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Some classes of perfect strongly annihilating-ideal

graphs associated with commutative rings

Mitra Jalali, Abolfazl Tehranian, Reza Nikandish, Hamid Rasouli

Abstract. Let R be a commutative ring with identity and A(R) be the set of
ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is
defined as the graph SAG(R) with the vertex set A(R)∗ = A(R) \ {0} and
two distinct vertices I and J are adjacent if and only if I ∩ Ann(J) 6= (0) and
J ∩ Ann(I) 6= (0). In this paper, the perfectness of SAG(R) for some classes of
rings R is investigated.

Keywords: strongly annihilating-ideal graph; perfect graph; chromatic number;
clique number

Classification: 13A15, 13B99, 05C99, 05C25

1. Introduction

One of the most important and active areas in algebraic combinatorics is study

of graphs associated with rings. This field has attracted many researches during

the past 20 years. There are many papers on assigning a graph to a ring, for

instance see [2], [3], [4], [10] and [11].

Throughout this paper, R is a commutative ring with unity. The sets of all

zero-divisors, all ideals of R, nilpotent elements, minimal prime ideals of R and

jacobson radical of R are denoted by Z(R), I(R), Nil(R), Min(R) and Jac(R),

respectively. For a subset T of a ring R we let T ∗ = T \ {0}. An ideal with

nonzero annihilator is called an annihilating ideal. The set of annihilating ideals

of R is denoted by A(R). A nonzero ideal I of R is called essential if I has

a nonzero intersection with every other nonzero ideal of R. An element e of the

ring R is called an idempotent if e2 = e. Two idempotents e, f ∈ R are called

orthogonal if ef = 0. For a ring R, Soc(R) is the sum of all minimal ideals of R

and R is called perfect if it contains no infinite set of orthogonal idempotents and

Soc(R) is an essential ideal of R. The ring R is said to be reduced if it has no

nonzero nilpotent element. For any undefined notation or terminology in ring

theory, we refer the reader to [9].
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LetG = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G)

is the set of edges. By G, we mean the complement graph of G. A complete

bipartite graph with part sizes m and n is denoted by Km,n. Also, a complete

graph of order n is denoted by Kn. If U ⊆ V (G), then by N(U) we mean the set

of all neighbors of U in G. The graph H = (V0, E0) is a subgraph of G if V0 ⊆ V

and E0 ⊆ E. Moreover, H is called an induced subgraph by V0, denoted by G[V0],

if V0 ⊆ V and E0 = {{u, v} ∈ E : u, v ∈ V0}. A graph G is empty if it has no

edges. Let G1 and G2 be two disjoint graphs. The join of G1 and G2, denoted

by G1∨G2, is a graph with the vertex set V (G1∨G2) = V (G1)∪V (G2) and edge

set E(G1 ∨G2) = E(G1) ∪E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}. A clique of G

is a maximal complete subgraph of G and the number of vertices in the largest

clique of G, denoted by ω(G), is called the clique number of G. For a graph G,

let χ(G) denote the vertex chromatic number of G, i.e., the minimal number of

colors which can be assigned to the vertices of G in such a way that every two

adjacent vertices have different colors. Clearly, for every graph G, ω(G) ≤ χ(G).

A graph G is said to be weakly perfect if ω(G) = χ(G). A perfect graph G is

a graph in which every induced subgraph is weakly perfect. For any undefined

notation or terminology in graph theory, we refer the reader to [12].

Let R be a commutative ring with 1 6= 0. The annihilating-ideal graph of R,

denoted by AG(R), is a graph with the vertex set A(R)∗ and two distinct vertices I

and J are adjacent if and only if IJ = 0, see [5] for more details. Coloring of

annihilating-ideal graph was investigated in [1]. The strongly annihilating-ideal

graph, denoted by SAG(R), is a graph with the vertex set A(R)∗ and two distinct

vertices I and J are adjacent if and only if I∩Ann(J) 6= (0) and J∩Ann(I) 6= (0).

The strongly annihilating-ideal graph, as a generalization of annihilating-ideal

graph, was first introduced and studied in [11]. In [8], it was proved that strongly

annihilating-ideal graph of a reduced ring is weakly perfect. In this paper, we

prove a stronger result; indeed it is shown that strongly annihilating-ideal graphs

of both reduced rings and perfect rings are perfect.

2. Strongly annihilating-ideal graph of a reduced ring is perfect

In this section, we show that SAG(R) is perfect for every reduced ring R with

ω(SAG(R)) < ∞. In 2004 M. Chudnovsky et al. [6] settled a long standing

conjecture regarding perfect graphs and provided a characterization of perfect

graphs.

Theorem 2.1 (The strong perfect graph theorem [6]). A graph G is perfect if

and only if neither G nor G contains an induced odd cycle of length at least 5.
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Example 2.1.

(1) Every complete graph and complete bipartite graph is perfect.

(2) Let G1 be a complete graph and G2 = Cn be a cycle of length at least 5

and let G = G1 ∨G2. If n is odd, then ω(SAG(G)) = |G1|+2 and χ(SAG(G)) =

|G1|+ 3, i.e., G is not perfect. If n is even, then every induced subgraph of G is

weakly perfect and thus G is perfect.

Let R ∼= D1 × D2 × · · · × Dn, where every Di is an integral domain and

S = F1 × F2 × · · · × Fn, where every Fi is a field. Next, we show that SAG(R) is

perfect if and only if SAG(S) is perfect. First, we need the following results.

Let G be a graph and x ∈ V (G) a vertex, and let G′ be obtained from G by

adding a vertex x′ and joining it to x and all the neighbours of x. We say that

G′ is obtained from G by expanding the vertex x to an edge x− x′.

Lemma 2.1 ([7, Lemma 5.5.5]). Any graph obtained from a perfect graph by

expanding a vertex is again perfect.

Remark 2.1. Let G be a graph and x ∈ V (G), A ⊆ V (G). By Lemma 2.1, if

for every y ∈ A, N(x) = N(y) or N [x] = N [y], then G is perfect if and only if

G \ {A \ {x}} is perfect.

Lemma 2.2. Let R be a reduced ring and I, J ∈ V (SAG(R)). If Ann(I) =

Ann(J), then N(I) = N(J).

Proof: Suppose that K − I is an edge of SAG(R). Then by [11, Lemma 2.1],

Ann(I) * Ann(K) and Ann(K) * Ann(I). Since Ann(I) = Ann(J), we deduce

that Ann(K) * Ann(J) and Ann(J) * Ann(K). This means that K − J is an

edge of SAG(R) and thus N(I) ⊆ N(J). Similarly, N(J) ⊆ N(I), as desired. �

Let F1, . . . , Fn be fields and D1, . . . , Dn be integral domains. It is worth men-

tioning that perfectness of strongly annihilating-ideal graphs induced by
∏

Fi and∏
Di does not depend on concrete fields and domains.

Corollary 2.1. Let R ∼= D1 × · · · × Dn, where every Di is an integral domain

S = F1 × · · · × Fn, where every Fi is a field. Then SAG(R) is perfect if and only

if SAG(S) is perfect.

Proof: Assume that I = I1 × · · · × In and J = J1 × · · · × Jn are vertices of

SAG(R). Define the relation “∼ ” on V (SAG(R)) as follows: I ∼ J , whenever

“Ii = 0 if and only if Ji = 0” for every 1 ≤ i ≤ n. It is easily seen that “∼ ” is

an equivalence relation on V (SAG(R)) and thus V (SAG(R)) =
⋃2

n

−2

i=1
[I]i, where

[I]i is the equivalence class of I. (We note that the number of equivalence classes

is 2n − 2.) Let [I] be the equivalence class of I and J,K ∈ [I]. Then Ann(J) =

Ann(K) and thus by Lemma 2.2, N(J) = N(K). This, together with I is not
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adjacent to J , implies that SAG(R) is perfect if and only if SAG(R) \ {[I] \ {I}}

is perfect, by Remark 2.1. If we continue this procedure for every equivalence

class [I] (2n − 2 times), then we conclude that SAG(R) is perfect if and only if

SAG(R)[A] is perfect, where

A = {I = I1 × · · · × In ∈ V (SAG(R)) : Ii ∈ {0, Di} for every 1 ≤ i ≤ n}.

It is straightforward to check that SAG(R)[A] ∼= SAG(S) and thus SAG(R) is

perfect if and only if SAG(S) is perfect. �

To prove our main result in this section, we need two following lemmas.

Lemma 2.3. Let R = F1 × · · · × Fn, where every Fi is a field and I, J ∈

V (SAG(R)). Then I − J is an edge of SAG(R) if and only if I * J and J * I.

Proof: First, assume that I − J is an edge of SAG(R). If I ⊆ J or J ⊆ I, then

Ann(J) ⊆ Ann(I) or Ann(I) ⊆ Ann(J), a contradiction, by [11, Lemma 2.1].

The converse is clear. �

Lemma 2.4. Let R = F1 × · · · × Fn, where every Fi is a field. Then SAG(R) is

perfect.

Proof: By Theorem 2.1, it is enough to show that SAG(R) and SAG(R) contain

no induced odd cycle of length at least 5. Consider the following claims:

Claim 1. SAG(R) contains no induced odd cycle of length at least 5. Assume

to the contrary,

I0 − I1 − · · · − In−1 − I0

is an induced odd cycle of length at least 5 in SAG(R). Since I0 is not adjacent

to I2, by Lemma 2.3 we can assume that I0 ⊆ I2. Now, if I3 ⊆ I0, then I3 ⊆ I2,

a contradiction. So I0 ⊆ I3. Next, we show that I1 ⊆ In−1. For this, since I1
is not adjacent to I3, by Lemma 2.3, we conclude that I1 ⊆ I3 or I3 ⊆ I1. If

I3 ⊆ I1, then I0 ⊆ I1, as I0 ⊆ I3. This is a contradiction, by Lemma 2.3. So

I0 ⊆ I3. If we continue this procedure for I4, . . . , In−1, then we get I1 ⊆ In−1.

If we start the above argument from I2, on I4, . . . In−1, I0, then we get I2 ⊆ I0.

This is a contradiction as I0 ⊆ I2, and so SAG(R) contains no induced odd cycle

of length at least 5.

Claim 2. SAG(R) contains no induced odd cycle of length at least 5. Assume

to the contrary,

I1 − I2 − · · · − In − I1

is an induced odd cycle of length at least 5 in SAG(R). By Lemma 2.3, we may

assume that I1 ⊆ I2. If I2 ⊆ I3, then I1 ⊆ I3, a contradiction. Thus I1 ⊆ I2 and

I3 ⊆ I2. If I4 ⊆ I3, then I4 ⊆ I2, a contradiction. So I3 ⊆ I4. If I4 ⊆ I5, then
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I3 ⊆ I4 implies that I3 ⊆ I5, a contradiction. Thus I3 ⊆ I4 and I5 ⊆ I4. Since n

is odd, if we continue this procedure, then In−2 ⊆ In−1, In ⊆ In−1. If I1 ⊆ In,

then since In ⊆ In−1, I1 ⊆ In−1, a contradiction. So In ⊆ I1 and since I1 ⊆ I2,

we deduce that In ⊆ I2, a contradiction. Therefore, SAG(R) contains no induced

odd cycle of length at least 5. By Claims 1 and 2, SAG(R) is perfect. �

Using Lemma 2.4 and Corollary 2.1, we have the following immediate corollary.

Corollary 2.2. Let R be a ring such that R ∼= D1 × · · · ×Dn, where Di is an

integral domain for every 1 ≤ i ≤ n < ∞. Then SAG(R) is a perfect graph.

We are now in a position to state the main result of this section.

Theorem 2.2. Let R be a reduced ring and ω(SAG(R)) < ∞. Then SAG(R)

is a perfect graph.

Proof: Since ω(SAG(R)) < ∞, by [8, Lemma 2.5], |Min(R)| < ∞. Let Min(R) =

{p1, . . . , pn} and T = R/p1 × · · · ×R/pn. Define a ring homomorphism ϕ : R −→

R/p1 × · · · ×R/pn with ϕ(r) = (r+ p1, . . . , r+ pn). Since pi are distinct minimal

prime ideals, pi * pj for each i 6= j. Hence there exists nonzero ideals Si of R/pi
such that S1 × · · · ×Sn ⊆ ϕ(R) ∼= R and S1 × · · · ×Sn is ideal of both rings ϕ(R)

and T . We put

A = {I1 × · · · × In ∈ V (SAG(ϕ(R))) : Ii ∈ {0, Si} for every 1 ≤ i ≤ n},

B = {J1 × · · · × Jn ∈ V (SAG(T )) : Ji ∈ {pi, R/pi} for every 1 ≤ i ≤ n}.

Now, we can easily get SAG(ϕ(R))[A] ∼= SAG(T )[B] and thus SAG(ϕ(R))[A]

is perfect if and only if SAG(T )[B] is perfect. On the other hand, by proof of

Corollary 2.1, we can easily get SAG(ϕ(R)) and SAG(T ) are perfect if and only

if SAG(ϕ(R))[A] and SAG(T )[B] are perfect, respectively. This, together with

Corollary 2.2, implies that SAG(ϕ(R)) is a perfect graph and hence SAG(R) is

a perfect graph. �

3. Strongly annihilating-ideal graph of a perfect ring is perfect

The main aim of this section is to show that SAG(R) is perfect in case R is

a perfect ring. It is known that if R/Jac(R) is a semisimple ring, then Soc(R) =

Ann(Jac(R)) (see [13, part 21.15]). Also, to prove our main result it is very

important that Soc(R) to be an essential ideal of R. Since the perfect rings have

both of these properties, we may show that the strongly annihilating-ideal graph

of a perfect ring is perfect.

Lemma 3.1. LetR be a perfect ring and I ⊆ Jac(R). Then Ann(I) is an essential

ideal of R.
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Proof: Since R is perfect, Ann(Jac(R))(= Soc(R)) is an essential ideal of R.

Since I ⊆ Jac(R), Ann(Jac(R)) ⊆ Ann(I) and so Ann(I) is an essential ideal

of R. �

Lemma 3.2. Let R be a perfect ring and I, J ∈ A(R)∗. Then the following

statements hold.

(1) If I * J , then I ∩ Ann(J) 6= (0). In particular, if I * J and J * I, then

I − J is an edge of SAG(R).

(2) If I ⊆ J and I ∩ Ann(J) 6= (0), then I − J is an edge of SAG(R).

Proof: (1) Let I = I1 × · · · × In and J = J1 × · · · × Jn. Since I * J , with

no loss of generality, assume that I1 * J1. This implies that J1 6= R1 and thus

Ann(J1) is an essential ideal of R1, by Lemma 3.1. Hence I1∩Ann(J1) 6= (0). Let

0 6= a1 ∈ I1 ∩Ann(J1). Then (a1, 0, . . . , 0) ∈ I ∩Ann(J) and so I ∩Ann(J) 6= (0).

The “in particular” statement is now clear.

(2) Since I ∩ Ann(J) 6= (0), we need only to show that J ∩ Ann(I) 6= (0). Let

0 6= a ∈ I ∩ Ann(J). Since I ⊆ J , a ∈ J . Also, aJ = (0) and I ⊆ J imply that

aI = (0). Thus a ∈ J ∩ Ann(I) and so I − J is an edge of SAG(R). �

Theorem 3.1. Let R be a perfect ring. Then SAG(R) is perfect.

Proof: Since R is perfect, then there exists a positive integer n such that R ∼=

R1 × · · · ×Rn, where every Ri is a local ring. The argument here is a refinement

of the proof of Corollary 2.1 and Lemma 2.4. By Theorem 2.1, it is enough to

show that SAG(R) and SAG(R) contain no induced odd cycle of length at least 5.

Consider the following claims:

Claim 1. SAG(R) contains no induced odd cycle of length at least 5. Assume

to the contrary,

I0 − I1 − · · · − In−1 − I0

is an induced odd cycle of length at least 5 in SAG(R). Since I0 is not adjacent

to I2, by Part (1) of Lemma 3.2, I0 ⊆ I2 or I2 ⊆ I0. Without loss of generality, we

may assume that I0 ⊆ I2. Since I0 is not adjacent to I3, by Lemma 3.2, I0 ⊆ I3
or I3 ⊆ I0. If I3 ⊆ I0, then since I0 ⊆ I2, I3 ⊆ I2. Since I3 ∩ Ann(I2) 6= (0) and

I3 ⊆ I0, I0 ∩ Ann(I2) 6= (0). This, together with Part (2) of Lemma 3.2, implies

that I0 is adjacent to I2, a contradiction. Thus I0 ⊆ I3. Now, by a refinement of

the proof of Lemma 2.4, we get I1 ⊆ In−1 and I2 ⊆ I0. This is a contradiction as

I0 ⊆ I2, and so SAG(R) contains no induced odd cycle of length at least 5.

Claim 2. SAG(R) contains no induced odd cycle of length at least 5. Assume

to the contrary,

I1 − I2 − · · · − In − I1

is an induced odd cycle of length at least 5 in SAG(R). By Lemma 3.2, we may

assume that I1 ⊆ I2. If I2 ⊆ I3, then since I1 ∩ Ann(I3) 6= (0), we conclude
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that I2 ∩ Ann(I3) 6= (0). By Lemma 3.2, I2 is adjacent to I3 in SAG(R), a con-

tradiction. Thus I1 ⊆ I2 and I3 ⊆ I2. If I4 ⊆ I3, then I3 ∩ Ann(I2) 6= (0),

as I4 ∩ Ann(I2) 6= (0) and thus by Lemma 3.2, I2 is adjacent to I3 in SAG(R),

a contradiction. So I3 ⊆ I4. If I4 ⊆ I5, then I3 ⊆ I4 and I3∩Ann(I5) 6= (0) imply

that I4 ∩Ann(I5) 6= (0) and thus by Lemma 3.2, I4 is adjacent to I5 in SAG(R),

a contradiction. Thus I3 ⊆ I4 and I5 ⊆ I4. Since n is odd, by continuing this

procedure In−2 ⊆ In−1 and In ⊆ In−1. If I1 ⊆ In, then I1 ∩ Ann(In−1) 6= (0)

implies that In ∩Ann(In−1) 6= (0) and thus by Lemma 3.2, In is adjacent to In−1

in SAG(R), a contradiction. Hence In ⊆ I1 and so In ∩ Ann(I2) 6= (0). Thus

I1 ∩ Ann(I2) 6= (0). By Lemma 3.2, I1 is adjacent to I2 in SAG(R), a contradic-

tion. Therefore, SAG(R) contains no induced odd cycle of length at least 5.

By Claims 1 and 2, the proof is complete. �

We have not found any examples of a non-domain ring R such that SAG(R)

is not perfect. The lack of such counterexamples, together with the fact that

SAG(R) is perfect if R is reduced (with ω(SAG(R)) < ∞) or perfect motivates

the following conjecture.

Conjecture 3.1. Let R be a ring. Then SAG(R) is perfect.
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