & \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)}\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \mathrm{d} x \tag{3.12}\\
& -\frac{1}{\delta} \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left[0<u-v_{\varepsilon}<\delta\right]} \zeta\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla\left(u-v_{\varepsilon}\right) \mathrm{d} x \\
= & I_{\delta}^{1}-I_{\delta}^{2} .
\end{align*}
$$

By Lemma 3.3 and (1.2) we have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} I_{\delta}^{2}=0 . \tag{3.13}
\end{equation*}
$$

Regarding the integral I_{δ}^{1}, we have from (P) (ii) and the problem (3.2), because $\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \in W_{0}^{1, A}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right)$ and $\chi=1$ a.e. in $\left\{u>v_{\varepsilon}\right\}$ that

$$
\begin{align*}
I_{\delta}^{1}= & \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \mathrm{d} x \tag{3.14}\\
& -\int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon} \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \mathrm{d} x \\
= & -\int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \chi H(x) \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \mathrm{d} x \\
& +\int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} H(x) \cdot \nabla\left(F_{\delta}\left(u-v_{\varepsilon}\right) \zeta\right) \mathrm{d} x=0 .
\end{align*}
$$

It follows from (3.11)-(3.14) that

$$
\begin{aligned}
& \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \chi\left(\left\{u>v_{\varepsilon}\right\}\right)\left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u-\frac{a\left(\left|\nabla v_{\varepsilon}\right|\right)}{\left|\nabla v_{\varepsilon}\right|} \nabla v_{\varepsilon}\right) \cdot \nabla \zeta \mathrm{d} x=0 \\
& \forall \zeta \in \mathcal{D}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right),
\end{aligned}
$$

which can be written as

$$
\begin{align*}
& \int_{Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)} \chi\left(\left\{u>v_{\varepsilon}\right\}\right)\left(\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathcal{A}\left(\nabla w_{t}\right)\right) \mathrm{d} t\right) \cdot \nabla \zeta \mathrm{d} x=0 \tag{3.15}\\
& \forall \zeta \in \mathcal{D}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right)
\end{align*}
$$

where

$$
\mathcal{A}(\xi)=\left(\mathcal{A}^{1}, \mathcal{A}^{2}\right)(\xi)=\frac{a(|\xi|)}{|\xi|} \xi
$$

and $w_{t}=t u+(1-t) v_{\varepsilon}$. Now observe that

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathcal{A}\left(\nabla w_{t}\right)\right) \mathrm{d} t=\left(\int_{0}^{1} \frac{\partial \mathcal{A}^{i}}{\partial x_{j}}\left(\nabla w_{t}\right)\right)_{i, j=1,2} \nabla(u-v)=\mathbb{A}(x) \nabla(u-v) . \tag{3.16}
\end{equation*}
$$

Hence, we obtain (3.10) from (3.15) and (3.16).

Lemma 3.5. We have

$$
\begin{equation*}
\min \left(1, a_{0}\right) \frac{a(z)}{z}|\xi|^{2} \leqslant \mathbb{A}_{i j}(z) \xi_{i} \xi_{j} \leqslant \max \left(1, a_{1}\right) \frac{a(z)}{z}|\xi|^{2} \quad \forall z \neq 0 \forall \xi \in \mathbb{R}^{2} \tag{3.17}
\end{equation*}
$$

Proof. Let $z \neq 0$ and $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$. Since $\mathbb{A} \in C^{1}\left(\mathbb{R}^{2} \backslash\{(0,0)\}\right)$, we get by direct calculation

$$
\begin{aligned}
& \mathbb{A}_{i j}(z)=\frac{\partial\left(\mathcal{A}^{i}(z)\right)}{\partial z_{j}}=\frac{a^{\prime}(z) z-a(z)}{z^{3}} z_{i} z_{j}+\frac{a(z)}{z} \delta_{i j} \\
& \mathbb{A}_{i j}(z) \xi_{i} \xi_{j}=\frac{a^{\prime}(z) z-a(z)}{z^{3}}\left(z_{1} \xi_{1}+z_{2} \xi_{2}\right)^{2}+\frac{a(z)}{z}|\xi|^{2} .
\end{aligned}
$$

Using (1.1), we obtain

$$
\frac{a(z)}{z}\left(\left(a_{0}-1\right) \frac{|z \cdot \xi|^{2}}{z^{2}}+|\xi|^{2}\right) \leqslant \mathbb{A}_{i j}(z) \xi_{i} \xi_{j} \leqslant \frac{a(z)}{z}\left(\left(a_{1}-1\right) \frac{|z \cdot \xi|^{2}}{z^{2}}+|\xi|^{2}\right)
$$

Then, if $a_{0} \geqslant 1$, the left-hand side of inequality (3.17) holds. When $a_{0}<1$, we use the Cauchy-Schwarz inequality $|z \cdot \xi| \leqslant|z||\xi|$, to conclude. We proceed in the same way for the right-hand side.

Lemma 3.6. Assume that the assumptions of Lemma 3.3 hold. Then we have:

$$
\text { If } u \text { is not positive in } Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \text {, then } u=0 \text { in } Z_{k+\varepsilon} \text {. }
$$

Proof. Assume that u is not positive in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$. Then

$$
\exists\left(t_{0}, w_{0}\right) \text { such that } T_{h}\left(t_{0}, w_{0}\right) \in Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \text { and } u \circ T_{h}\left(t_{0}, w_{0}\right)=0
$$

This leads by Theorem 2.2 (ii) to

$$
\begin{equation*}
u \circ T_{h}\left(t, w_{0}\right)=0 \quad \forall t \in\left[t_{0}, t_{k+\varepsilon}\right] . \tag{3.18}
\end{equation*}
$$

From Lemmas 3.4 and 3.5 we know that

$$
\begin{equation*}
\operatorname{div}\left(\mathbb{A}(x) \nabla\left(u-v_{\varepsilon}\right)^{+}\right)=0 \quad \text { in } Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \tag{3.19}
\end{equation*}
$$

Moreover, by Lemma 3.5, the matrix $\mathbb{A}(x)$ satisfies for all $x \in Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$ and $\xi \in \mathbb{R}^{2}$

$$
\begin{align*}
& \min \left(1, a_{0}\right) \lambda(x)|\xi|^{2} \leqslant \mathbb{A}(x) \xi \cdot \xi \leqslant \max \left(1, a_{1}\right) \lambda(x)|\xi|^{2} \tag{3.20}\\
& \text { with } \lambda(x)=\int_{0}^{1} \frac{a\left(\left|\nabla w_{t}(x)\right|\right)}{\left|\nabla w_{t}(x)\right|} \mathrm{d} t, \quad w_{t}=t u+(1-t) v_{\varepsilon}
\end{align*}
$$

Next, we have $v_{\varepsilon} \in C^{1, \alpha}\left(Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cup L\right)$, where

$$
L=\partial Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left\{x_{2}=k+\varepsilon\right\} .
$$

We also have $v_{\varepsilon}=0$ on L and $v_{\varepsilon}>0$ in $Z_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)$. So v_{ε} achieves its minimum value on the line segment L. By Lemma 3.2 of [12], we must have $\left|\nabla v_{\varepsilon}\right|>0$ along L. Therefore, for δ small enough such that $w_{1}+\delta<w_{2}-\delta$ there exist two positive constants c_{0}, c_{1} such that

$$
\forall x \in \bar{Z}_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right) \cap\left\{k+\varepsilon-\delta \leqslant x_{2} \leqslant k+\varepsilon\right\} \cap\left\{w_{1}+\delta \leqslant w \leqslant w_{2}-\delta\right\}=Z_{k+\varepsilon-\delta}^{k+\varepsilon}
$$

$$
\begin{equation*}
c_{0} \leqslant\left|\nabla v_{\varepsilon}(x)\right| \leqslant c_{1} \tag{3.21}
\end{equation*}
$$

On the other hand, $|\nabla u|$ is also bounded in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$, since by Theorem 2.1, $u \in$ $C^{0,1}\left(\bar{Z}_{k}^{k+\varepsilon}\left(w_{1}, w_{2}\right)\right)$. It follows from (3.20)-(3.21) that we have for two positive constants λ_{0} and λ_{1}

$$
\lambda_{0} \leqslant \lambda(x) \leqslant \lambda_{1} \quad \text { in } \quad Z_{k+\varepsilon-\delta}^{k+\varepsilon}
$$

and therefore, we get from (3.20)

$$
\begin{equation*}
\min \left(1, a_{0}\right) \lambda_{0}|\xi|^{2} \leqslant \mathbb{A}(x) \xi \cdot \xi \leqslant \max \left(1, a_{1}\right) \lambda_{1}|\xi|^{2} \quad \forall x \in Z_{k+\varepsilon-\delta}^{k+\varepsilon} \quad \forall \xi \in \mathbb{R}^{2} \tag{3.22}
\end{equation*}
$$

Taking into account (3.18), we see that

$$
\begin{equation*}
Z_{k+\varepsilon-\delta}^{k+\varepsilon} \cap\{u=0\} \neq \emptyset \tag{3.23}
\end{equation*}
$$

It follows from (3.19), (3.22), (3.23), and the strong maximum principle that $\left(u-v_{\varepsilon}\right)^{+} \equiv 0$ in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$. Consequently, we obtain $u \leqslant v_{\varepsilon}$ in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$, and therefore $u \circ T_{h}\left(t_{k+\varepsilon}(w), w\right)=0$ for all $w \in\left(w_{1}+\delta, w_{2}-\delta\right)$. Since δ is arbitrarily small, we get $u \circ T_{h}\left(t_{k+\varepsilon}(w), w\right)=0$ for all $w \in\left(w_{1}, w_{2}\right)$. Hence, by Theorem 2.2 (ii) we obtain $u=0$ in $Z_{k+\varepsilon}$.

Lemma 3.7. Let $w_{0} \in\left(w_{*}, w^{*}\right), x_{0}=T_{h}\left(t_{0}, w_{0}\right)$ be such that $u\left(x_{0}\right)=0$ and for some $\eta>0, B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \subset \subset U$. Then there exist two sequences $\left(t_{n}^{-}, w_{n}^{-}\right)_{n}$ and $\left(t_{n}^{+}, w_{n}^{+}\right)_{n}$ such that $\lim _{n \rightarrow \infty}\left(t_{n}^{+}, w_{n}^{+}\right)=\lim _{n \rightarrow \infty}\left(t_{n}^{-}, w_{n}^{-}\right)=\left(t_{0}, w_{0}\right)$ and for all n,
(i) $T_{h}\left(t_{n}^{-}, w_{n}^{-}\right) \in B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w<w_{0}\right\}, u \circ T_{h}\left(t_{n}^{-}, w_{n}^{-}\right)=0$,
(ii) $T_{h}\left(t_{n}^{+}, w_{n}^{+}\right) \in B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w>w_{0}\right\}, u \circ T_{h}\left(t_{n}^{+}, w_{n}^{+}\right)=0$.

Proof. First we observe that by Lemma 2.6 the following situations cannot occur simultaneously:
(a) $u \circ T_{h}>0$ in $B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w<w_{0}\right\}$,
(b) $u \circ T_{h}>0$ in $B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w>w_{0}\right\}$.

In fact, to prove the lemma, it is enough to show that neither (a) nor (b) hold. So assume for example that (a) holds. Then by Lemma 2.6 there exists a sequence $\left(t_{n}^{+}, w_{n}^{+}\right)_{n}$ such that $T_{h}\left(t_{n}^{+}, w_{n}^{+}\right) \in B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w>w_{0}\right\}$,

$$
u \circ T_{h}\left(t_{n}^{+}, w_{n}^{+}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(t_{n}^{+}, w_{n}^{+}\right)=\left(t_{0}, w_{0}\right) .
$$

Let $k=\max \left\{T_{h}^{2}\left(t_{0}, w_{0}\right), T_{h}^{2}\left(t_{n}^{+}, w_{n}^{+}\right)\right\}$. Then since $u\left(x_{0}\right)=0$ and u is continuous at x_{0}, we may assume that for n large enough we have

$$
\begin{equation*}
u \circ T_{h}\left(t_{k}(w), w\right) \leqslant \vartheta_{\varepsilon}(\varepsilon) \quad \forall w \in\left(w_{0}, w_{n}^{+}\right) . \tag{3.24}
\end{equation*}
$$

For $\varepsilon>0$ small enough and n large enough, we may also assume that

$$
\begin{equation*}
Z_{k}^{k+\varepsilon}\left(w_{0}, w_{n}^{+}\right) \subset \subset U \tag{3.25}
\end{equation*}
$$

We observe that because of the sequence $\left(t_{n}^{+}, w_{n}^{+}\right)_{n}$ and Theorem 2.2 (i), u is not positive in $Z_{k}^{k+\varepsilon}\left(w_{0}, w_{n}^{+}\right)$. Then, by using (3.24), (3.25), and Lemma 3.6, we conclude that for $\varepsilon>0$ small enough and n large enough we must have $u=0$ in $Z_{k+\varepsilon} \cap T_{h}\left(\left\{w_{0}<w<w_{n}^{+}\right\}\right)$. Now since we have assumed that (a) holds, we are in contradiction with Lemma 2.6.

Similarly, if we assume that (b) holds, we get a contradiction as well.
We are now ready to prove the main result of this paper.

Theorem 3.1. The function φ_{h} is continuous in the interval $\left(w_{*}, w^{*}\right)$.
Proof. Let $w_{0} \in\left(w_{*}, w^{*}\right)$. We will prove that φ_{h} is continuous at w_{0}. To this end, it is enough to show that φ_{h} is upper semi-continuous at w_{0}.

Let $x_{0}=T_{h}\left(\varphi_{h}\left(w_{0}\right), w_{0}\right)=T_{h}\left(t_{0}, w_{0}\right)$ and let $\varepsilon>0$. Since $u\left(x_{0}\right)=0$ and u is continuous at x_{0}, there exists $\eta \in(0, \varepsilon)$ such that

$$
\begin{equation*}
u(x) \leqslant \vartheta_{\varepsilon}(\varepsilon) \quad \forall x \in B_{\eta}\left(x_{0}\right) \subset \subset U . \tag{3.26}
\end{equation*}
$$

By Lemma 3.7, there exists two sequences $\left(t_{n}^{-}, w_{n}^{-}\right)_{n}$ and $\left(t_{n}^{+}, w_{n}^{+}\right)_{n}$ such that $\lim _{n \rightarrow \infty}\left(t_{n}^{+}, w_{n}^{+}\right)=\lim _{n \rightarrow \infty}\left(t_{n}^{-}, w_{n}^{-}\right)=\left(t_{0}, w_{0}\right)$ and for all n
(i) $T_{h}\left(t_{n}^{-}, w_{n}^{-}\right) \in B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w<w_{0}\right\}, u \circ T_{h}\left(t_{n}^{-}, w_{n}^{-}\right)=0$,
(ii) $T_{h}\left(t_{n}^{+}, w_{n}^{+}\right) \in B_{\eta}\left(T_{h}\left(t_{0}, w_{0}\right)\right) \cap\left\{w>w_{0}\right\}, u \circ T_{h}\left(t_{n}^{+}, w_{n}^{+}\right)=0$.

Let $k=\max \left\{T_{h}^{2}\left(t_{n}^{-}, w_{n}^{-}\right), T_{h}^{2}\left(t_{0}, w_{0}\right), T_{h}^{2}\left(t_{n}^{+}, w_{n}^{+}\right)\right\}$and let C be the constant in Lemma 2.2. We observe that we can choose ε small enough and n large enough so that

$$
\begin{gather*}
\varepsilon^{\prime}=\varepsilon / 2 C<\underline{h} / 2 \bar{h}, \\
Z_{k}^{k+\varepsilon^{\prime}}\left(w_{n}^{-}, w_{n}^{+}\right) \subset \subset B_{\eta}\left(x_{0}\right) . \tag{3.27}
\end{gather*}
$$

We also observe that because $T_{h}\left(t_{0}, w_{0}\right)=0$, and by Theorem 2.2 (i), u is not positive in $Z_{k}^{k+\varepsilon^{\prime}}\left(w_{n}^{-}, w_{n}^{+}\right)$. Then, by using (3.26), (3.27), and Lemma 3.6, we see that for n large enough, we must have

$$
u=0 \quad \text { in } T_{h}\left(\left\{w_{n}^{-}<w<w_{n}^{+}\right\}\right) \cap\left\{x_{2} \geqslant k+\varepsilon^{\prime}\right\} .
$$

Therefore, we obtain

$$
\begin{equation*}
\varphi_{h}(w) \leqslant t_{k+\varepsilon^{\prime}}(w) \quad \forall w \in\left(w_{n}^{-}, w_{n}^{+}\right) \tag{3.28}
\end{equation*}
$$

From Lemma 2.2, we infer that we have for $\eta<\varepsilon / 4 C$

$$
\begin{align*}
t_{k+\varepsilon^{\prime}}(w) & \leqslant t_{x_{02}}\left(w_{0}\right)+C\left(\left|k+\varepsilon^{\prime}-x_{02}\right|+\left|w-w_{0}\right|\right) \tag{3.29}\\
& \leqslant t_{0}+C\left(\eta+\varepsilon^{\prime}+\eta\right)=t_{0}+2 C \eta+\varepsilon / 2 \\
& \leqslant t_{0}+\varepsilon / 2+\varepsilon / 2=t_{0}+\varepsilon
\end{align*}
$$

Combining (3.28) and (3.29), we obtain

$$
\varphi_{h}(w) \leqslant \varphi_{h}\left(w_{0}\right)+\varepsilon \quad \forall w \in\left(w_{n}^{-}, w_{n}^{+}\right)
$$

which is the upper semi-continuity of φ_{h} at w_{0}.
Corollary 3.1. We have

$$
\chi=\chi_{\{u>0\}}
$$

Proof. We observe that by (2.3), it is enough to show that we have for each h

$$
\begin{equation*}
\chi \circ T_{h}=\chi_{\left\{t<\varphi_{h}(w)\right\}} . \tag{3.30}
\end{equation*}
$$

First, we have by (P) (i) and (2.3)

$$
\begin{equation*}
\chi \circ T_{h}=1 \quad \text { a.e. in }\left\{t<\varphi_{h}(w)\right\} . \tag{3.31}
\end{equation*}
$$

Next, we have by Lemma 2.5

$$
\begin{equation*}
\chi \circ T_{h}=0 \quad \text { a.e. in } \operatorname{Int}\left(\left\{u \circ T_{h}=0\right\}\right)=\operatorname{Int}\left(\left\{t \geqslant \varphi_{h}(w)\right\}\right) \tag{3.32}
\end{equation*}
$$

Now, the set $\left\{t=\varphi_{h}(w)\right\}$ being of measure zero (since φ_{h} is continuous at each point w such that $T_{h}\left(\varphi_{h}(w), w\right) \in \Omega$), we conclude that (3.30) follows from (3.31)-(3.32).

Acknowledgement. The author is grateful for the facilities and excellent research conditions provided by the Fields Institute, where part of this research was carried out.

References

[1] S. J. Alvarez, J. Carrillo: A free boundary problem in theory of lubrication. Commun. Partial Differ. Equations 19 (1994), 1743-1761.

에 Nㅛ
[2] J. Carrillo, A. Lyaghfouri: The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26 (1998), 453-505.
[3] S. Challal, A. Lyaghfouri: A filtration problem through a heterogeneous porous medium. Interfaces Free Bound. 6 (2004), 55-79.
zbl MR doi
[4] S. Challal, A. Lyaghfouri: On the continuity of the free boundary in problems of type $\operatorname{div}(a(x) \nabla u)=-(h(x) \chi(u))_{x_{1}}$. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 283-300.
[5] S. Challal, A. Lyaghfouri: On a class of free boundary problems of type $\operatorname{div}(a(X) \nabla u)=$ $-\operatorname{div}(\chi(u) H(x))$. Differ. Integral Equ. 19 (2006), 481-516.
[6] S. Challal, A. Lyaghfouri: On the dam problem with two fluids governed by a nonlinear Darcy's law. Adv. Differ. Equ. 11 (2006), 841-892.
[7] S. Challal, A.Lyaghfouri: On the continuity of the free boundary in the problem $\Delta_{p} u=-(h(x, y) \chi(u))_{x}$. Appl. Anal. 86 (2007), 1177-1184.
[8] S. Challal, A. Lyaghfouri: Hölder continuity of solutions to the A-Laplace equation involving measures. Commun. Pure Appl. Anal. 8 (2009), 1577-1583.
[9] S. Challal, A. Lyaghfouri: Lipschitz continuity of solutions of a free boundary problem involving the p-Laplacian. J. Math. Anal. Appl. 355 (2009), 700-707.
[10] S. Challal, A. Lyaghfouri: The heterogeneous dam problem with leaky boundary condition. Commun. Pure Appl. Anal. 10 (2011), 93-125.
[11] S. Challal, A. Lyaghfouri: Continuity of the free boundary in a problem involving the A-Laplacian. Available at https://arxiv.org/abs/1906.11791 (2019), 18 pages.
[12] S. Challal, A. Lyaghfouri: Lipschitz continuity of solutions to a free boundary problem involving the A-Laplacian. Available at https://arxiv.org/abs/1906.06511 (2019), 14 pages.
[13] S. Challal, A. Lyaghfouri, J. F. Rodrigues: On the A-obstacle problem and the Hausdorff measure of its free boundary. Ann. Mat. Pura Appl. (4) 191 (2012), 113-165.
zbl MR doi
[14] M. Chipot: On the continuity of the free boundary in some class of two-dimensional problems. Interfaces Free Bound. 3 (2001), 81-99.
zbl MR doi
[15] M. Chipot, A.Lyaghfouri: The dam problem for non-linear Darcys laws and non-linear leaky boundary conditions. Math. Methods Appl. Sci. 20 (1997), 1045-1068.
zbl MR doi
[16] M. Chipot, A. Lyaghfouri: The dam problem for linear Darcy's law and nonlinear leaky boundary conditions. Adv. Differ. Equ. 3 (1998), 1-50.
zbl MR
[17] G. M. Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311-361.
[18] A. Lyaghfouri: A free boundary problem for a fluid flow in a heterogeneous porous medium. Ann. Univ. Ferrara, Nuova Ser., Sez. VII (2003), 209-262.

Zbl MR doi
[19] A. Lyaghfouri: The dam problem. Handbook of Differential Equations: Stationary Partial Differential Equations (M. Chipot, eds.). Handbook of Differential Equations 3, Elsevier, Amsterdam, 2006, pp. 465-552.
[20] A. Lyaghfouri: On the Lipschitz continuity of the solutions of a class of elliptic free boundary problems. J. Appl. Anal. 14 (2008), 165-181.
zbl MR doi

Author's address: Abdeslem Lyaghfouri, American University of Ras Al Khaimah, Department of Mathematics and Natural Sciences, Ras Al Khaimah, UAE, e-mail: abdeslem. lyaghfouri@aurak.ac.ae.

