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Abstract. Using the lower bound of linear forms in logarithms of Matveev and the theory
of continued fractions by means of a variation of a result of Dujella and Pethő, we find all
k-Fibonacci and k-Lucas numbers which are Fermat numbers. Some more general results
are given.
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1. Introduction and preliminary results

For an integer k > 2 we consider the linear recurrence sequenceG(k) := (G
(k)
n )n>2−k

of order k, defined as

G(k)
n = G

(k)
n−1 +G

(k)
n−2 + . . .+G

(k)
n−k ∀n > 2,

with the initial conditions G
(k)
−(k−2) = G

(k)
−(k−3) = . . . = G

(k)
−1 = 0, G

(k)
0 = a and

G
(k)
1 = b, where a and b are both integers.

If a = 0 and b = 1, then G(k) is known as the k-Fibonacci sequence F (k) :=

(F
(k)
n )n>2−k. We shall refer to F

(k)
n as the nth k-Fibonacci number. We note that this

generalization is in fact a family of sequences where each new choice of k produces a

distinct sequence. For example, the usual Fibonacci numbers are obtained for k = 2.

For small values of k, these sequences are called Tribonacci (k = 3), Tetranacci

(k = 4), Pentanacci (k = 5), Hexanacci (k = 6), Heptanacci (k = 7) and Octanacci

(k = 8). In a similar way, if a = 2 and b = 1, then G(k) is known as the k-Lucas

sequence L(k) := (L
(k)
n )n>2−k, which extends the usual Lucas sequence L

(2). Other

generalization for Lucas numbers can be found in [14].
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An interesting fact about the k-Fibonacci sequence is that the first k + 1 nonzero

terms in F (k) are powers of two, namely

(1) F
(k)
1 = 1 and F (k)

n = 2n−2, 2 6 n 6 k + 1,

while the next term is F
(k)
k+2 = 2k − 1. In fact, the inequality

(2) F (k)
n < 2n−2 holds for all n > k + 2

(see [3]). Similarly, the k-Lucas sequence L(k) has the remarkable property that the

first few terms are given by

L(k)
n = 3 · 2n−2, 2 6 n 6 k.

Below we present the values of these numbers for the first few values of k and n.

k Name First nonzero terms (n > 1)

2 Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

3 Tribonacci 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

4 Tetranacci 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, . . .

5 Pentanacci 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, . . .

6 Hexanacci 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, . . .

7 Heptanacci 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, . . .

8 Octanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, . . .

9 Nonanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, . . .

10 Decanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, . . .

Table 1. First nonzero k-Fibonacci numbers

k Name First nonzero terms (n > 0)

2 Lucas 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364,. . .

3 3-Lucas 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, . . .

4 4-Lucas 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .

5 5-Lucas 2, 1, 3, 6, 12, 24, 46, 91, 179, 352, 692, 1360, 2674, 5257, 10335, . . .

6 6-Lucas 2, 1, 3, 6, 12, 24, 48, 94, 187, 371, 736, 1460, 2896, 5744, 11394, . . .

7 7-Lucas 2, 1, 3, 6, 12, 24, 48, 96, 190, 379, 755, 1504, 2996, 5968, 11888, . . .

8 8-Lucas 2, 1, 3, 6, 12, 24, 48, 96, 192, 382, 763, 1523, 3040, 6068, 12112, . . .

9 9-Lucas 2, 1, 3, 6, 12, 24, 48, 96, 192, 384, 766, 1531, 3059, 6112, 12212, . . .

10 10-Lucas 2, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1534, 3067, 6131, 12256, . . .

Table 2. First nonzero k-Lucas numbers
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Several authors have worked on problems involving generalized Fibonacci se-

quences. For instance, Luca in [11] and Marques in [12] proved that 55 and 44

are the largest repdigits in the sequences F (2) and F (3), respectively. Moreover,

Marques conjectured that there are no repdigits with at least two digits belonging

to F (k) for k > 3. This conjecture was confirmed in [4]. In addition, the Diophan-

tine equation F
(k)
n = 2m was studied in [3]. Similar equations have been considered

for L(k) (see, for example, [1] and [5]).

When k = 2, Finkelstein found that the only Fibonacci and Lucas numbers of the

form y2 + 1, y ∈ Z, y > 0 are F1 = F2 = 1, F3 = 2, F5 = 5, L0 = 2 and L1 = 1

(see [8], [9]). In 2006, Bugeaud et al. generalized the problem discussed above and

proved that the only nonnegative integer solutions (n, y,m) of equations Fn±1 = ym

with m > 2 are

F0 + 1 = 0 + 1 = 1, F1 − 1 = F2 − 1 = 1− 1 = 0,

F4 + 1 = 3 + 1 = 22, F3 − 1 = 2− 1 = 1,

F6 + 1 = 8 + 1 = 32, F5 − 1 = 5− 1 = 22.

As a consequence of the above, the only nonnegative integer solutions (n,m) of

equation

(3) Fn = 2m + 1

are (n,m) ∈ {(3, 0), (4, 1), (5, 2)}.

In the present paper we aim to generalize the above equation (3) for generalized

Fibonacci sequences, i.e. we consider the more general Diophantine equations

F (k)
n = 2m + 1,(4)

L(k)
n = 2m + 1(5)

in nonnegative integers n, k,m with k > 2. As a particular case of the above equa-

tions (4) and (5), we determine all k-Fibonacci and k-Lucas numbers which are Fer-

mat numbers. Recall that a Fermat number is a number of the form Fm = 22
m

+ 1,

where m is a nonnegative integer. The first six Fermat numbers are

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 and F5 = 4294967297.

It is important to mention that equation (3) can also be solved by using the well

known factorization Fn − 1 = F(n−δ)/2L(n+δ)/2, where δ ∈ {−2, 1, 2,−1} depends

on the class of n modulo 4. In this case, the resulting equation can be easily solved

by using prime factorization. However, similar divisibility properties for F (k) when

k > 3 are not known and therefore it is necessary to attack the problem differently.
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We begin our analysis of equations (4) and (5) by noting that F
(k)
3 = 2, L

(k)
0 = 2

and L
(k)
2 = 3 are valid for all k > 2; thus, the triples

(n, k,m) = (3, k, 0) are the solutions of (4) for all k > 2,

and

(n, k,m) ∈ {(0, k, 0), (2, k, 1)} are the solutions of (5) for all k > 2.

The above solutions will be called trivial solutions. In this paper, we prove the

following theorems.

Theorem 1. The only nontrivial solutions of the Diophantine equation (4) in

nonnegative integers n, k,m with k > 2 are (n, k,m) ∈ {(4, 2, 1), (5, 2, 2)}.

Theorem 2. The Diophantine equation (5) has no nontrivial solutions in non-

negative integers n, k, m with k > 2.

As an immediate consequence of Theorem 1 and Theorem 2 we have the following

corollaries.

Corollary 1. The only Fermat numbers in the k-Fibonacci family of sequences

are F4 = 3 and F5 = 5.

Corollary 2. The only Fermat number in the k-Lucas family of sequences is

L
(k)
2 = 3, which holds for all k > 2.

To prove our main results we use lower bounds for linear forms in logarithms

(Baker’s theory) to bound n and m polynomially in terms of k. When k is small,

we use the theory of continued fractions by means of a variation of a result of Du-

jella and Pethő to lower such bounds to cases that allow us to treat our problem

computationally. For large values of k, Bravo, Gómez and Luca in [2], [3], [5] devel-

oped some ideas for dealing with Diophantine equations involving k-Fibonacci and

k-Lucas numbers.

Before proceeding further, it may be mentioned that the characteristic polynomial

of G(k), namely

Ψk(x) = xk − xk−1 − . . .− x− 1,

is irreducible in Q[x] and has just one zero root outside the unit circle. Throughout

this paper, α := α(k) denotes that single zero. The other roots are strictly inside the

unit circle, so α(k) is a Pisot number of degree k. Moreover, it is also known that
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α(k) is located between 2(1 − 2−k) and 2, see [10], Lemma 2.3 or [15], Lemma 3.6.

To simplify the notation, we shall omit the dependence on k of α.

We now consider the function fk(x) = (x− 1)/(2 + (k + 1)(x− 2)) for an integer

k > 2 and x > 2(1− 2−k). It is easy to see that the inequalities

(6)
1

2
< fk(α) <

3

4
and |fk(α

(i))| < 1, 2 6 i 6 k

hold, where α := α(1), . . . , α(k) are all the zeros of Ψk(x). So, by computing norms

from Q(α) to Q, for example, we see that the number fk(α) is not an algebraic

integer. Proofs for this fact and for (6) can be found in [2].

With the above notation, Dresden and Du showed in [6] that

(7) F (k)
n =

k∑

i=1

fk(α
(i))α(i)n−1

and |F (k)
n − fk(α)α

n−1| <
1

2

hold for all n > 1 and k > 2.

In addition to this, Bravo and Luca proved in [4] that

(8) αn−2 6 F (k)
n 6 αn−1 holds for all n > 1 and k > 2.

The observations in expressions (7) and (8) lead us to call α the dominant zero

of G(k).

Note that sequences G(k) and F (k) have the same recurrence relation. This makes

us think that there is some relationship between them. In this sense, Bravo and Luca

in [5] proved that G
(k)
n = aF

(k)
n+1 + (b− a)F

(k)
n . In particular,

(9) L(k)
n = 2F

(k)
n+1 − F (k)

n .

The above result supports the following lemma (see the proof in [5]).

Lemma 1. Let k > 2 be an integer. Then

(a) αn−1 6 L
(k)
n 6 2αn for all n > 1,

(b) L(k) satisfies the following “Binet-like” formula

L(k)
n =

k∑

i=1

(2αi − 1)fk(αi)α
n−1
i ,

where α = α1, . . . , αn are the zeros of Ψk(x) = xk − xk−1 − . . .− x− 1,

(c) |L
(k)
n − (2α− 1)fk(α)α

n−1| < 3
2 for all n > 2− k,

(d) If 2 6 n 6 k, then L
(k)
n = 3 · 2n−2.
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2. Linear forms in logarithms

In order to prove our main result, we need to use a Baker type lower bound for

a nonzero linear form in logarithms of algebraic numbers, and such a bound, which

plays an important role in this paper, was given by Matveev (see [13]). We begin by

recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial over

the integers

a0x
d + a1x

d−1 + . . .+ ad = a0

d∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η.

Then

h(η) =
1

d

(
log a0 +

d∑

i=1

log(max{|η(i)|, 1})

)

is called the logarithmic height of η. In particular, if η = p/q is a rational number

with gcd(p, q) = 1 and q > 0, then h(η) = logmax{|p|, q}.

The following properties of the logarithmic height, which will be used in next

sections without special reference, are also known:

⊲ h(η ± γ) 6 h(η) + h(γ) + log 2.

⊲ h(ηγ±1) 6 h(η) + h(γ).

⊲ h(ηs) = |s|h(η).

Matveev in [13] proved the following deep theorem.

Theorem 3 (Matveev’s theorem). Let K be a number field of degree D over Q,

γ1, . . . , γt be positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb1
1 . . . γbt

t − 1 and B > max{|b1|, . . . , |bt|}.

Let Ai > max{Dh(γi), | log γi|, 0.16} be real numbers for i = 1, . . . , t. Then, assuming

that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 . . . At).

To conclude this section, we give estimates for the logarithmic heights of some

algebraic numbers. Let K = Q(α). Knowing that Q(α) = Q(fk(α)) and that

|fk(α(i))| 6 1 for all i = 1, . . . , k and k > 2, we obtain that h(α) = (logα)/k
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and h(fk(α)) = (log a0)/k, where a0 is the leading coefficient of minimal primitive

polynomial over the integers of fk(α). Put

gk(x) =

k∏

i=1

(x− fk(α
(i))) ∈ Q[x] and N = NK/Q(2 + (k + 1)(α− 2)) ∈ Z.

We conclude that N gk(x) ∈ Z[x] vanishes at fk(α). Thus, a0 divides |N |. But for

k > 2,

|N | =

∣∣∣∣
k∏

i=1

(2 + (k + 1)(α(i) − 2))

∣∣∣∣ = (k + 1)k
∣∣∣∣

k∏

i=1

(
2−

2

k + 1
− α(i)

)∣∣∣∣

= (k + 1)k
∣∣∣Ψk

(
2−

2

k + 1

)∣∣∣

=
2k+1kk − (k + 1)k+1

k − 1
< 2kkk.

Hence, we will use the following inequalities:

(10) h(α) <
7

10k
and h(fk(α)) < 2 log k, k > 2.

Additionally, Bravo and Luca in [5] proved that h(2α− 1) < log 3 for all k > 2. So,

(11) h((2α− 1)fk(α)) < log 3 + 2 log k < 4 log k, k > 2.

3. Proof of Theorem 1

Assume first that we have a nontrivial solution (n, k,m) of equation (4). If n = 1,

then 1 = 2m + 1, which is impossible because m > 0. Now, if 2 6 n 6 k + 1, then

we obtain from (1) that 2n−2 = 2m + 1. From this, we get only the trivial solutions

(n, k,m) = (3, k, 0) for all k > 2. So, from now on, we assume that n > k + 2 and

therefore n > 4. In fact, after a quick inspection of the first table presented above,

we can assume that n > 6 since the only solutions for the values n = 4, 5 are given

by F4 = 3 and F5 = 5. By inequalities (2) and (4), we have

2m < 2m + 1 = F (k)
n < 2n−2

obtaining

(12) m 6 n− 3.
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We shall have some use for it later. Using now (4) once again and (7) we get that

|fk(α)α
n−1 − 2m| <

1

2
+ 1 =

3

2
,

giving

(13)
∣∣∣1− 2m

αn−1

1

fk(α)

∣∣∣ < 3

αn−1
,

where we used the fact that fk(α) >
1
2 as has already been mentioned (see (6)). In

order to use the result of Matveev theorem 3, we take t := 3 and

γ1 := 2, γ2 := α, γ3 := fk(α).

We also take b1 := m, b2 := −(n− 1) and b3 := −1. We begin by noticing that the

three numbers γ1, γ2, γ3 are positive real numbers and belong to K = Q(α), so we

can take D := [K : Q] = k. The left-hand side of (13) is not zero. Indeed, if this

were zero, we would then get that fk(α) = 2m · α−(n−1) and so fk(α) would be an

algebraic integer, contradicting something previously mentioned. Note that α−1 is

an algebraic integer, because it is a root of the monic polynomial xkΨk(1/x) ∈ Z[x],

and recall that the set of algebraic integers form a ring.

Since h(γ1) = log 2, it follows that we can take A1 := k log 2. Further, in view

of (10), we can take A2 = 7
10 and A3 := 2k log k. Finally, by recalling thatm 6 n−3,

we can take B := n − 1. Then Matveev’s theorem together with a straightforward

calculation gives

(14) |1− 2mα−(n−1)(fk(α))
−1| > exp(−8.34× 1011k4 log2 k log(n− 1)),

where we used that 1+ log k 6 3 log k for all k > 2 and 1 + log(n− 1) 6 2 log(n− 1)

for all n > 4. Comparing (13) and (14), taking logarithms and then performing the

respective calculations, we get that

(15)
n− 1

log(n− 1)
< 1.76× 1012k4 log2 k.

We next use the fact that the inequality x/ log x < A implies x < 2A logA whenever

A > 3 in order to get an upper bound for n depending on k. Indeed, taking x :=

n − 1 and A := 1.76 × 1012k4 log2 k, and performing the respective calculations,

inequality (15) yields n < 1.7× 1014k4 log3 k. We record what we have proved so far

as a lemma.

Lemma 2. If (n,m, k) is a nontrivial solution in positive integers of equation (4),

then n > k + 2 and

m+ 3 6 n < 1.7× 1014k4 log3 k.
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3.1. The case k > 170. In this case the following inequalities hold:

m+ 3 6 n < 1.7× 1014k4 log3 k < 2k/2.

We recall the following result due to Bravo, Gómez and Luca (see [2]).

Lemma 3. If r < 2k, then the following estimate holds:

F (k)
r = 2r−2

(
1 +

k − r

2k+1
+ ζ(k, r)

)
,

where ζ = ζ(k, r) is a real number such that |ζ| < 4r2/22k+2.

So, from (4) and Lemma 3 applied to r := n < 2k/2, we get

|2n−2 − 2m| =
∣∣∣(F (k)

n − 2m)− 2n−2
(k − n

2k+1
+ ζ

)∣∣∣ < 1 + 2n−2
(n− k

2k+1
+

4n2

22k+2

)
.

Factoring 2n−2 on the right-hand side of the above inequality and taking into account

that 1/2n−2 < 1/2k/2 (because n > k + 2 by Lemma 2), (n− k)/2k+1 < 1/2k/2 and

4n2/22k+2 < 1/2k/2, which are all valid for k > 170, we conclude that

(16) |1− 2m−n+2| <
3

2k/2
.

By recalling that m 6 n− 3 (see (12)), we have that m− n+ 2 6 −1. So, from (16)

and the previous result we have

1

2
6 1− 2m−n+2 <

3

2k/2

giving 2k/2 < 6, which contradicts the fact that k > 170. Consequently, equation (4)

has no solutions for k > 170.

3.2. The case 2 6 k 6 170. For these values of k, we will use the following lemma,

which is an immediate variation of the result due to Dujella and Pethő from [7], and

will be the key tool used in this paper to reduce the upper bounds on the variables

of the Diophantine equation (4).

Lemma 4. Let A, B, γ, µ be positive real numbers and M a positive integer.

Suppose that p/q is a convergent of the continued fraction expansion of the irra-

tional γ such that q > 6M . Put ε = ‖µq‖ −M‖γq‖, where ‖·‖ denotes the distance
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from the nearest integer. If ε > 0, then there is no positive integer solution (u, v, w)

to the inequality

0 < |uγ − v + µ| < AB−w,

subject to the restrictions that

u 6 M and w >
logA+ log q − log ε

logB
.

In order to apply this result, we let z := m log 2− (n− 1) logα− log fk(α) and we

observe that (13) can be rewritten as

(17) |ez − 1| <
3

αn−1
.

Note that z 6= 0; thus, we distinguish the following cases. If z > 0, then ez − 1 > 0,

so from (17) we obtain

0 < z <
3

αn−1
.

Suppose now that z < 0. Since the dominant zeros of F (k) are strictly increasing

as k increases, we deduce that 3/αn−1 6 3/(α(2))n−1 < 1
2 for all n > 5. Here,

α(2) denotes the golden section as mentioned before. Then from (17) we have that

|ez − 1| < 1
2 and therefore e

|z| < 2. Since z < 0, we have

0 < |z| 6 e|z| − 1 = e|z||ez − 1| <
6

αn−1
.

In any case, we have that the inequality

0 < |z| <
6

αn−1

holds for all k > 2 and n > 5. Replacing z in the above inequality by its formula

and dividing it across by logα, we conclude that

(18) 0 <
∣∣∣m log 2

logα
− n+

(
1−

log fk(α)

logα

)∣∣∣ < 13

α(n−1)
,

where we have used the fact that 1/ logα < 2.1. We put

γ̂ := γ̂(k) =
log 2

logα
, µ̂ := µ̂(k) = 1−

log fk(α)

logα
, A := 13 and B := α.

We also putMk := ⌊1.7×1014k4 log3 k⌋, which is an upper bound onm by Lemma 2.

The fact that α is a unit inOK, the ring of integers ofK, ensures that γ̂ is an irrational
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number. Even more, γ̂ is transcendental by the Gelfond-Schneider Theorem. Then,

the above inequality (18) yields

(19) 0 < |mγ̂ − n+ µ̂| < AB−(n−1).

It then follows from Lemma 4, applied to inequality (19), that

n− 1 <
logA+ log q − log ε

logB
,

where q = q(k) > 6Mk is a denominator of a convergent of the continued fraction

of γ̂ such that ε = ε(k) = ‖µ̂q‖−Mk‖γ̂q‖ > 0. A computer search with Mathematica

revealed that if k ∈ [2, 170], then the maximum value of (logA+ log q− log ε)/ logB

is < 360. Hence, we deduce that the possible solutions (n, k,m) of equation (4) for

which k is in the range [2, 170] all have n < 360.

Finally, a brute force search with Mathematica in the range

2 6 k 6 170 and k + 2 6 n < 360

allows us to conclude that the only nontrivial solutions of (4) are

(n, k,m) ∈ {(4, 2, 1), (5, 2, 2)} .

This completes the analysis in the case k ∈ [2, 170] and therefore the proof of

Theorem 1. �

4. Proof of Theorem 2

Assume first that we have a nontrivial solution (n, k,m) of equation (5). Thus,

n 6= 0 and n 6= 2. Note that if 3 6 n 6 k, then by (5) and Lemma 1 (d) we get

3 · 2n−2 = 2m + 1, which is not possible. Hence, from now on, we can assume that

m > 2 and n > k + 1.

On the other hand, by Lemma 1 (a) and (5) we get

2m < 2m + 1 = L(k)
n 6 2αn < 2n+1

implying that m 6 n. However, using (2) and (9), and taking into account that

n > k + 1, we have that

F (k)
n + 2m + 1 = 2F

(k)
n+1 < 2n.
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From the expression above we see that m = n cannot be. Hence m < n. Using

now (5) and Lemma 1 (c), we get that

(20) |2m − (2α− 1)fk(α)α
n−1| <

5

2
.

Dividing both sides of the above inequality by the second term of the left-hand side

(which is positive), we obtain

(21)
∣∣∣ 2mα−(n−1)

(2α− 1)fk(α)
− 1

∣∣∣< 3

αn−1
,

where we used the facts 1/fk(α) < 2 and 1/(2α− 1) < 1
2 . The left-hand size of (21)

is not zero. Indeed, if this were zero, we would then get that

2m = (2α− 1)fk(α)α
n−1.

Conjugating the above relation by some automorphism of the Galois group of the

decomposition field of Ψk(x) over Q and then taking absolute values, we get that for

any i > 2 we have

4 6 2m = |(2αi − 1)fk(αi)α
n−1
i | < 3,

which is a contradiction.

In order to use Theorem 3, we take t := 3,

γ1 := 2, γ2 := α, γ3 := (2α− 1)fk(α)

and

b1 := m, b2 := −(n− 1), b3 := −1.

For this choice we have D = k (because γ1, γ2, γ3 ∈ K := Q(α)) and B = n − 1.

Thus, we can take A1 := k log 2, A2 := 7
10 (see (10)) and A3 := 4k log k (see (11)).

By Matveev’s theorem and proceeding as in the proof of Lemma 2 we obtain the

following lemma.

Lemma 5. If (n,m, k) is a nontrivial solution in positive integers of equation (5),

then n > k + 1 and

m < n < 1.68× 1014k4 log3 k.
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4.1. The case k > 170. For these values of k, from Lemma 5 we deduce that

n < 2k/2. Bravo and Luca in [5] established that if r > 1 is an integer satisfying

r − 1 < 2k/2, then

(22) (2α− 1)fk(α)α
r−1 = 3 · 2r−2 + 3 · 2r−1η +

δ

2
+ ηδ,

where δ and η are real numbers such that |δ| < 2r+2/2k/2 and |η| < 2k/2k. Conse-

quently, from (22) (with r := n) and (20) we obtain

|3 · 2n−2 − 2m| 6 |(2α− 1)fk(α)α
n−1 − 2m|+ 3|η|2n−1 +

|δ|

2
+ |ηδ|

< 3 · 2n−2
( 5

3 · 2n−1
+

4k

2k
+

8

3 · 2k/2
+

32k

3 · 23k/2

)
.

Dividing the above inequality across by 2n−2 we conclude that

(23) |3− 2m−n+2| < 3
( 1

2k/2
+

4k

2k
+

8

3 · 2k/2
+

32k

3 · 23k/2

)
<

18

2k/2
.

In the last inequality we have used that 5/(3 · 2n−1) < 1/2k/2 (because n > k + 1),

4k/2k < 1/2k/2, 8/(3 · 2k/2) < 3/2k/2 and 32k/(3 · 23k/2) < 1/2k/2, which are all

valid for k > 170. By recalling that m < n, we have m−n+2 6 1 and so, from (23),

we get

1 6 3− 2m−n+2 <
18

2k/2
.

That is, 2k/2 < 18 which is impossible since k > 170. Then (5) has no solutions for

k > 170.

4.2. The case 2 6 k 6 170. If we take z = m log 2− (n− 1) logα− logµ, where

µ = (2α − 1)fk(α), and proceeding as in Section 3.2, we deduce that the possible

solutions (n, k,m) of equation (5) for which k is in the range [2, 170] all have n < 340.

Finally, we conclude by a brute force search in Mathematica that equation (5) has

no solutions in the range

2 6 k 6 170 and k + 1 6 n < 340.

This proves Theorem 2. �

Finally, Corollary 1 and Corollary 2 are immediate consequences of Theorem 1

and Theorem 2, respectively.

A c k n ow l e d g em e n t s. The first author was supported in part by Projects

VRI ID 4400 (Universidad del Cauca) and Colciencias 110371250560. The second

author was supported by Colciencias (Colombia) through the Program Jóvenes in-

vestigadores e innovadores Project VRI ID 4402 (Universidad del Cauca).

31



References

[1] E.F. Bravo, J. J.Bravo, F. Luca: Coincidences in generalized Lucas sequences. Fi-
bonacci Q. 52 (2014), 296–306. zbl MR

[2] J. J. Bravo, C.A.Gómez , F. Luca: Powers of two as sums of two k-Fibonacci numbers.
Miskolc Math. Notes 17 (2016), 85–100. zbl MR doi

[3] J. J. Bravo, F. Luca: Powers of two in generalized Fibonacci sequences. Rev. Colomb.
Mat. 46 (2012), 67–79. zbl MR

[4] J. J. Bravo, F. Luca: On a conjecture about repdigits in k-generalized Fibonacci se-
quences. Publ. Math. 82 (2013), 623–639. zbl MR doi

[5] J. J. Bravo, F. Luca: Repdigits in k-Lucas sequences. Proc. Indian Acad. Sci., Math. Sci.
124 (2014), 141–154. zbl MR doi

[6] G.P.Dresden, Z. Du: A simplified Binet formula for k-generalized Fibonacci numbers.
J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. zbl MR
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